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ABSTRACT

A multi-fingerprint analysis is applied to the detection and attribution of anthropo-

genic climate change. While a single fingerprint, as applied in a previous paper by

Hegerl et a1. (1996), is optimal for detecting a significant climate change, the simulta-

neous use of several fingerprints allows one to investigate additionally the consis-

tency between observations and model predicted climate change signals for

competing candidate forcing mechanisms. Thus the multi-fingerprint method is a

particularly useful technique for attributing an observed climate change to a pro-

posed cause.

Different model-predicted climate change signals are derived from three global

warming simulations for the period 1880 to 2049. In one simulation, the forcing was

by greenhouse gases only, while in the remaining two simulations the influence of

aerosols was also included. The two dominant climate change signals derived from

these simulations are optimized statistically by weighting the model-predicted cli-

mate change pattern towards low-noise directions. These optimized fingerprints are

then applied to observed near surface temperature trends. The space-time structure

of natural climate variability (needed to determine the signal-to-noise ratio) is esti-

mated from several multi-century control simulations with different CGCMs and

from instrumental data over the last 134 years.

Applying the combined greenhouse gas and aerosol fingerprint in the same way as

the greenhouse gas only fingerprint in the previous paper, the recent 30-year trends

(1966-1995) of annual mean near surface temperature are again found to represent a

significant climate change at the 97.5% confidence level. Using both the greenhouse

gas and the combined forcing fingerprints in a two-pattern analysis, a substantially

better agreement between observations and prediction is found in terms of both spa-

tial pattern and amplitude for the combined forcing simulation. The contribution of

the aerosol forcing pattern to the greenhouse warming pattern can be detected at the



90% confidence level in the observations relative to most (but not all) estimates of cli-

mate variability.

The strongest influence of the aerosol component is found in longer term tempera-

ture trends in summer. The latest observed 50-year trend pattern of summer temper-

ature is consistent with the greenhouse gas plus aerosol simulation with respect to

both the pattern and the amplitude of the signal, while the observations are inconsis-

tent with the greenhouse-gas only climate change signal at a 95% confidence level for

all estimates of climate variability. Thus the two pattern analysis, in contrast to the

single pattern analysis, is capable of distinguishing between the two forcing hypothe-

ses in the observed climate change signal.

The results are subject to uncertainties associated with the model’s climate change

signal (for example, only the direct component of the aerosol forcing was considered)

and the estimates of climate noise, which vary for different model control simula-

tions. Further plausible mechanisms of climate change, e.g. changes in solar radia-

tion or other anthropogenic forcing factors, also need to be investigated to clearly

attribute the observed climate change to the anthropogenic forcing. Despite these

uncertainties, we consider our results sufficiently robust to have some confidence in

our finding that the observed climate change is consistent with the combined green-

house gas and aerosol simulation, but inconsistent with greenhouse gas forcing alone.



1. Introduction

Since the beginning of industrialization, the concentration of greenhouse gases and

anthropogenic aerosols in the atmosphere has continuously increased. There is consider-

able debate whether the global warming observed during this period can be distinguished

from natural climate variability and whether the climate change signal, if detected, can be

attributed to anthropogenic forcing. Estimates of natural climate variability based on a box

upwelling-diffusion model of the ocean driven by stochastic forcing (Wigley and Raper,

1990) and long simulations with realistic coupled ocean-atmosphere general circulation

models (CGCMs; Stouffer et a1., 1994)) indicate that the observed 100-year trend of glo-

bal mean temperature is larger than can be explained by the variability of these simula-

tions. Applying information on the space-time structure of the greenhouse gas signal and

the natural climate variability in an optimal fingerprint method, Hegerl et al. (1996)

showed that the latest observed 20- and 30- year temperature trend patterns lie above the

95% significance level of current estimates of natural variability. It has been shown by

Santer et a1. (1995a) that the inclusion of aerosols enhances the agreement between

observed and simulated global temperature patterns in summer and autumn and yields sta-

tistically significant trends in pattern correlation in these seasons with respect to climate

variability estimates from unforced control simulations. The inclusion of aerosols also

enhanced the pattern correlation of simulated and observed decadal mean temperature pat-

terns (Mitchell et al., 1995a). A general agreement between observations and simulations

has also been found for tropospheric temperature changes (Santer et al., 1996b). Thus

there exists substantial evidence for a forced climate change in the last decades. A com-

prehensive summary of the findings of recent pattem-based detection studies is given in

the 1995 IPCC Working Group 1 Second Assessment report (Santer et al., 1996a).

Nevertheless, it is pointed out in the IPCC report that while a high similarity of observed

and simulated patterns suggests that the climate change has indeed been caused by the

simulated anthropogenic forcing mechanisms, similar patterns can in principle also be



caused by other candidate forcing mechanisms in combination with natural climate vari—

ability. Thus the attribution problem requires that all relevant candidate forcing mecha—

nisms be considered simultaneously.

To investigate the consistency of the observed climate change with model predictions for

different candidate forcing mechanisms we apply here a multi—fingerprint analysis tech—

nique. We follow the optimal multi—fingerprint method of Hasselmann (1979; 1993; Has—

selmann 1996) in which each of the fingerprints is statistically optimized by rotating the

signal pattern away from regions of high natural variability towards low noise directions.

The optimization is introduced to maximize the signal-to—noise ratio in estimating the con—

tribution from different climate change signals to the observations, but is not a basic pre—

requisite of the attribution approach.

As observed climate data we take the near surface temperature data set of Jones and Briffa

(1992). We apply a simplified form of the general space—time dependent optimal finger—

print method in which the optimization of the signal guess—patterns is carried out with

respect to spatial coordinates only. To describe the time—evolution of the climate change

signal we consider multi—decadal linear trends. By focussing on shorter time intervals,

rather than the more traditional 100 year temperature increase, we make use of the fact

that most transient CGCM simulations, which allow for a warming delay due to the heat

uptake by the oceans, yield a marked enhancement of the warming rate in recent decades

(Hasselmann et al., 1995, Cubasch et al., 1995, Mitchell et al., 1995a). This expected

warming acceleration can be identified better by using relatively short temperature trends,

e.g. over 30 yearsi(Hegerl et al., 1996). Somewhat longer trends, ‘e.g. over 50 years, are

more useful for distinguishing a sulfate aerosol signal from the background noise, since

the global mean sulfate burden has been increasing nearly linearly over the last 40 to 50

years (see also Santer et al., 1996b). The analysis of shorter time intervals has the addi—

tional advantage that the relevant level of natural variability can be estimated with higher

confidence from model control simulations and observations.



We consider two climate change signals derived from new simulations forced either with

greenhouse gases alone or with greenhouse gases and aerosols. A single fingerprint detec—

tion analysis using the combined greenhouse gas and aerosol signal applied to observed

30-year temperature trend patterns yields very similar results to those of Hegerl et al.

(1996), who used a greenhouse gas only fingerprint (derived from an earlier climate

model). The similarities in the results, despite differences in the forcing patterns, are due

to the fact that for a single fingerprint the response is dominated by the global mean tem-

perature increase, and reflects only to a small extent spatial details of the pattern (Santer et

al., 1993; 1995a, Hegerl et al., 1996). However, applying the multi—pattem optimal finger—

print method, we find that the observations — in contrast to the single-pattem analysis- are

no longer consistent with greenhouse gas forced climate change alone, while they are con-

sistent with a combined greenhouse gas and aerosol forcing. Thus the application of two

fingerprints permits a distinction between the two forcing mechanisms in the observations.

The attribution of climate change to a given cause is subject to more uncertainties than the

more straightforward detection of climate change (Santer et al., 1996a). The candidate

mechanisms need to be specified, together with the magnitude and statistical uncertainty

of the forcing (in the case of sulfate aerosol forcing, for example, there is still high uncer-

tainty regarding the magnitude and pattern of the forcing). The climate response to these

forcings must be computed with climate models, which introduces uncertainties due to

possible systematic model errors, while further uncertainties are associated with the esti-

mate of natural climate variability. Also, the proposed method is based on the assumption

that the different mechanisms can be superimposed linearly without interacting with each

other and with climate variability. This linear superposition principle is essential if the

response to combinations of forcing and variability is to be specified. Fortunately, there

are indications that this is an acceptable approximation, at least for the greenhouse gas and

aerosol forcing response (cf. Santer et al., 1995). As pointed out in Hegerl et al. (1996),

the predicted climate change patterns need not be correct for detection: an incorrect pat-



tem merely reduces the power of the detection test, but will not normally lead to false

detection claims. However, for attribution, model errors could lead to an incorrect assess-

ment of the consistency between climate change simulations and observations, and even to

an unjustified attribution claim. In principle, this problem can be addressed by considering

possible systematic model errors. However, this has not been attempted, since the relevant

model error covariance matrix for decadal trends is difficult to estimate.

The paper is structured as follows: Section 2 outlines the optimal fingerprint method for

detection and attribution of climate change. In Section 3, the results of the greenhouse gas

and aerosol simulations are given and the data used for the application of the detection and

attribution approach are specified. Results for annual mean data are given in Sections 4

and 5, using one or two fingerprints, respectively, to test the consistency of the observed

climate change with the hypothesized forcing mechanisms. A similar analysis for season-

ally stratified data is presented in Section 6. The paper concludes with a summary and dis-

cussion of the results in Section 7.

2. The optimal fingerprint method for detection and
attribution

Various pattern analysis methods have been proposed which make use of the model-pre-

dicted patterns of anthropogenic (or other externally forced) climate change to distinguish

the forced signal from natural climate variability (noise) (of. reviews in Barnett et al.,

1991 and Hegerl and North, 1996). The optimal fingerprint method (Hasselmann et al.,

1979; 1993) adopted here is based on an enhancement of features of the climate change

signal associated with low natural variability relative to features ‘which are more strongly

contaminated by noise. Such techniques which maximize the signal-to-noise ratio are con-

siderably more powerful than the selection of arbitrary climate indices (e.g. the global

mean temperature) as detection variable, but require knowledge of the space—time struc-

tures of both the signal and the noise. This approach is useful not only for the early detec-



tion of externally forced climate change, but also for distinguishing between different

candidate forcing mechanisms in the attribution problem (Hasselmann, 1996). The opti—

mal fingerprint method has been applied by Santer et al. (1995b) for the detection of ocean

global warming in a model simulation study and by Hegerl et a1. (1996) for the detection

of a greenhouse warming signal in near surface temperature data. It can be shown that the

optimal fingerprint method is closely related to other optimal averaging or filtering meth-

ods (Bell, 1986; North et al., 1995; Hegerl and North, 1996) which provide an optimal

estimate of the amplitude of a climate change signal in the presence of noise, and to simi-

lar approaches which have been used in other fields of signal processing (Hasselmann,

1979).

a. Optimalfingerprints

Observations of recent climate evolution may contain several climate change signals, e.g.

through greenhouse warming, increasing aerosol concentrations, or changes in solar irra-

diance. To distinguish between different candidate mechanisms, it is useful to introduce

several fingerprints fv = U1)” = 1...p associated with the different signal guess—pat-

terns gv predicted for the different forcings, and to consider a vector of detection variables

defined by the scalar products (Hasselmann 1993, Hasselmann, 1996)

dV =fL‘Pl. ‚v = 1...p (1)

where ‘i’ = (Ti) i _ represents the observed climate state vector (in some n—dimen-l...n

sional, e.g. gridpoint, space) and the summation convention is used for repeated indices.

The optimal fingerprints are defined such that they maximize the square signal—to—noise

ratio for each individual signal component. This yields at the same time the maximal

multi—variate signal-to—noise ratio for the combined multi—pattern signal. For optimal

detection (disregarding the question of attribution) the restriction to a single fingerprint

generally yields the highest signal-to—noise ratio, since the significance of a given climate

change signal decreases with increasing dimension (e.g. Hasselmann, 1993). The optimal



fizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAngerprints are given by the product of the original signal guess-pattem with the inverse

C” of the covariance matrix Cl.j = (lilililk) of the random climate noise ‘i’,

_ i].
f, = C gw-‚ <2)

where the cornered brackets denote the statistical expectation. The fingerprint f; repre-

sents the contravariant dual vector of the covariant signal pattern vector gw, defined with

respect to the metric C”.

The covariance matrix CiJ. can be estimated using samples of model-derived or observed

climate noise ‘i’ (see below). The multiplication with the inverse covariance matrix CU

suppresses features of the signal pattern associated with high natural variability and

enhances pattern features for which the variability is low. This is seen most readily in the

EOF representation CU = diagLoiZJ, for which the fingerprint is obtained by simply

dividing the EOF coefficients of the signal pattern by the variance of climate noise 0?.

Detection is said to be achieved at some prescribed significance level p (e.g. 95%) if the

“null” hypothesis that the observed detection variable (1 (or vector of detection variables)

can be explained by natural variability alone is rejected at that significance level, i.e. if the

probability that a signal of at least the estimated magnitude is sampled from the natural

variability ensemble lies below the level l—p (e.g. 5%).

b. Application ofmultiple optimalfingerprints to the attribution problem

The rejection of the null hypothesis does not yet attribute the observed climate change to

the assumed generating mechanism. The detection test determines only whether the mag-

nitude of the detection variable, defined with respect to some assumed signal direction, is

too large to be explained by natural variability. It does not test whether the observations

are in fact consistent with the model predicted signal, or with other model simulations

using different forcing hypothesis (e.g. greenhouse gases alone, greenhouse gases and

aerosols, solar insolation changes and so forth). This test is the essence of the attribution

problem.



To test the consistency of a detected climate change signal with the signal predicted by a

model we need to represent the observed climate change signal in terms of the model sig—

nal patterns n = 1,2, ...p:

‘I’i = (1n + ‘i’i- (3)
where ‘T’: is a residual and we have used the summation convention again for the index V .

If all external forcing has been taken properly into account by the signal patterns, ‘l’: will

consist of climate noise only. The estimated signal pattern amplitudes aV can be expected

to consist generally of linear combinations of the detection variables dv. However, since

the detection com onents d = (d ) were defined through equs.(1), (2) as the
p V V : 1...p

variables which maximize the signal—to-noise ratio for a detection test, they cannot imme-

diately be equated with the amplitudes of the signal patterns. The p—dimensional ampli—

tude vector a = Lav}, = l...p is obtained from the condition that the mean square residual

H r u n I . u y O -

‘1’,- , defined w1th respect to the metric C”, 1s mlmmized:

ij ~ r ~ r .
C ‘P i‘P j = mm (4)

Minimizing the mean square residual with respect to the inverse covariance metric is

equivalent to maximizing the probability that the residual represents a realization of the

natural variability noise and does not contain signal components. The least square fit

yields as determining equations for the signal amplitudes of the observed climate state ‘i’

(Hasselmann, 1996)

ijGvua = C gm‘l’j = du (5)

where

_ ü _ ' '
Gvu ‘ gviC "guj ‘ fi/Cij‘fu' (6)

If the signal patterns are statistically orthogonal (relative to the noise covariance matrix)

and are furthermore normalized such that GVH is the unit matrix Iw = diag (1) ‚ the

10



detection variable components are statistically uncorrelated and yield the amplitude esti-

mate directly: av = d" (in non—invariant notation for this particular representation).

6. Estimation ofconfidence intervals for the attribution test

For the attribution test, the observations and the model simulations are intercompared in

terms of their respective signal vectors a = Lav}, = 1...p, specifying the amplitudes of

the climate change patterns gv. Since both the observed and the model simulated signal

vectors are subject to uncertainties associated with climate noise and / or model errors,

these uncertainties need to be specified in order to assess the statistical significance of

deviations between the model and observed signal.

The uncertainty of the model predicted climate change signal consists generally of two

contributions:

1) The uncertainty associated with the estimate of the climate change signal derived from

a single (or a few) model simulations. A single simulation is subject to model-gener-

ated climate variability which contaminates the signal estimate (Cubasch et al., 1994).

2) The uncertainty associated with systematic model errors, ideally characterized by some

model error covariance matrix. For the signal patterns used in this paper, these uncer—

tainties are discussed in Section 3. The errors are difficult to estimate quantitatively,

and we shall not include them in our statistical test. However, they need to be kept in

mind when interpreting the results.

In principle, the first uncertainty can be removed by carrying out a large number of simu-

lations, starting from different initial conditions, and forming the ensemble average. How-

ever, this is not feasible due to computer time limitations. Thus, the imperfect model

9’estimated climate change signal aM = Lax/JV: 1...p will differ from the “true

(unknown) model predicted climate change signal by a sampling error governed by the

statistics of the model’s natural variability. If the superimposed climate variability is Gaus-

ll



sian (the assumption of Gaussian distributions for the detection variable is discussed in

Hegerl et a1., 1996), the model climate change signal derived from a single simulation y

represents a realization from a Gaussian distribution y ~ N (aM, 2M) where EM denotes

the model noise covariance matrix in the p—dimensional space spanned by the different cli-

mate change signals. (The signal uncertainty will also extend into the remaining dimen-

sions of climate phase space, but these dimensions are irrelevant for the problem of

distinguishing between a given finite set of p candidate forcing mechanisms.) Since we

assume that the noise is superimposed linearly on the climate change signal, EM can be

inferred from the variations in the signal estimate due to noise only, which can be com—

puted from a long control simulation using the same climate model. If the model predicted

amplitude estimate is computed from the average of N different simulations SM, is

reduced by the factor l/N.

Similarly, the estimated climate change signal of the observations will deviate from the

v

obs
“true” underlying climate change signal a0bs = (a JV = 1...p through the superimposed

internal variability of the climate system. The signal vector inferred from the observations

x will then also originate from a normal distribution x ~N (ach, Bobs) . If the climate

model simulates the internal variability noise correctly, and the same method of inferring

the signal pattern from the climate time series is applied to both the observed and the

model simulated climate data, 2M would equal Bobs. In fact, neither condition is exactly

satisfied, as will be discussed further in Section 5.

Both uncertainties are now combined for the attribution test:

We make the hypothesis that the model predicted climate change signal (or combination

of signals) is correct. In this case aobs = aM, and the probability distribution of the differ-

ence vector x — y between the observations x and model simulation y is given by the nor-

mal distribution

x—y~N(0,Eobs+2M) =N(0‚2). (7)

12



where we can set E = Eobs + ZM, since the noise realizations of the model and the obser-

vations are independent. From the distribution equ. (7) we can define ellipsoids of con-

stant probability density containing, say, 90% of the realizations of the difference vector

x — y (cf. von Storch and Zwiers, 1996). If the model simulated climate change signal dis-

agrees significantly from the observations, i.e. is not contained in the 90% uncertainty

ellipsoid, the associated forcing mechanism is rejected as a plausible cause for the

observed climate change signal at the 90% confidence level. Conversely, if the difference

vector x — y lies within this ellipsoid, the observations are considered to be statistically

consistent with the postulated forcing mechanism - or sum of forcing mechanisms. A

more rigorous terminology would be to say in this case that the observations are not incon-

sistent with the postulated forcing. However, we shall use the simpler but less precise

wording given above.

3. Components of the detection and attribution approach

This Section describes the data used for implementing the multi-pattem detection and

attribution approach: the observed data, the new simulations forced with greenhouse gases

and aerosols, the signal-guess patterns derived from these simulations and the data for nat-

ural climate variability. We mostly focus on annual mean values. The generalization to

seasonal values is described in Section 6.

a. Observations

The observed near surface temperature data used for the multi-fingerprint approach have

been compiled as anomalies (with respect to the average of the years 1950—1979) of

monthly mean near surface temperature on a 5° x 5° global grid by Jones and Briffa

(1992) and Jones (1994 a,b). The data range from the year 1854 to 1995, with data cover-

age changing in time. Global-mean near-surface temperature curves and the decadal mean

pattern of temperature change based on these data are presented in the Supplementary

Report to the IPCC Working Group 1 Scientific Assessment (Folland et a1. 1992). This

13



observed dataset is very similar to the newer, updated dataset used in IPCC 1995 (Nicholls

et a1., 1996). As in Hegerl et a1. (1996), annual mean values at a gridbox were computed if

at least one seasonal mean (computed from at least one month) was available, otherwise

the annual mean was indicated as missing. This criterion allows a relatively high spatial

coverage, but may introduce some additional noise. It corresponds to the criterion applied

to the computation of decadal mean patterns in Folland et a1. (1992). Our results were

found to be insensitive to the criterion (e.g. use of a stricter acceptance condition of at

least three seasonal means for an annual average). In the computation of averages of simu-

lated and observed data and in the subsequent multi-fingerprint analysis, we considered

only gridpoints for which the observations permit the computation of multi-decadal trends

after 1949 such that not more than one year is missing between any two years with data

(cf. Hegerl et a1., 1996). This yields approximately 75% global coverage for annual mean

data (cf. Figure 4). 30-year trend patterns computed in this manner are shown in Hegerl et

a1. (1996).

[9. Greenhouse gas and aerosol simulations

The temperature change patterns for greenhouse gas only and combined greenhouse gas

and aerosol forcing are derived from three climate change simulations with the coupled

ocean atmosphere model ECHAM3+LSG, in the following referred to as HAM3L (Has—

selmann et al.‚ 1995; Voss et al.‚ 1996). The model is a new version of the Hamburg

CGCM (Cubasch et a1, 1992; Maier—Reimer et a1, 1993; Roeckner et a1, 1992) using an

updated atmosphere model (ECHAM3) at a spectral T21 resolution. The experiments start

with forcing conditions of the year 1880 and are continued up to the year 2049. Two simu-

lations (A and B) were carried out for a combination of both greenhouse gas forcing and

the direct (albedo) effect of sulphate aerosols, while in the third simulation (C), only the

greenhouse gas forcing was considered. The two aerosol plus greenhouse gas simulations

differ only through the introduction of a small perturbation (at least an order of magnitude

smaller than the uncertainty in the aerosol forcing, cf. Penner et a1., 1995) into the aerosol

14



fizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAelds of one of the runs. Using more than one simulation enables a better separation of the

climate change signal from the internal climate variability (evident in the independent

fluctuations of the two simulations).

The greenhouse gas concentrations were expressed in terms of net equivalent C02 con—

centrations (Houghton et al., 1990). From 1880 to the present these were reconstructed

from direct measurements since 1957 and, prior to that date, from estimates derived from

ice cores (Schönwiese et a1, 1990, Houghton et al., 1990). For the future, the IPCC Sce-

nario A data were used (Houghton et al., 1990). The aerosol data were kindly made avail-

able by the Meteorological Institute of the Stockholm University and were calculated

using the MOGUNTIA sulphur model (Langner and Rohde, 1991) from historical S02

emissions, based essentially on Mylona (1993) and Gschwandtner et a1. (1986), and from

projected future emissions from the IPCC 1992 scenario A (Pepper et a1, 1992). The

resulting global anthropogenic sulphur emissions increase from 10 Tg/yr in 1900 to 151

Tg/yr in 2050.

The scenario forcing fields are similar to those shown in Mitchell et al. (1995a,b), except

that the pattern of the aerosol forcing was not spatially fixed before 1990, but was allowed

to respond to the spatially changing patterns of sulfur emissions (see Mitchell and Johns,

1996). The impact of the computed aerosol concentrations was represented in the CGCM

as an increased effective surface albedo. The global mean of the forcing at the top of the

atmosphere due to the aerosols is approximately -0.7 W/m2 in 1980. Indirect effects of

aerosols on the formation and radiative properties of clouds were not considered. These

are generally estimated to be of comparable magnitude to the direct effects, so that our

computations of the aerosol climate impact must be regarded as only qualitative. Recent

results indicate that the spatial pattern of climate change caused by indirect aerosol forcing

may be different from that caused by direct forcing (Jones et al., 1994; Boucher and

Lohmann, 1995).

15



Figure 1 shows the time evolution of the averages (over the analysis area covered by

observations) of near surface temperature in the three experiments A, B, C, together with

the observations. In all comparisons with observations, temperature change patterns are

computed relative to the mean over the reference period 1950-1979 used in the observa-

tions. The residual drift of the control simulation may influence the time evolution to some

extent (cf. below), especially in the early part of the simulation. The observed and simu-

lated curves follow each other rather closely until about 1975, indicating that the aerosol

effect had little influence on global mean temperature until then. From 1975 onwards, the

greenhouse gas only experiment C shows a temperature rise of about 0.3 K per decade,

compared to only 0.2 K per decade for the aerosol experiments A and B.

Figures 2 and 3 show the regional distribution of changes in northern hemispheric summer

and winter temperature for the simulations without (a) and with inclusion of the aerosol

forcing (b). The aerosols show the largest effects in the northern hemisphere, where the

main sources of the aerosols are located. This hemisphere also shows the strongest sea-

sonal signal. The impact of the aerosol forcing is generally larger in summer than in win-

ter, and in low—and mid-latitudes, where the albedo effect is more effective due to the

stronger insolation. However, the ice-albedo feedback enhances the signal in high lati-

tudes in winter (Mitchell et a1.‚ 1995b).

A noteworthy feature is the impact of the aerosols on the Indian monsoon circulation.

Without aerosols, most models predict a reinforcement of the monsoon (Gates et a1.‚ 1992;

Kattenberg et a1.‚ 1996), while the aerosol experiment indicates instead a decrease in the

strength of the monsoon and decreased rainfall. This is caused by the aerosol induced

local cooling over Southern Asia, particularly over the Tibetan plateau (Lal et a1, 1995;

Mitchell and Johns, 1996).

16



c. Signal patterns of the model predicted climate change

For the detection and attribution analysis we need to define characteristic climate change

patterns for the greenhouse gas only and the greenhouse gas plus aerosol simulations. We

use two signal patterns gv and associated fingerprints fv: one for the greenhouse gas only

signal g0 and one for the combined greenhouse gas and aerosol signal gab. It has been

shown by Cubasch et al. (1992) that in the case of greenhouse gas forcing, the first EOF

(empirical orthogonal function) captures most of the model response. Accordingly we

define the temperature change patterns as the first EOF of the model response for each

forcing experiment. This proved to be a better choice in the present case than the previous

definition in terms of the difference pattern between the last and an early decade of the

simulation (Hegerl et al., 1996), since the time averaging involved in the computation of

the EOF reduced the noise contamination of the signal. This was helpful particularly for

the combined forcing simulations, for which the climate change signal is smaller com-

pared to noise than for the greenhouse gas only simulation. The difference between both

choices (first EOF versus difference pattern) is small for the greenhouse gas only signal.

The EOFs are computed from anomalies relative to the average over the model years

1950-1979 (i.e. relative to the reference period used in the observations) and only over

areas with sufficient observational coverage. This ensures that the EOFs are defined for

the same areas which are used later for detection.

The first EOF of simulation C yields a very stable representation of the annual mean cli—

mate change signal, explaining about 90% of the time evolution (Fig. 4a). To enhance the

signal-to—noise ratio, the signal pattern (Figure 4b) for the greenhouse gas plus aerosol

simulations A, B was determined from the first EOF of the mean of both simulations

(A+B)/2. The signal pattern is rather similar to the greenhouse gas climate change signal

except in the northern mid-latitudes, where the warming is reduced due to the aerosol

effect. The full signal pattern correlation (including the spatial mean) for the EOFs of sim-

ulations (A+B)/2 and C is r=0.93, while the reduced correlation, after subtraction of the
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spatial mean, is r*=0.32 (r and r* correspond to uncentered and centered pattern correla-

tion in Santer et a1., 1993). As expected, averaging both aerosol simulations substantially

increases the variance explained by the climate change signal: The first EOF of (A+B)/2

explains 73% of the variance of (A+B)/2, whereas the first EOF of simulation A, for

example, explains only 59% of the variance in A (the explained variance for the individual

greenhouse gas plus aerosol simulations is smaller than for the greenhouse gas only simu-

lation C because the climate change signal is smaller).

As in greenhouse gas only simulations the first EOF captures most of the time—evolution

of the combined greenhouse gas plus aerosol climate change signal (Figure 5). The

remaining EOFs show no systematic trends in the model years after ca. 1980 and have the

appearance of noise. This result is confirmed by the computed 30-year trends of the princi-

pal components (not shown). Nevertheless, in the case of the greenhouse gas plus aerosol

simulation, where the aerosol forcing pattern varies in time, some spatial details of the cli-

mate change pattern predicted for the present are necessarily distorted through the use of

the first EOF of the entire simulation as time invariant signal pattern. Thus the strong cool-

ing over China in the first EOF, Fig. 4b, is governed largely by the strong increase in aero-

sol forcing predicted in the IPCC scenario for the next century. Unfortunately, a more

reliable computation of the present—day climate change signal would require a larger num—

ber of climate change simulations than is presently feasible (note that n simulations reduce

the noise by a factor of only If“2 ).

Some uncertainty is introduced by a drift in the HAM3L model. The drift appears to orig-

inate in the ice edge area of the Southern Hemisphere and causes a global mean warming

of 0.50 C in 300 years in the unforced “control” simulation (CTL). Since we have com-

puted the climate change pattern relative to a constant mean state (the average over the

model years 1950-79), the slow warming trends in the first half of this century (Fig. 1) in

the anomaly simulations A, B and C, and thereby also the signal pattern, could be influ-

enced by a common model drift. However, the area in which the strongest drift occurs, the
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high Southem latitudes, are not included in our signal guess-pattem (see Fig. 4). In order

to qualitatively assess the effect of drift, we have also computed the first EOF of the cli-

mate change defined relative to the contemporal state of the control simulation (i.e. by

subtracting CTL year by year from the climate change simulations, of. discussion in

Cubasch et al., 1992). The resulting time evolution of the first principal components after

the model year 1970 is very similar in both cases. The first EOFs are also very similar,

with a full pattern correlation of r=0.996 and a reduced pattern correlation of r*= 0.97.

The differences between the pattern furthermore have the appearance of noise introduced

by climate variability (not shown). We have used our original signal pattern definition,

since subtracting the control simulation introduces additional climate variability from the

control simulation into the climate change patterns, which causes problems in optimizing

the fingerprint (Hegerl and North, 1996).

The Hadley Center simulations (Johns et al., 1996, Mitchell and Johns, 1996; Mitchell et

al, 1995a,b, IPCC, 1996) yield similar rates of temperature increase to ours, both with and

without aerosols, and quite similar spatial patterns. However, the responses to the two

forcings separate about 20 years earlier in the Hadley Centre simulations. The climate

change pattern of our new greenhouse warming simulation C shows a different pattern of

warming over Europe and more pronounced warming over parts of the northern Hemi-

sphere mid-latitude land masses than previous simulations using an earlier version of the

Hamburg climate model (Cubasch et al., 1992; 1994a; 1994b). This may be attributed to a

more realistic circulation, especially over the North Atlantic, in the updated atmosphere

model ECHAM3 (Roeckner et al., 1992). However, the differences between the climate

change signal of simulation C band the climate change signals of the earlier simulations

(characterized by a reduced signal pattern correlation of r*=0.47 for the EIN simulation of

Cubasch et al., 1994b, and r*=0.64 for the scenario A simulation of Cubasch et al., 1992)

are still substantially smaller than the differences with respect to the combined greenhouse

gas and aerosol simulation.
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In summary, there are uncertainties of the signal pattern associated with: the initial resid-

ual drift of the control simulation; possible errors in the model response; the poorly known

initial conditions in 1880; and the fact that a single greenhouse gas only simulation C and

two greenhouse gas plus aerosol simulations are insufficient to separate details in the

space-time evolution of the climate change signal reliably from the climate’s internal vari—

ability (Cubasch et al., 1994). Still larger uncertainties arise from our present insufficient

knowledge of the sulphate concentrations and, in particular, the resulting forcing (e.g. we

have disregarded indirect aerosol forcing). We have also ignored other possible mecha-

nisms of externally forced climate change, such as changes in ozone concentration, non-

sulfate aerosols and land-surface changes. These shortcomings must be kept in mind in

our later discussion of the attribution problem.

d. Data for natural climate variability

Estimates of the space-time structure of the natural near-surface temperature variability

are needed for two purposes: to estimate the noise covariance matrix (equ. 2) for the com-

putation of the optimal fingerprint; and to estimate the variability of the detection variable

for computing significance levels for climate change detection and confidence ellipses for

attribution. We use estimates which are based on four CGCM simulations of the present

climate over several centuries: 1000 years from a simulation with the model ECHAM/

LSG, referred in the following as HAML (v. Storch, 1994; v. Storch et al., 1996), a 1000

year simulation with the GFDL model (Manabe and Stouffer, 1993; 1996), 700 years with

the model HAM3L, which has also been used for the climate change simulations, and 611

annual means from the control simulation with the .HADCM2 .model (Mitchell et al.,

1995a, Johns et al., 1996; Tett et al., 1996). HAML has been used for a number of climate

change simulations previously and is described in Cubasch et a1. (1992). The HADCM2

model has a finer resolution of 2.5°latitude x 3.75° longitude than the other models.
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In addition, the near surface temperature observations by Jones and Briffa (1992) are used

to provide an estimate of the observed internal variability of climate, after subtraction of

an estimate of the greenhouse gas signal as described in Hegerl et a1. (1996). In the attribu-

tion approach, we use these data only as a yardstick for comparing some features of the

model estimates of noise, since the observed time series is too short for the definition of

reliable a two—dimensional confidence ellipses. Also, in contrast to the model control sim-

ulations, the observations may be contaminated by various naturally occurring or uncor-

rected anthropogenic external forcings (volcanic eruptions, changes in solar radiation,

aerosol forcing, and a residual greenhouse gas signal due the imperfect representation of

the subtracted signal, cf. Hegerl et al., 1996).

e. Construction of the optimalfingerprints

The noise covariance matrix used for constructing the optimized fingerprints from the sig-

nal patterns go and gab is estimated from 30-year trend patterns derived from the HAML

simulation. The dimension of the full gridpoint space is too high to estimate the noise

covariance matrix reliably from the limited amount of data. All data used in the detection

and attribution analysis (i.e. the signal guess-patterns, the observed and all model trend

patterns) are therefore truncated to a lower dimensional subspace. We chose the first 10

EOFs of the combined forcing simulation A. Using the average of the simulations A and B

is not appropriate here since we wish to represent the climate noise, not average it out.

Using the concatenated time series A, B rather than the single simulation A yielded essen—

tially the same results. The climate change signals from both simulations £0 and gab were

adequately represented in this space (to test this, the .multi-fingerprint method using the

non-optimized signal guess-pattems was performed both with and without truncation. The

results were essentially identical in both cases). The truncation level was chosen prior to

the detection and attribution analysis using the same considerations as in Hegerl et a1.

(1996). The choice is a compromise between
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- retaining a sufficient number of degrees of freedom to represent the signal guess-pat—

terns and rotate the patterns to obtain an optimized fingerprint and

- avoiding a rotation of the fingerprint into directions representing spurious small scale

components with unrealistic low noise levels arising from inadequate sampling.

Small changes in the truncation level did not yield dramatically different results.

Figure 6 shows the optimal fingerprint for the combined greenhouse gas and aerosol forc-

ing for annual mean near surface temperature (transformed back into gridpoint space).

Compared to the original signal guess—pattem (Fig. 4b), the reduced warming south of

Greenland is changed to a cooling extending into Northern Europe. The pattern over large

land masses is also changed, for example over North America. The optimal fingerprint for

the greenhouse gas only signal (not shown) shows substantially more warming in northern

mid-latitudes than that for the combined forcing. Its spatial pattern resembles the optimal

fingerprint based on the earlier EIN greenhouse warming pattern (Hegerl et al., 1996), for

example in the cooling south of Greenland, but deviates in some minor spatial details.

4. Results for a single fingerprint

In the previous section we have introduced the basic components of the multi-pattem

detection and attribution method, namely the observations, signal guess-patterns (repre-

sented by the first EOF of the simulations), the data for natural climate variability and the

optimal fingerprints.

For the detection - as opposed to the attribution - of climate change, a single-pattem analy-

sis, as used in Hegerl et a1. (1996), is the most effective approach, since the power of a sta-

tistical test is highest for small dimensions (see e.g. Hasselmann 1979). We shall accord—

ingly first carry out a single pattern detection analysis, applying the signal pattern from the

combined greenhouse gas and aerosol forcing experiment (A+B)/2 in the same way as in

the previous greenhouse warming detection study (Hegerl et a1. 1996), to investigate
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whether the modified signal pattern yields different results for detection. For that purpose

we compute the detection variable equ. (1) from the observations, estimate the variability

of the detection variable associated with natural climate variability and assess then the sta-

tistical significance of the recent 30—year trend. The results of each of these steps are

shortly discussed in this Section. A more detailed discussion of assumptions and technical

details is given in Hegerl et al. (1996). Subsequently, we shall apply both fingerprints

derived from the different signal guess-patterns (Fig. 4) to address the attribution question

and assess which of the two experiments - C or (A+B)/2 - is more consistent with the

observations.

Figure 7 shows the time evolution of the computed detection variables d (t) (equ. 1)

obtained by applying the optimal fingerprint derived from the experiment (A+B)/2 to the

spatial patterns of running 30-year trends 1' (t) computed from the observations (Jones

and Briffa, 1992). The fingerprint is normalized to unity with respect to the HAML cova—

riance matrix metric bCiJ. - jib = 1 . Thus the values of the detection variable are

expressed in units of one standard deviation of the detection variable computed for the

HAML noise (this may have a bias to small values since the noise has been used for com-

puting the optimal fingerprint, cf. below, but this is irrelevant for our present discussion).

Also shown in Figure 7 are the time evolutions of the detection variables obtained by

applying the optimal fingerprint to running 30-year trends of the climate change simula-

tions (A+B)/2 and C. The recent rapid increase in the detection variable for the observa-

tions agrees quite well with the time evolution of the detection variable computed from the

various simulations, although there are differences in the timing. The detection variable

for both simulations stabilizes at a constant level in the first half of the next century, indi—

cating a constant rate of temperature increase at that time.

The time evolution of simulation C indicates an earlier warming compared to the com-

bined forcing simulation (A+B)/2, but also compared to the earlier EIN greenhouse warm-

ing only simulation in Hegerl et al. (1996). While the first feature is expected due to the
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aerosol forcing in the simulations A and B, the latter difference is presumably related to

model differences and a retarded warming in the EIN simulation (which may be partly

caused by a fluctuation or equilibration problem in the Northern Hemispheric sea ice in

the first part of the EIN simulation, Cubasch et al., 1995).

Since both predicted signal patterns (Fig. 4) are dominated by the global mean warming

contribution, the detection variable will also be dominated by the global mean warming

trends (Santer et al.‚ 1993; 1995a, Hegerl et al.‚ 1996). This explains why the trends from

simulation C are not strongly reduced although the signal pattern is different from the

assumed combined forcing signal pattern. It also explains why the evolution of the detec-

tion variable computed with the observations and the combined forcing fingerprint is quite

similar to the earlier results using a greenhouse warming only fingerprint. The distinction

between the two detection variables is better seen using a two-pattern approach, as will be

discussed in the next section.

In Figure 7, the detection variable for the latest observed trend (1966-1995) d computed

with the optimal fingerprint fab for the combined forcing (fig. 6) is seen to exceed the 95%

confidence intervals (discussed below) for climate noise, as estimated from CGCM simu-

lations and from the observations. Since positive values of the detection variable are

expected for anthropogenic climate change, the significance levels can be based on a one—

sided test. For this test, the upper limits of the 95% confidence intervals in Figure 7 denote

the 97.5% significance limits. Thus we conclude that the latest observed trend (1966 -

1995) exceeds the 97.5% significance level for an observed climate change signal for all

estimates of natural variability, and that the null hypothesis that the observed temperature

trends are natural can be rejected. The high level of the detection variable around 1945,

representing the trend 1916-1945, may be explained as a superposition of an early green-

house warming signal and an extreme natural variability event and is discussed further

below.
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The 95% confidence intervals have been estimated independently for each set of climate

variability data and are based on the mean square variability (£12) of the detection vari—

able d for 30—year trends computed from these data. The HAML simulation, which was

used to estimate the covariance matrix Ci}. used to construct the fingerprint, was excluded.

Otherwise the non—independence of the optimized fingerprint and the data (Hegerl et al.‚

1996) would have yielded an artificially suppressed value. In estimating (£12) from obser-

vational data, gaps in the time series before 1949 were filled by a least—square regression.

The estimates of the 95 % confidence intervals from the estimated variances of the differ—

ent variability data sets were corrected for sampling bias of the relatively short time series

using Monte Carlo simulations of a Gaussian first—order auto—regressive process with the

same time series length and autocorrelation as the data (cf. Hegerl et al., 1996).

The observations yield higher variability levels than the coupled models, and the model

estimates also differ among each other. However, the differences between observed and

simulated variances are in fact smaller than the differences in the 95% confidence inter—

vals shown in Figure 7. This is because the 95% confidence intervals, inferred from the

Monte Carlo simulations, are approximately +/— 2.4 times the estimated standard deviation

for the relatively short observed times series, as compared to approximately +/— 2.0 for the

longer model simulations.

For a quantitative estimate of the benefit of using the optimal fingerprint method it is use—

ful to consider the signal-to—noise ratio

s/n = — 4 (8)

for various alternative definitions of the detection variable. Table 1 lists the signal-to—noise

ratios estimated from different sets of variability data and for three different definitions of

the detection variable: (a) the global mean (uniform fingerprint); (b) the scalar product of

the observations with the signal guess-pattern (f = g); and (c) the detection variable com—

puted with the optimal fingerprint (equ. 2). The improvements in the estimated signal—to—
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noise ratio for the latest observed trend using the signal guess-pattem as fingerprint rela—

tive to the straightforward global mean is on the order of 5% for most data, while the

potential further improvement due to the use of the optimal fingerprint rather than the sig—

nal pattern depends strongly on the set of variability data used to estimate (d2). The stan—

dard deviation (:12) generally decreases when the optimal fingerprint is used (normalizing

all fingerprints to the same mean square deviation), but as d may also decrease, the signal-

to-noise ratio does not necessarily increase in all cases. For example, the standard devia-

tion estimated from 30-year trends of the HADCM2 control simulation was only slightly

smaller than that estimated from the observed variability data if the signal pattern was

used as fingerprint, but the variability decreased more in the HADCM2 data than in the

observations through use of the optimized fingerprint, leading to a stronger increase in sig-

nal-to-noise ratio for the HADCM2 data. On the other hand, using the GFDL variability

decreased s/n marginally for the optimal fingerprint, while the HAM3L variability data

yielded even lower s/n values for the optimized fingerprint.

The differences in the reduction in (£12) resulting from use of the same optimized finger-

print indicates that the structure of the variability on timescales of several decades is not

consistent between different models. The full potential of the optimal fingerprint approach

will presumably be realized only when the models are able to simulate the real climate

variability with higher fidelity. However, we should keep in mind that a poor estimate of

the noise covariance matrix leading to a “wrong” - i.e. not truly optimal — fingerprint will

merely reduce the power of the detection method. This may result in the inability to detect

a climate change signal which an accurate fingerprint would have detected, but it will not

normally lead to an incorrect detection claim.

We conclude that the reliability of the estimated significance level of the latest observed

trends is limited primarily by the reliability of the variability estimates. However, the high

signal—to—noise ratios listed in Table 1 provide some cushion against the uncertainties in

variability estimates, yielding some confidence in the positive detection result.
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5. Towards attribution: Application of a two-pattern analysis

While it has been shown in the previous Section that the latest observed 30-year trend pat—

terns indicate a statistically significant climate change, the cause of this change has not

been clearly established. The high values of the detection variable are due mainly to a

strong global mean warming, rather than a high similarity between the predicted and

observed climate change patterns. Figure 8 shows the reduced pattern correlation r*(t)

(after subtraction of the spatial mean) between the observed 30-year trend patterns and the

model derived climate change patterns. The correlation with the signal pattern for the

combined forcing rises to the order of 0.3 only for the latest few trend patterns (Fig. 8), in

agreement with other results using seasonal and decadal mean data (Santer et al., 1995a;

and Mitchell et al., 1995a). The reduced pattern correlation between the observed and

greenhouse gas only signal pattern is smaller for the trends ending between 1970 and

1990, but of the same magnitude (~O.3) for the latest observed trends.

As described in Section 2, a multi-fingerprint method can be used to distinguish between

different forcing mechanisms on a more quantitative basis. For that purpose, first the sta—

tistically orthogonal signal pattern to the greenhouse gas signal pattern is introduced. Both

the greenhouse gas alone and the orthogonal, aerosol related, signal pattern are then used

to determine if the introduction of the aerosol forcing significantly enhances the agree—

ment between simulation and observations, and to investigate if the observations are con-

sistent with either a combined greenhouse gas and aerosol forcing or with greenhouse

warming alone.

a. Application of two fingerprints

Since the signal guess patterns of both forcing simulations exhibit a general qualitative

similarity (fig. 4), the detection variables dc = f: - II’i, dab = f;b - ‘I’i (equ. 1) computed

with each fingerprint will be rather highly correlated.
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The analysis and also the graphical presentation of results is simplified if orthogonal sig-

nal patterns and fingerprints (relative to the metric CU ) are introduced. In this case the

detection variables can be directly equated with the amplitude estimates (equs. 5, 6). As

first signal pattern we use the greenhouse warming signal guess-pattem gel. = 31i (nor-

malized to unity with respect to the inverse covariance matrix, g1 iCilgl l = 1 ) and as sec-

ond pattern the orthogonal pattern

'1
321 = gabi—Lgabjclglljgli’ (9)

or in terms of optimal fingerprints

fiz = ffzb‘ (lii/lyl' (10)

The second pattern then needs only to be normalized in the same way as the first. Figure

9b shows the optimal fingerprint f2 for the statistically orthogonal signal-guess pattern

(equ. 10, computed in the 10-dimensional truncated space, and then transformed back into

gridpoint space for plotting). Figure 9a shows for comparison the spatial pattern derived

from the combined forcing climate change pattern, orthogonalized (in the gridpoint space)

to the greenhouse gas only climate change pattern (fig. 4a) using the Euclidean rather than

the covariance metric. The latter pattern can be superimposed on the greenhouse warming

signal pattern, Fig. 4a, point-by point to yield the combined greenhouse gas and aerosol

signal pattern and thus represents directly the pattern contributed by the aerosol forcing.

The zonally rather uniform cooling in the northern mid-latitudes in both patterns is caused

by the zonal distribution of aerosols resulting from the sulfur emissions in this latitude

band. The corresponding statistically orthogonal signal guess-pattem (equ. 9, not shown)

also shows more cooling in the northern mid-latitudes.

Figure 10 a shows the evolution of the observed running 30-year trend patterns in the two-

dimensional phase space spanned by the detection variables d1 and d2. In the ortho-nor-

mal pattern representation, each point in the phase space directly represents an amplitude

estimate of the greenhouse gas only pattern (a1 = d1) and the orthogonal aerosol forcing
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pattern (a2 = d2 ). The combined greenhouse gas plus aerosol climate change pattern can

be expressed in terms of the patterns gCl. = 81i and the aerosol forcing pattern g2 in the

form:

gabj = C1g1j+c2g2j (11)
by computing the coordinates cv = gabiCijgvj, v = l, 2. The arrow C along the d1 axis

denotes the direction of the greenhouse-gas only signal (d2 = O) in Fig. 10a, while the

arrow AB represents the direction of the greenhouse gas plus aerosol signal (as predicted

by the model) dl/d2 = cl/cz.

Figure 10a indicates that the latest trend patterns, e.g. the trends 1948-77 until 1966-1995,

generally agree more closely with the combined forcing climate change signal than with

the greenhouse gas only signal. To judge the statistical significance of those results, the

path of the detection variable of 30-year trend patterns is shown together with the corre-

sponding climate noise data (Figure 10b) computed from 30-year trends for different

model control simulations and for the observed variability data. The figure clarifies the

relation between the different single—pattem detection results discussed previously (e.g.

Figure 7). Projection of all data onto the direction AB yields the detection variable and

noise distribution for the combined forcing signal pattern, while projection onto the direc-

tion C yields the corresponding result for the greenhouse gas only signal pattern. It is clear

from a visual inspection that the detection results for both signal patterns will be rather

similar, as the angle between the two pattern directions is rather small. A distinction

between the two cases can be made only in the two-dimensional phase space.

Figure 10b indicates that the peak warming trends exceed‘the 95% confidence intervals of

natural variability trends in all model control simulations not only in the last decades, but

also in the first half of this century. The fact that the observations exceed the model noise

level in this period implies that some caution is appropriate in interpreting our detection

results (of. also Barnett et al., 1996). However, the computed 30-year trends of a 570 year

paleoclimatic record of summer mean temperatures over northern hemisphere land con-
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fizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArm that the warming in the early part of this century was indeed an unusual event, yield-

ing the largest 30-year trend in the entire paleoclimatic record (Bradley et al., 1993). Some

of this trend may represent an early anthropogenic signal. If an estimate of the greenhouse

gas signal is subtracted from the observations (green dots “VOBS” in fig. 10c), the modi-

fied data lie substantially closer to the model internal variability domain. Furthermore,

estimates of solar insolation changes indicate a possible increase in solar irradiance in that

period (Hoyt and Schatten, 1993; Crowley and Kim, 1996). This suggests that the

observed warming in the first half of this century was partly forced, partly an extreme

event of internal climate variability. We cannot say from this evidence that the observed

data suggest an inconsistency between model and observed internal climate variability.

Figure 10b also depicts the 95% confidence ellipses for two-dimensional Gaussian distri-

butions fitted to the different sets of climate variability (the 90% confidence regions con-

sidered later are correspondingly smaller concentric ellipses). The bias due to sampling,

which was estimated using Monte Carlo techniques in the one-dimensional detection test,

has not been taken into account in the computation of the two-dimensional confidence

areas. Thus we do not show estimates of the confidence ellipses for the relatively short

observed time series. For the longer model time series (611 to 1000 years), the ellipsoids

can be estimated with some confidence, and a cursory visual inspection suggests that a

representation of the noise by a Gaussian distribution is an acceptable approximation. The

differences in the noise distributions of the internal variability simulated by the different

climate models are clearly larger than can be explained by sampling uncertainty.

[9. Significance of the aerosol pattern contribution

We investigate now the consistency of the computed evolution of the detection vector for

the alternative global warming simulations with the observed evolution. As a first test

whether the inclusion of aerosols significantly improves the statistical agreement between

the observations and the model climate change pattern we consider the signal—to-noise
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ratio of the second (aerosol) component d2 for the latest observed trend. If the signal—to-

noise ratio is sufficiently high to reject the hypothesis that d2 represents climate noise

only, we conclude that there is a significant aerosol related pattern in the observations.

This test is independent of the global mean warming which dominates the value of d1 .

Since we wish to investigate the consistency of the observations with a greenhouse gas

only signal pattern (corresponding to zero values of d2 ), unusually high positive or nega-

tive signals are relevant. Thus two—sided confidence intervals, as opposed to the previous

l—sided test for single pattern detection, are used.

Table 2 shows that d2 is larger than noise at the 90% confidence level if the estimate of

climate variability is derived from the observations and from the GFDL control simula-

tion, but it is insignificant at this confidence level relative to the HADCM2 and the

HAM3L noise estimates. The sampling uncertainty in the confidence levels due to the

finite length of the time series has been estimated using Monte Carlo simulations in the

same way as for the detection confidence levels. The magnitude of the detection compo-

nent d2 in the latest observed trend pattern (and thus the outcome of the consistency test)

is sensitive to technical details of the optimization procedure. If the scalar product

between the (non-optimized) orthogonal signal pattern and the observations is used to

compute d2 , the resulting value is insignificant relative to all estimates of climate variabil-

ity (Table 2). The angle between signal patterns (expressed by the ratio c2/c1 , equ. 11)

varies with the truncation level and with the variability data used for estimating the cova-

riance matrix. This implies uncertainties in the computation of the statistically orthogonal

signal pattern (i.e. in the form of the ellipses, fig. 10b). Furthermore, even for the rela-

tively stable 02/c1 values in Table 2, the value of d2 is sensitive to the analysis parame-

ters. We conclude from the relatively low signal-to-noise ratio, combined with these

uncertainties, that the contribution of the aerosol pattern to the observed annual mean 30-

year trend patterns cannot at present be convincingly distinguished from noise. However,
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a more positive conclusion will be reached later when we consider longer time trends and

seasonally stratified data.

c. Application of the attribution test

We turn now to the attribution method described in Section 2. Here the full two dimen-

sional detection vector is considered to determine whether the observed climate change is

consistent with the proposed forcing mechanisms. This involves assessing the difference

between the detection vector computed from the most recent observed 30—year trends for

the years 1966-1995 and the corresponding detection vector predicted by a model simula-

tion using the given forcing mechanism. If the difference vector lies within a given confi-

dence ellipse determined by the uncertainty in the estimates of the observed and model

simulated detection vectors (equ. 6), the climate change is regarded as consistent (for-

mally not inconsistent) with the proposed mechanism, otherwise the attribution test fails.

Figure 11 shows again the evolution of the detection variables for the observations in the

d1, d2 phase space. The values of the simulated trends 1966-1995 are given by the red dot

for the greenhouse gas only simulation C and the blue dot for the combined forcing simu—

lation (A+B)/2. However, instead of using these model trend vectors directly, we prefer to

project the detection vectors onto the directions of the signal pattern as defined by the

EOFs of the full simulation (cf. Section 2). Projecting the vector corresponding to the blue

dot onto the direction AB and the vector represented by the red dot onto the direction C,

we obtain as model predicted vectors characterizing the climate change patterns the blue

and red crosses X, respectively. We believe that this definition will provide more stable

estimates of the model simulated signal vectors for the last thirty year trends, at least with

respect to the signal directions. However, if the non-modified model trend vectors are used

instead, the attribution analysis yields essentially the same results.

The covariance matrix 2 characterizing the confidence ellipse of the difference vector

between the observed and model simulated trend signals is given by the sum of the covari-
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ance matrix 2M of the statistical model signal uncertainty and the corresponding covari-

ance matrix Bobs of the natural variability noise in the observations (Section 2, equ. 7).

(The covariance matrix estimated from the HAM3L internal variability must be divided

by two for the mean greenhouse gas plus aerosol simulation (A+B)/2 in order to allow for

the reduction in uncertainty through averaging over two simulations.) Since the internal

variability of the HADCM2 model yielded the largest ellipse (fig. 10b), we use this model

as the most conservative of our estimates of natural climate variability.

Figure 11 shows the resulting confidence ellipses, centered on the model predicted signals

for the latest 30 year trend (note the smaller ellipse for the combined forcing simulation

representing the mean of two simulations). For the greenhouse warming only signal, the

detection vector for the latest observed trend lies outside the 90% confidence ellipse. Thus

the difference between the model-simulated and observed 1966-1995 trend is larger than

can be explained by Gaussian noise at this confidence level. Nevertheless, the point still

lies sufficiently close to the confidence ellipse that in View of the inherent uncertainties in

estimating the natural climate variability and in determining the statistically orthogonal

direction we cannot conclude with high confidence that the observations are indeed incon-

sistent with a pure greenhouse warming signal. On the other hand, the detection variable

for the latest observed 30-year trends lies well within the 90% uncertainty ellipse for the

combined forcing signal. Thus we conclude that the observations for the 30-year trends of

annually averaged data agree well with a combined forcing signal pattern, but it cannot be

concluded with high statistical significance that they are inconsistent with a climate

change signal due to greenhouse gas forcing alone. This is in agreement with our previous

conclusions based on the analysis of the single detection component d2. To obtain a

clearer separation of the aerosol and greenhouse gas signals, we therefore turn to season-

ally stratified data and consider longer trend intervals.
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6. Results for seasonally stratified data

As has been mentioned, 30-year trends were chosen for the analysis of the annual mean

data in order to focus on the accelerating greenhouse warming predicted by climate mod-

els for the last decades. However, this choice is presumably not optimal for distinguishing

between global warming due to greenhouse gases alone and greenhouse gas plus aerosol

forcing. Aerosol forcing shows a pronounced increase over the last 50 years, and we there—

fore expect that 50-year trends should be more suitable for the attribution issue. This is

indicated also by the results of Santer et al. (1995a), who found that in correlations of cli—

mate change patterns including the spatial mean, 30-year trends yield the strongest differ-

entiation from natural variability noise, whereas if the spatial mean is removed (and thus

the bulk of the warming signal), the residual observed spatial pattern correlates better with

the predicted signal if longer trends are considered. Furthermore, the aerosol effect is

expected to be strongest in summer. Thus we focus on 50-year trends in this season. Fig-

ure 12 shows the pattern of the latest observed 50-year trends for the period 1946-1995 for

Northern Hemispheric summer, from the data of Jones and Briffa (1992). The reduced

warming or cooling in the northern hemisphere is in qualitative agreement with the cli-

mate change pattern of the greenhouse gas plus aerosol model simulation (cf. Figure 3).

As in the case of annual mean values, the signal guess patterns for seasonal mean data are

identified with the first EOFs computed from each transient global warming simulation.

Generally, the area with acceptable data coverage is smaller (~ 66% of the earth surface)

for seasonal data (a gridbox is accepted as yielding a seasonal datapoint if at least one

month is observed) than for the annual mean data (~75%, as discussed in Section 3).

The strongest effect of aerosols is seen in the northern hemispheric summer and autumn

(Fig. 3), as expected, whereas the winter pattern of the combined forcing simulation is

similar to the greenhouse gas pattern except for a strong cooling over china (Fig. 2). This

latter feature, as pointed out, is associated with strongly increasing sulfur emissions over

China in the 21st century in the IPCC scenario. The first EOF of the average (A+B)/2 of
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the two combined forcing simulations explains approximately 48% of the variance in win-

ter and spring and 58% in summer and autumn, compared with 73% for the annual mean.

The higher explained variance for the annual mean data is a consequence of the reduction

of the natural variability noise through averaging over the annual cycle. For the green-

house gas only simulation C, the first EOF explains about 80% of the variance in winter

and spring and about 85% in summer and autumn, compared with 92% for the annual

mean.

The time evolution of the EOF coefficients for seasonal data is very similar to the annual

mean case (Fig. 5). Trends computed from the principal component time series confirm

that for trends ending after about 1990, the first EOF captures most the climate change sig-

nals in all seasons, the higher EOFs having the appearance of noise with no clear trend.

However, prior to this date, EOFs 2 or 3 pick up some of the cooling signal in the 1940ies

to l970ies, when the aerosol forcing was relatively strong compared with the still rather

weak greenhouse forcing.

Prior to the use of 50-year trends in summer, seasonal mean 30-year trends have been ana-

lyzed for all seasons. The results confirm the previous annual mean results and are thus

not given in detail: the observations indicate a positive but insignificant aerosol forcing

pattern in all seasons but winter, and the amplitude of the aerosol related pattern cannot be

rigorously distinguished from noise in any season. A rather interesting feature of the

results using seasonally stratified data was that the robustness of the (single-pattern) detec-

tion variable results using the optimal fingerprint varied between seasons. Table 3 shows a

comparison of the signal-to-noise variable for the detection variable computed from the

(non-optimized) signal pattern together with the detection variable using the optimal fin-

gerprint (equ. 1). Generally, the signal-to-noise ratio increases or remains approximately

constant through optimization for nearly all variability data in summer and autumn. A

slight decrease for the HAM3L and GFDL data no longer occurs if the truncation space is

reduced to 8 dimensions. In contrast, the signal—to—noise ratio decreases for all data in win-
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ter and spring. This is not altered by using a lower truncation level (e.g. 4 EOFs). It also

occurs if the covariance matrix is estimated from different model control simulations, with

the exception of the HADCM2 model (which features a higher resolution). This system—

atic decrease in the signal—to-noise ratio through optimization may be caused by incorrect

signal guess—patterns, or by incorrect model noise. Possibly, the lower-resolution models

have difficulty treating the strong cyclonic wave activity in winter.

For the detection and attribution analysis, the 50-year summer trends were analyzed in

essentially the same way as the 30- year trends of the annual mean data. However, since

the sampling uncertainties become larger when longer trends are considered, we aug—

mented the original data from the HADCM2 control run by data from a recently com-

pleted extension of the simulation, yielding 976 realizations of each season. At the same

time we truncated the representation to a 6—dimensional space prior to optimization rather

than a lO—dimensional space, since the 1000 years of HAML data yield proportionally less

independent 50-year trends than 30—year trends. Since the first 6 EOFs of the combined

forcing simulation A were insufficient to represent the greenhouse gas only pattern (indi-

cated, for example, by differences in the time evolution of the non—optimized detection

variable before and after truncation), the 6th EOF was replaced by the first EOF of the

greenhouse gas only simulation, thereby ensuring that the pattern was properly repre-

sented.

Table 4 lists the signal-to-noise ratios for the detection variable a'2 associated with the

aerosol pattern. The most recent 50—year trend has a significantly higher d2 component

than any of the variability data atthe=90% confidence level ’(even at the 95% confidence

level for most data). Table 4 also shows that this result is not strongly dependent on the

use of optimal fingerprints. The signal-to—noise ratio is nearly as high if the non-optimized

signal guess-patterns are used to compute the detection variable. The results using optimal

fingerprints show higher signal-to-noise ratios mainly because the fingerprints are more

separated, as indicated by the higher ratios of c2/ c1 (equ. 11).
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A further analysis using data over land and ocean separately revealed that both land and

ocean contribute to the statistical significance of the aerosol pattern. This can also be

anticipated from Figure 3, which shows comparable aerosol induced cooling or reduced

warming over both land and ocean in the northern mid-latitudes.

Figure 13a shows the evolution of the detection vector for the observed 50-year trends in

summer in the two-pattern phase space, together with samples of the internal climate vari—

ability and the 95% confidence ellipses for different climate noise data. The sampling dis—

tribution again suggests that the use of a Gaussian distribution is justified. The most recent

50-year trend for summer shows a strong contribution of the aerosol related pattern

(already shown in Table 4). This trend also deviates from all estimates of climate variabil—

ity at the 95% confidence level. Figure 13a further indicates that the strong trends in the

early part of this century agree slightly better with greenhouse warming than with com-

bined forcing climate change. These trends are very unusual relative to the model internal

noise samples. As discussed above, this is suggestive of a forced component or an excep-

tional event in the warming record in the early part of this century.

Figure 13 b shows the results of the attribution method for summer 50—year trend patterns.

The 50-year trend patterns ending in 1995 derived from the greenhouse gas only and the

combined forcing simulations are indicated by the red and blue dots, respectively, yielding

the red and blue crosses after projection onto the respective signal patterns. As in the

annual mean case, the results are not affected significantly if the model derived signal esti—

mates are used directly rather than their projections in the direction of the EOF signal pat-

terns. The 95% confidence ellipses for the vector representing "the difference between the

model and observed signals are computed in the same manner as for the annual mean data,

using again the HADCM2 noise as an estimate of internal climate variability.

The latest observed 50-year summer trend pattern agrees surprisingly well with the model

prediction for the greenhouse gas plus aerosol simulation, as indicated by the very small

signal difference vector in this case. The difference vector lies well within the 90% — not
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shown- and 95% confidence ellipse. In contrast, the observed trend pattern lies far outside

the confidence ellipse of the greenhouse gas only forced climate change signal. The statis-

tical results listed for the aerosol component d2 in table 4 indicate that this statistical

inconsistency is found even when only the contribution from the aerosol forcing is consid-

ered, disregarding the additional inconsistency arising from the higher predicted global

warming component d1 in the direction of the greenhouse gas only warming signal.

Our results are consistent with the results of Santer et al. (1995a). The authors found a

slow increase in recent decades of the (reduced) pattern correlation between the observed

and simulated summer and autumn near surface temperatures. The signal patterns were

taken from an equilibrium coupled atmospheric-mixed layer ocean model simulation

using in a greenhouse gas plus aerosol forcing.

In summary, we conclude that the latest (1946—1995) 50-year trend of observed near sur-

face summer temperatures is statistically inconsistent with the greenhouse gas only forced

climate change signal at a confidence level higher than 95%, and is highly consistent with

the combined greenhouse gas and aerosol forcing simulation. In contrast to the less con—

clusive results from investigation of the annual mean 30 year trends, these conclusions are

robust with respect to technical details of the analysis.

7. Discussion and conclusions

In a detection and attribution study of externally forced climate change, we have applied

single and multi-fingerprint analyses to observed patterns of 30-year trends of annual

mean and 50—year trends of summer near surface temperatures. The fingerprints are

derived from three new model simulations, one forced with greenhouse gas forcing only,

two with additional (direct) aerosol forcing. Using a single fingerprint derived from the

average of the two greenhouse gas and aerosol forced climate change simulations, we con-

firm the result of the previous study of Hegerl et a1. (1996) that the latest observed 30-year

trend pattern of annual mean data, ending in 1995, can be distinguished from our estimates
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of natural climate variability at a 97.5% significance level, i.e. the probability of observing

a trend which yields values as high as the observed detection variable due to natural cli-

mate variability alone is less than 2.5%.

The latest observed warming trend agrees better, both in terms of pattern and amplitude,

with a combined greenhouse gas and aerosol signal than with a greenhouse gas only sig-

nal. The distinction between the two forcing scenarios can best be studied in the phase

space spanned by the two signal patterns. The two—pattem attribution analysis shows that

the observed climate change is consistent with the combined greenhouse gas and aerosol

forced signal computed with the HAM3L model for annual mean 30-year trends. It is even

more consistent for the 50-year trends for (northern) summer, the season with the most

pronounced aerosol impact.

On the other hand, the latest observed 30-year trend pattern is inconsistent at the 90% con-

fidence level with the greenhouse gas only simulation. However, the confidence level of

this inconsistency result is not high and subject to uncertainties associated with technical

details of the analysis. In contrast, the latest 50-year trends of summer mean data are

found to be inconsistent with greenhouse gas only forcing at the 95% confidence level.

The inconsistency outcome of this test is not only more significant but also more robust

with respect to modifications of the analysis.

Our investigations indicate that the most effective data filter is generally different for the

detection problem, in which the goal is to distinguish between forced climate change and

internal climate variability, and the attribution problem, in which the consistency of com-

peting forcing mechanisms with an observed but noisyvclimate change signal is tested.

The strongest and most stable signal for detection is found in the 30-year trends of annual

mean data. This corresponds to the recent accelerated warming predicted by models.

However, the largest difference between greenhouse gas and aerosol forced climate

change appears in the 50-year trends in summer. This is consistent with the near linear
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increase in aerosol forcing since the middle of this century and the stronger impact of

aerosols on the radiation balance in the summer.

Our results are subject to uncertainties associated with the model—derived climate change

signals. Possible systematic errors in the climate model, e.g. errors in the model sensitivity

or arising from the residual model drift (whose effect is estimated as small, however) have

not been taken explicitly into account. Although the good agreement between the climate

change signals simulated by our model and the HADCM2 model (Mitchell et al., 1995a)

gives some confidence in the signal patterns, uncertainties remain both in the form of the

direct aerosol forcing and in the contribution from the indirect aerosol forcing. The latter

has been ignored in our simulations but is estimated to be of comparable magnitude to the

direct forcing.

However, the most critical aspect of our analysis are the uncertainties in the estimate of

climate variability. The climate noise is inferred from observations (after subtraction of an

estimate of the climate change signal) and from the internal variability of different CGCM

control simulations. The impact of uncertainties in the natural variability estimates was

most apparent in the analysis of the winter and spring seasonal data. The strong depen—

dence of the results on the noise estimates of different models and the failure to systemati-

cally increase the signal-to-noise ratio through optimization suggest that the structure of

the observed multi-decadal climate variability is not correctly reproduced by the different

climate models in these seasons. These model divergences in the description of the natural

climate variability create some uncertainties in the outcome of all detection and attribution

strategies based on pattern oriented methods. The full potential of the optimal fingerprint

method will not be realized before these uncertainties are resolved through further model

improvements and intercomparison studies.

Nevertheless, the signal-to-noise ratio for our detection of a climate change signal in the

annual mean 30—year temperature trends is quite high, and largely independent of the

details of the optimization and the data used to estimate climate variability. Furthermore,
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the statistical significance of the inconsistency of the greenhouse gas only signal with the

observations found for the 50-year summer trends is also high and quite stable. Thus we

have some confidence in our principal conclusions.

We remark finally that the present approach to the attribution of a detected significant cli-

mate change to different candidate mechanisms is necessarily limited to hypotheses which

are specified a priori. Candidates other than the anthropogenic forcing by a pure green-

house warming and a combined greenhouse gas and aerosol forcing should also be inves-

tigated, such as a change in solar radiation (e.g. Hoyt and Schatten, 1993; Crowley and

Kim, 1996). However, although solar radiation changes may cause a similar pattern of

near surface temperature change as an increase in greenhouse gases, the amplitude of the

present climate change seems to be too high to be explained by the hypothesized changes

in solar forcing alone (Cubasch et al., 1996).

Despite these caveats, we conclude from our analysis that the multi-fingerprint method is

a useful quantitative approach for the attribution problem of deciding whether an observed

climate change signal is consistent, at some prescribed confidence level, with one or a

number of competing candidate forcing mechanisms. While a single-pattern analysis

yields the result that a significant climate change has been observed which is consistent

with either hypothesis of a pure greenhouse gas warming or a combined greenhouse gas

plus aerosol forcing, we conclude from a two—pattem analysis that the observed climate

change is inconsistent with greenhouse warming alone at a confidence level higher than

90%, while it is consistent with a combined greenhouse gas plus aerosol signal.
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Figure Legends

Figure 1. Time evolution of global near surface air temperature for experiments C

with greenhouse gas forcing only, and two experiments A, B including the aerosol

effect, compared with observations (5-year running mean). Temperature changes are

defined relative to the mean of the years 1951 to 1980 and are averaged only over

areas for which a sufficient number of observations is available and which are used

for the detection analysis (cf. Fig. 4).

Figure 2. Change of winter (DJF) mean near surface air temperature in the mean

over the decade 2041-2050 relative to the initial decade of the simulations (1880-

1889) for the experiments without aerosols (top) and the average of both simulations

with aerosols (bottom) [0C].

Figure 3. Same as Figure 2, but for summer (JJA).

Figure 4. Dominant climate change signal (i.e. first EOF) for annual mean data of the

greenhouse gas only (a) and the mean of the two combined greenhouse gas and

aerosol forcing experiments (b) (normalized to same mean square deviation). The

patterns are used as “signal guess-patterns”, i.e. anticipated patterns of climate

change, for the detection approach. The patterns are restricted to grid-points for

which reliable trends could be calculated since 1949 from the observations.

Figure 5. Time evolution of the first 3 EOFs of the mean of both combined forcing

simulations. The first EOF picks up most of the monotonous climate change signal,

while higher EOFs contain mainly noise.

Figure 6. Optimal fingerprint calculated from the HAML variability data for the

combined greenhouse gas and aerosol climate change signal. The optimal fingerprint

shows a cooling in the North Atlantic and changed patterns over the large land
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masses relative to the climate change pattern (Fig. 4, bottom), but retains the main

feature that the warming is weaker in the Northern Hemisphere than in the Southern

Hemisphere [normalized in the same way as fig. 4].

Figure 7. Evolution of the detection variable (computed with the optimal fingerprint)

for 30-year trend patterns from the observations, the average (A+B)/2 of the

simulations A, B and simulation C. The time refers to the final year of the 30-year

interval used to compute the trend pattern. 95% confidence intervals derived from

three sets of variability data are also indicated. For the present one-tailed test (the

signal is known to be positive) the positive confidence limit corresponds to the 97.5%

significance level. The recent observed trends exceed this limit, indicating that they

represent a significant (at the 97.5% level) climate change. The fingerprint is

normalized relative to the standard deviation of the HAML noise, the unit value of

the detection variable corresponding to the standard deviation of the HAML noise.

Figure 8. Reduced pattern correlations (with spatial mean subtracted) between

observed 30-year trends and the dominant climate change signal (cf. fig. 4) for the

averaged simulations A, B (greenhouse gas + aerosols; full line) and for simulation C

(greenhouse gas only; dashed line).

Figure 9. a) Orthogonal pattern (relative to the Euclidean metric) to the greenhouse

warming signal pattern, b) optimal fingerprint for the statistically orthogonal signal

pattern (relative to the covariance matrix metric). Both represent the additional

climate change pattern which has been introduced by the aerosol forcing assuming a

linear superposition principle [normalized in the same way as fig. 4].

Figure 10. a) Evolution of the observed temperature trends in a phase space spanned

by the detection variable using the signal pattern for greenhouse warming (1) and

the statistically orthogonal signal pattern representing the aerosol effect (2; the
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optimized orthogonal fingerprint is shown in Figure 9b). The detection variable for

trend patterns ending in different time intervals are shown in different colors,

selected trends are additionally marked in the figure. The arrows show the time

evolution. b) shows the results for the observations compared to the detection

variable computed with 30-year trend patterns from various data of climate

variability. Additionally, the ellipses containing 95% of the estimated Gaussian

distribution for these climate variability data are shown. Note the different shape of

the noise ellipses for different variability data.

Figure 11. Attribution diagram for 30-year annual mean trends. The phase space is

the same as in fig. 10. The detection variables for the 30-year trend pattern 1966-

1995 in the model simulations are shown by the colored dots. Since the underlying

model climate change signal is expected to agree with the dominant signal pattern

(Fig. 4), these dots are projected onto it, yielding the amplitude estimates of the

simulated climate change patterns (“X”). The ellipses centered around these “X”

values indicate the 90% confidence areas for each simulation. They have been

computed from the uncertainty associated with a single or only two model

simulations and additional climate noise present in the observations (using the

HADCM2 noise). Since two simulations A,B are used for the combined forcing signal

amplitude, the uncertainty is reduced (as indicated by the smaller ellipse). The

detection variable for the latest observed 30-year trend lies inside the confidence

ellipse for the combined forcing signal, but outside the confidence ellipse of the

greenhouse gas only signal. Thus the observations are inconsistent (but only

marginally) with a pure greenhouse gas forced climate change signal and agree with

a combined forcing climate change signal.

Figure 12. Observed pattern of 50-year trends for the period 1946 -1995 in summer

(JJA) (”C/Decade], calculated from the data of Jones and Briffa.
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Figure 13. a) Evolution of 50-year summer trends in a phase space spanned by the

detection variable for greenhouse gas only and combined forcing signal patterns

together with different estimates for climate variability (cf. fig. 10b) and the

respective 95% confidence ellipses. b) Attribution diagram for 50-year trends in

summer, notation similar to figure 11. The latest observed 50-year trends lie outside

the 95% confidence ellipse for a greenhouse gas only signal. Thus we conclude that

they are inconsistent (at a more than 95% confidence level) with a pure greenhouse

gas signal. On the other hand, the observations are consistent with a combined

forcing climate change signal.
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Table 1: Estimates of the signal-to-noise ratio for the latest observed annual mean

near surface temperature trend using different fingerprints, namely 1) “mean”: a

uniform fingerprint yielding the global mean as detection variable; 2) “non- opt”: the

signal guess-pattern, and 3) “opt”: the optimal fingerprint. Also listed are the

improvements in the signal-to-noise ratios through use of “non-opt” relative to

“mean” and “opt” relative to “non-opt”. Different columns depict the estimates

derived from different variability data: the control simulations HAML, HAM3L,

GFDL, HADCM2, and the observations with a previously estimated anthropogenic

greenhouse gas value subtracted (VOBS) and fro, 1860-1960 without subtraction of

the greenhouse gas component (ROBS). The optimization is performed in a space

which is truncated to the first 10 EOFs of simulation A. Here and in the following

tables the signal-to-noise ratios using the optimal fingerprint for HAML are given in

parentheses, since these have a positive bias due to the use of the same data for the

optimization. Bold numbers indicate that the results are significant at the 97.5%

level. An asterisk (*) denotes a decrease in signal-to-noise ratio due to optimization,

indicating problems in the optimization (cf. Section 5)

HAML HAM3 GFDL HADC VOBS ROBS

mean 6.00 5.14 4.28 3.21 3.01 2.58

non-opt 5.92 5.66 4.57 3.35 3.15 2.71

opt (6.92) 4.87* 4.47* 4.36 3.28 2.81

Improvement:

non-opt / mean 0% 8% 7% 4% 5% 5%

opt / non-opt (17%) -20% -2% 30% 4% 4%
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Table 2: Estimates of the signal-to-noise ratio of the detection variable d2 computed

with the orthogonal pattern introduced by the aerosol forcing in addition to the

greenhouse gas forcing (fig. 9). c2/c1 denotes the ratio of the contributions from the

orthogonal aerosol response pattern and the pure greenhouse gas response pattern to

the model simulated greenhouse gas + aerosol climate change pattern (cf. equ. 11).

Notation otherwise as in Table 1.

c2/c1 HAML HAM3 GFDL HADC VOBS

non-opt: 0.32 0.80 0.49 1.09 0.56 0.87

opt: 0.31 (2.32) 1.48 2.60 1.67 2.16
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Table 3: Signal-to-noise estimates for the lastest observed trend based on the non-

optimized and optimized combined forcing fingerprint for seasonal data. 0L denotes

the (mean included) correlation between the non-optimized and optimized

fingerprint, otherwise notations like in Table 1. A decrease in signal-to-noise ratio

after optimization (indicated by the asterisk) suggests either differences in the

structure of variability in different models or an incorrect signal pattern.

OL HAML HAM3L GFDL HADCM2

WI: non-opt 5.41 4.31 4.45 4.00

opt 0.79 (4.88*) 3.25* 3.77* 3.09*

SP: non-opt 5.86 5.55 4.58 3.38

opt 0.87 (553*) 4.03* 3.93* 2.95*

SU: non-opt 5.59 4.73 3.42 2.90

opt 0.92 (5.81) 4.18* 3.35* 3.40

AU: non-opt 4.59 3.61 2.99 2.31

opt 0.91 (4.98) 3.49* 3.24 2.45

Table 4: Same as Table 2, but for 50-year observed temperature trends of summer

data. All data have been truncated to a 6-dimensional space (as opposed to the 10-

dimensional used for 30-year trends, where more independent data from a 1000-year

simulation are available). The contribution of the aerosol pattern is larger than

expected from noise in all cases, at the 90 (95)% confidence level for the values

printed in italics (bold italics).

HAML

3.89

4.49

HAM3L

2.25

2.86

GFDL

3.64

4.22

HADCM2

1.98

2.53

Summer, 50yr. 02/01

0.50

0.63

non—optimized

optimized
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Observed 50-Year Summer Trends: 1946-1995

Figure 12
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