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Abstract—In recent years, location determination systems have
gained a high importance due to their rule in the context aware
systems. In this paper, we will design a multi-floor indoor positioning
system based on Bayesian Graphical Models (BGM). Graphical models
have a great flexibility on visualizing the relationships between random
variables. Rather than using one sampling technique, we are going to
use multiple sets each set contains a collection of sampling techniques,
the accuracy of each set will be compared with each other.

1. INTRODUCTION

Recent advances in communication technologies have a great impact on
location determination systems. Location determination systems are
deployed in almost every building, from hospitals were the location of
patients and doctors or any medical equipment can be determined, or
sending information to customers based on their location, to organize
the traffic and reducing congestion in the highways.

RADAR [1] is an in-building RF-based user location and tracking
system uses the nearest neighbor in signal space (NNSS) technique
to predict the user’s location. NNSS uses the online received signal
strength (RSS) to search for the closest match stored in the radio
map during the offline phase by minimizing the Euclidean distance
between the physical location of the user and the estimated location.
The system depends on empirical data collection to build a radio
map for the test bed. The radio map contains tuples in the form
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(t, x, y, d) where t represents the timestamp, (x, y) is the coordinates
of user’s location and d is the orientation of the user’s facing (north,
south, east or west). RADAR’s accuracy is effected by the size of
NNSS used, training points and samples size in the online phase.
The system also uses signal propagation modeling approach to build
the radio map, the goal was to reduce the system dependence on
empirical data. The authors ignored the Floor Attenuation Factor
(FAF) which was proposed by [2] and adopted the Wall Attenuation
Factor (WAF) instead. They discovered that there is an inverse
relationship between the amount of additional attenuation and the
number of walls separating the transmitter and the receiver. The
accuracy of the system was about 2–3 m.

Horus [3], a probabilistic WLAN location determination system
which was designed with the goal of high accuracy and low
computational cost. The system uses a technique called location-
clustering in order to reduce the computational cost. Having a
small computational cost systems is an important aspect in designing
a location determination system, it enables such systems to be
implemented in smaller devices. The system also operates in two
stages: an Off-line phase where the radio map is built using a Joint
Clustering technique where the test bed is divided into clusters, and
any two locations are in the same cluster if they are both covered by
the same APs, a discrete space estimator estimates the RSS histogram
for each AP at each location, and an On-line phase, where the actual
estimating of the user’s location happen by finding the location x
which maximize the probability of getting that location given a signal
strength vector s.

In [4], the authors presented a hybrid indoor positioning method
that uses ray-tracing model for modeling the multipath effects. The
system works in two stages, in the first stage, it uses the direction of
arrival (DOA) and RSS to build a database of fingerprints, while in
the second stage it determines the position of the mobile station by
computing the Euclidean distance values of DOA and RSS with the
values stored in the database.

In [5], the authors proposed an indoor location determination
system that uses non line of sight (NLOS) scheme and one bound
scattering paths. The system is a two step Determination and Selection
(two step DS), which in the first step it calculates the estimated
location from a cluster of Line of Possible Mobile Device location
(LPMD). In the second step, the system tries to find the shortest
Euclidean distance from the centroid. The system adjusts the Line
of Sight (LOS) measurement of the Angle of Arrival (AOA) and TOA
to the real values.
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The disadvantage of the above systems is that they do not work
in multi-floor environments. Most indoor positioning system based on
TOA or AOA metrics requires a sophisticated devices to measure time
or angle. Since our system was designed to work with off-the-shelf
components, which means no additional requirements were needed
other than an Access Point (AP) and a WiFi enabled device. Moreover,
TOA location determination systems uses the TOA measurement of
the first path to determine the location which in turn is difficult to be
calculated accurately in indoor environments [6].

For a list of systems and methods used in indoor location
determination [7–10].

2. RSS PROPERTIES IN INDOOR ENVIRONMENTS

In order for us to design an ideal indoor positioning system, studying
the properties of RSS in indoor environments is a crucial aspect in this
study. Signal strength in indoor environments is difficult to predict due
to multipath effects such as reflection, diffraction and scattering [11].
In this section, we are going to study different RSS properties that will
effect our system.

2.1. Distribution of RSS in Indoor Environment

The average RSS in indoor environments is considered to be log-
normally distributed [12]. Figure 1 shows the histogram of RSS for
three access points during work hours in the first floor of Wireless
Communication Centre (WCC) building. The signal fingerprints were
collected at fixed location for five minutes with one second time
interval. The figure shows that each histogram is unique and different
from each other. Table 1 shows different values for the mean, median
mode and standard deviation. Figure 1 proves that the RSS at
fixed location does not follow a normal distribution but a log-normal
distribution due to the similarity between the statistical values for each

Table 1. Statistical values for three APs at fixed location in the first
floor.

Statistics AP 1 AP 2 AP 3

Mean (dBm) −103.7 −67.6 −68.3

Median (dBm) −101.0 −66.0 −67.0

Mode (dBm) −102 −66 −65

Std. Deviation (dB) 4.7 3.2 3.7
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Figure 1. RSS distribution at fixed locations from three access points.

AP. Moreover, the data did not pass D’Agostino-Pearson Omnibus test
since the P values for each test were too small.

2.2. Using RSS to Infer Locations

In our system, RSS will be used as reference to infer the indoor location.
A test was conducted to show the possibility of using RSS, Figure 2
shows the variation of RSS measurements recorded from five APs while
walking through a track in the first floor at WCC building. The signal
received at any given location is higher when that location is close to
the AP, and weaker when it is far away. This shows the feasibility of
using RSS as a location fingerprint.

Figure 2 also shows the uniqueness of RSS tuples. Each RSS tuples
at each location are different. This indicates that RSS fingerprints are
the best choice for inferring indoor locations. The figure shows also
the small variation of RSS against the distance which indicates the
distance between each training point should not be relatively small.
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Figure 2. RSS while walking inside WCC from five APs.

Table 2. RSSs statistics from two APs at two different floors.

Statistics AP2 Floor 1 AP2 Floor 2 AP5 Floor 1 AP5 Floor 2

Mean −52.13 −72.24 −72.18 −47.21

Median −52.00 −72.00 −72.00 −47.00

Std.

Deviation
2.475 1.014 3.592 1.467

Min −57.00 −76.00 −82.00 −51.00

Max −43.00 −69.00 −46.00 −44.00

2.3. Multi-floor Effect

According to [13], a concrete floor may reduce the RSS between
15 dB and 35 dB. In order to investigate the effect of floors in the
indoor environment, we performed a set of measurements at two fixed
locations referred as A1 in Figure 4(a) and A2 in Figure 4(b), A1 and
A2 are vertically and symmetrical locations.

At each location, we have collected RSSs for five minutes with
1 second sampling time from AP2 in first floor and AP5 in the second
floor.

Figure 3 and Table 2 show the effect of floor in our test bed, for
AP2 the floor attenuation is 20.11 dB and 24.97 dB for AP5. The
average floor attenuation to the RSS from an AP implemented in
different floor is 22.5 dB.
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(b)

(a)

Figure 3. Multi- oor effect at two fixed locations from (a) AP2 and
(b) AP5.

2.4. Multiple Diffraction from Window Frames

In addition to the effect of FAF, [14] suggests that there are another
two factors that most likely have an effect on signal propagation in a
multi-floor environment:

(i) Multiple diffraction from window frames.

(ii) Reflection from scattered signals from adjacent buildings.

In this paper, we will ignore the effect of adjacent buildings due
to floors layout constrains. Multiple diffraction is caused by the
propagated signal being diffracted at window frame edges at locations
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(a) (b)

Figure 4. Two floor plans showing (a) three APs in first floor and (b)
two APs in the second floor.
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Figure 5. The effect of FAF at locations near to the window frames.

Table 3. The floor attenuation factor effect in the centre of the floors
and next to windows.

Centre 1st floor Centre 2nd floor Window

Mean (dBm) −52.13 −47.21 −36.79

Median (dBm) −52 −47 −37.00

FAF (dB) 20.11 24.97 26.1

in different floors. In Figure 12, we show the effect of multiple
diffraction from window frames. RSS fingerprints were recorded at
location B1 in first floor and B2 in the second floor for five minutes.
The AP is located in the second floor near a glass window. From
Figure 5 and Table 3, the FAF appears to be the dominant factor
while the diffraction from windows has no effect.



248 Al-Ahmadi et al.

Figure 6. A simple graphical model.

3. BAYESIAN GRAPHICAL MODELS

A graphical model is a statistical model representing a set of conditional
independence relationships [15]. Figure 6 shows a simple graphical
model. The nodes A,B and C represent a random variable while the
edges represent relationships between those random variables. We say
any node is a parent when there is an arrow pointing out of that node
to a descendant node. In Figure 6, node A is a parent for node B,
and node B is a parent for node C. We may also say that a node is
a child when there is an arrow pointing to that node. Therefore, node
B is a child of node A, and C is a child of B. A parent node A is
considered to be the direct influence on its children, C is independent
of its non-descendants given its parent [16]. The joint density of all
random variables for BGM in Figure 6 is:

P (A, B,C) = P (A)P (B | A)P (C | B)

in other words:

P (X) =
∏

x∈X

P (x | parent (x)) (1)

In BGM, most of the random variables represent the variability of
the observed data, while some variables represent the unobserved data
that affects the observed variables [17].

3.1. Markov Chain Monte Carlo Sampling Techniques

Monte Carlo (MC) methods such as rejection sampling and importance
sampling techniques do not work well in complex situations. Markov
Chain Monte Carlo (MCMC) works in more complicated problems. In
MCMC, we want to draw a large number of samples from the posterior
distribution, these samples can be then used to estimate the posterior
mean. In this section, we will give a brief description of 3 sampling
techniques that were used in our model.

3.1.1. Gibbs Sampler

Gibbs sampler [18] is an univariate sampler that picks the value of each
random variable from its conditional probability distribution given all
other quantities [19].
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If we have a simple regression model:

si ∼ N (b0 + b1X1 + . . . + bzXz, τ) (2)

the Gibbs sampler works by sampling each of the conditional
distribution one at a time, Algorithm 1 shows the steps of Gibbs
sampler [20]:

Algorithm 1 The Gibbs Sampler algorithm

(i) Set initial values for parameters bi

(ii) For t = 1, . . . , T repeat

(a) Set b = b(t−1)

(b) For i = 1, . . . , z
1. update bi from bi ∼ f

(

bi|b\i, S
)

repeat

(c) Set bt = b
(d) Save it for t + 1 iteration

b0 ∼ P (b0|b1, . . . , bz, τ, S)

b1 ∼ P (b1|b0, b3, . . . , bz, τ, S)

... (3)

bz ∼ P (bz|b0, b3, . . . , bz − 1, τ, S)

τ ∼ P (τ |b0, . . . , bz, S)

3.1.2. Metropolis-Hastings Sampler

Metropolis-Hasting was initiated by [21] as a generalization of the
Metropolis algorithm which was introduced by [22]. Algorithm 2 shows
the steps of a Metropolis-Hasting algorithm.

Algorithm 2 Metropolis-Hasting algorithm

(i) Set initial values for parameters bi

(ii) For t = 1, . . . , T repeat

(a) Set b = b(t−1)

(b) Generate new value b′ from a proposal distribution h (b′|b)
(c) Calculate

α = min

(

1,
f (b′|S)h (b|b′)

f (b|S)h (b′|b)

)

(d) Update b(t) = b′ with probability α, otherwise set b(t) = b
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3.1.3. Slice Sampler

Slice sampling [23] works by using a supportive variable v, and drawing
samples from the joint distribution Uniform (b, v) such that:

p (b, v) =

{

1/B if 0 ≤ v ≤ p (x)

0 otherwise
(4)

where B =
∫

p (b) db, and the marginal distribution over b is:

p (b) =

∫

p (b) dv =

∫ p(b)

0

1

B
dv (5)

Algorithm 3 Slice Sampler Algorithm

(i) Set b = b(t−1)

(ii) For i = 1, . . . , n

(a) generate v
(t)
i ∼ Uniform (0, f (vi|b))

(iii) For j = 1, . . . , d

(a) update bj ∼ f (bj)
∏n

i=1 I
(

0 ≤ v
(t)
i ≤ f (vi|b)

)

(iv) Set b(t) = b

3.2. Burn-in Samples

Burn-in samples are samples that were initially generated and will be
rejected in order to eliminate their effect on the posterior distribution,
burn-in samples are not valid since Markov chain has not stabilized [20].

3.3. Ordered Over-relaxation

Over-relaxation [24] is used to improve the convergence of Gibbs
sampler, it generates multiple random values at each iteration and
chooses the one that is negatively correlated with the current value
from a conditional distribution and then arranging these values in non-
decreasing order.

4. MODEL AND MEASUREMENT SETUP

A single unshaded circle symbolizes a continuous stochastic node while
the shaded node represents a discrete stochastic node, stochastic nodes
are always assigned to a distribution, discrete stochastic nodes are
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represented by a single shaded circle, while a double unshaded circle
refers to a logical variable, and finally, single rectangular represents a
constant.

4.1. Data Collection

In order to construct a radio map for our test bed, an offline data
collection at specified locations was needed. NetStumbler [25], a free
software for detecting signal strengths from APs was used. In addition
to RSSs, NetStumbler can also record MAC, SSID, SNR and channel
speed of each AP. Unfortunately, due to experiencing some difficulties
with NetStumbler, like the inability to record the location of the
fingerprint collected and not being able to operate in some operating
systems, we developed UTM WiFi Scanner, a software that allows
us to record RSSs, MAC address, SSID, channel and speed of each
APs along with their (x, y) coordinates and z (the floor number). Our
software is based on inSSIDer [26], an open source WLAN scanner
written in C sharp language under Apache license.

We performed our test at WCC building at UTM, the building
has two floors, first floor is about 36 m × 30 m and the second floor is
approximately 21 m × 28m, there are five D-Link DWL-2000AP APs,
with operating frequency from 2.4GHz to 2.4835 GHz, 3 in the first
floor and 2 in the second floor, each AP has 15 dBm transmit power.
Most of the building’s walls are concrete and some walls are made of
a plaster partition board, the wall thickness is about 15 cm and floor
thickness is about 80 cm, Figure 4 show the building’s floor plan. RSSs
fingerprints were collected on a MacBook running Windows XP Service
Pack 3 in Boot Camp. The laptop is equipped with AirPort Extreme
card, the card supports IEEE 802.11 a/b/g/n standards.

Fingerprints were recorded at 21 locations in floor 1 and 9
locations in floor 2, at each location, we collected 20 RSS in 360◦

rotation with one second time interval during office work hours. In the
off-line phase, the user clicks on displayed map in UTM WiFi Scanner,
then the (X,Y, Z) coordinates of the user are saved in a file with the
RSS, MAC, SSID, SNR values from each AP. Figure 7 shows UTM
WiFi Scanner graphical user interface during data collection.

4.2. Our Model

Figure 8 show our mode which we are going to call it WCC01, it is
based on model M2 in [16], but we have modified our model to fit a
multi-floor environment.

Nodes Xi, Yi and Zi represent the user’s location at the ith
training point. x̄j and ȳj are constant nodes which represent the
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Figure 7. UTM WiFi Scanner GUI during data collection.

Figure 8. A Bayesian graphical model using WinBUGS plate
notation. We call this model WCC01.

location of the jth AP. FAF is the floor attenuation factor. Dij is
the Euclidean distance between the location specified by (Xi, Yi) and
(x̄j ,ȳj), node Sij represents the signal strength received at location
(Xi, Yi) from the jth AP. Node wi takes 0 if RSS recorded at location
(Xi, Yi) and the jth AP were at the same floor and 1 otherwise.
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The nodes are defined as follows:

Xi ∼ U (0, L)

Yi ∼ U (0,W )

Zi ∼ DisU (1, N)

Dij = log

(

1 +

√

(Xi − x̄j)
2 + (Yi − ȳj)

2

)

Sij ∼ Norm(b0j + (b1j ∗ Dij ) + (b2j ∗ Zi)

+(b3j ∗ wi ∗ FAF ), τj), i = 1, . . . , n,

j = 1, . . . , m,

bcj ∼ Norm (µc, τc) , c = 1, 2, 3, 4,

µc ∼ Norm (0, 1.0E − 6) , c = 1, 2, 3, 4,

τc ∼ Gamma (0.01, 0.01) , c = 1, 2, 3, 4.

L represents the length of the test bed while W is the width and N is
the number of floors.

Since WinBUGS (Bayesian Inference Using Gibbs Sampler) does
not support discrete uniform distribution, we had to construct our own
distribution as a categorical distribution as follows:

for (i in 1 : 30) {p[i] < −30 Z[i] ∼ dcat(p[ ])}

Categorical distribution is a generalization of Bernoulli distribu-
tion with sample space {1, 2, 3, . . . , n}. It can be used in BUGS by:

x ∼ dcat(p[ ]) (6)

where
x = 1, 2, 3, . . . ,dim(p)

4.3. Data Analysis

In order to compute the posterior distribution, we will use BUGS [27],
a free software used to generate samples for the parameters of posterior
distribution. Figure 9 shows two trace plots for Xi in Figure 9(a) and
for Yi in Figure 9(b), clearly the two random variables Xi and Yi have
converged since no patterns were observed, then we do not have to
generate more samples.

We simulate using four sets of sampling methods as appear in
Table 4. In Set 1, adaptive metropolis updater was used for random
variables Xi and Yi, a discrete slice updater was chosen for Zi in the
four steps, conjugate normal updater for bcj and µc, and a conjugate
gamma updater for random variable τc. In Set 2, adaptive metropolis
updater was used for Xi, Yi, bcj and µc and a slice updater for τc,



254 Al-Ahmadi et al.

(a)

(b)

Figure 9. Trace plot of all stored values with no patterns observed
for variables (a) X[30] and (b) Y [30].

Table 4. Four sets of sampling techniques used in our model.

Set 1 Set 2 Set 3 Set 4

Adaptive Metropolis * * *

Conjugate normal * * *

Conjugate gamma *

Slice * * *

Discrete Slice * * * *

while in Set 3, adaptive metropolis also was chosen for Xi and Yi,
a conjugate normal form bcj and µc and a slice updater for random
variable τc, and finally in Set 4, a slice updater for Xi, Yi and τc and
a conjugate normal updater for bcj and µc.

Figure 10 shows the visual estimation for variables of posterior
probability function, X[30] in 10(a), Y [30] in 10(b) and Z[30] in 10(c),
a bell-shaped posterior distribution indicates that the MC chain has
converged. Figure 11 shows the generated samples for variables for
X[30], Y [30] in 11(a) and Z[30] in 11(b). We got these results by
running the MC chain 10,000 iterations with another 10,000 iteration
for the burn-in period. We also tested our model with different FAF
values to show its effect on location error, in Figure 12(a) shows the
location error after running 10,000 iteration with four different FAF
values and in Figure 12(b) after running 50,000 iteration. We noticed
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(a) (b)

(c)

Figure 10. An approximate visual kernel estimate of the posterior
distribution of random variables (a) X[30], (b) Y [30] and (c) Z[30].

(a) (b)

Figure 11. Generated samples using Gibbs sampler for (a) X[30],
Y [30] and (b) Z[30].

that the overall accuracy was increased while the number of iterations
increased. We got better results with FAF = 25 dB, the error mean at
this value is about 3.8 m. In Figure 13, we show our results with each
sets mention in Table 4 after choosing FAF = 25 dB, we ran the MC
chain for 100,000 iteration after discarding the first 10,000 iteration as
burn-in samples. From Table 5, Set 1 of sampling techniques appears
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(a) (b)

Figure 12. The effect of different FAF values and number of
iterations on the estimated location error.
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Figure 13. Location error results using the four sets with FAF =
25dB after running the MC chain for 100,000 iteration and 10,000
iteration in burn-in period.

to give the most accurate results with mean error of 2.283m and 75%
percentile of 3 meters, while Set 3 gives the most inaccurate results by
error mean of about 4.2 m and 75% percentile equal to 5.17 m.

In Table 6, we compare our results with similar off-the-shelf
positioning systems, namely RADAR [1] and the Horus location
determination system proposed by [3]. Although the dimensions of
the first floor of our test bed is bigger than the test bed in [3], we
were able to achieve almost the same accuracy with 70% less training
points. Note that our 30 training points were collected in two floors.
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Table 5. Location error in meters after running the MC chain for
100,000 iteration.

Set 1 Set 2 Set 3 Set 4

Minimum 0.7304 0.8516 1.996 0.9312

75% Percentile 3.011 3.769 5.173 3.418

Maximum 3.929 4.600 5.848 3.927

Mean 2.283 3.084 4.193 2.671

Table 6. Comparison between different indoor positioning systems.

RADAR Horus Our model

Floor Dimensions (m) 43.5 × 22.5 11.8 × 35.9 36 × 30

Number of

Training Points
70 100 30

Accuracy (m) 3 2.1 2.3

Multi-Floor No No Yes

5. CONCLUSION

In this paper, a Bayesian graphical model for multi-floor indoor
positioning system was designed. First we studied the RSS properties
that will affect the overall accuracy of our model, then we gave a brief
review on the MCMC sampling techniques we used. Finally, we tested
our model with four sets of MCMC sampling techniques and compared
our results with two well known location determination systems. We
were able to achieve accuracy of 2.3m in a multi-floor environment
with a small amount of training points.
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