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Abstract

We analyze several recent schemes for watermarking net-
work flows based on splitting the flow into intervals. We
show that this approach creates time dependent correla-
tions that enable an attack that combines multiple wa-
termarked flows. Such an attack can easily be mounted
in nearly all applications of network flow watermarking,
both in anonymous communication and stepping stone
detection. The attack can be used to detect the presence
of a watermark, recover the secret parameters, and re-
move the watermark from a flow. The attack can be ef-
fective even if different the watermarks in different flows
carry different messages.

We analyze the efficacy of our attack using a proba-
bilistic model and a Markov-modulated Poisson process
(MMPP) model of interactive traffic. We also implement
our attack and test it using both synthetic and real-world
traces, showing that our attack is effective with as few
as 10 watermarked flows. Finally, we propose a counter-
measure that defeats the attack by using multiple water-
mark positions.

1 Introduction

Traffic analysis is the practice of inferring sensitive in-
formation from communication patterns. Traffic analy-
sis has been particularly studied in the context of anony-
mous communication systems, where features such as
packet timings, sizes, and counts can be used to link two
flows and break anonymity guarantees [2, 22]. Traffic
analysis is also sometimes used in intrusion detection,
for example, to detect the presence of stepping stones
within an enterprise [29].

Recently, there has been a growing interest in the use
of watermarking to aid traffic analysis [27, 24, 21, 25,
28]. In this case, traffic patterns of one flow (usually
packet timings) are actively modified to contain a spe-
cial pattern. If the same pattern is later found on another

flow, the two are considered linked. Watermarking sig-
nificantly reduces the computation and communication
costs of traffic analysis, and may also lead to more pre-
cise detection with fewer false positives.1 Watermark-
ing has been applied to both the problems of attacking
anonymity systems [24, 25, 28] and detecting stepping
stones [27, 21].

In both contexts, many flows must be watermarked
before linked flows are discovered. In our work, we
consider whether an attacker can learn enough infor-
mation to defeat the watermark by observing multiple
watermarked flows. (We use “attacker” here to refer
to someone attacking the watermarking scheme; in the
case where watermarks themselves are used by attack-
ers, these will be the “counter-attackers.”) We apply
this multi-flow threat model to the latest generation of
interval-based watermarks [21, 25, 28]. These water-
marks subdivide the flow to be marked into discrete time
intervals and perform transformative operations on an
entire interval of packets. This approach is more ro-
bust to packet losses, insertions, and repacketization than
previous approaches that focused on individual pack-
ets [27, 24], because the time intervals allow the water-
marker and detector to retain synchronization. However,
the same synchronization property can be used by at-
tackers by “lining up” multiple watermarked flows and
observing the transformations that were inserted.

We show through experiments that the interval-based
watermark schemes are completely vulnerable to an at-
tacker who can collect a small number of watermarked
flows—about 10. This is sufficient to not only detect that
a watermark is indeed present, but also to recover the se-
cret parameters of the watermark scheme and to be able
to remove the watermark at a low cost. Furthermore, our
attack works even if different watermarked flows contain
different embedded “messages,” with only about twice
the number of watermarked flows necessary.

We also consider some countermeasures to such at-
tacks. We show that by using multiple “keys” (time inter-
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val assignments) to watermark different flows, it is pos-
sible to defeat our attack. This countermeasure comes
at a cost of higher computation overhead at the detector
and a higher rate of false positives. However, this in-
creased cost is only linear, whereas the increased cost for
the attacker is superexponential, thus providing an effec-
tive defense.

The rest of the paper is organized as follows. The next
section presents the setting for our attack and reviews
the three schemes considered in this paper. Section 3
describes the theoretical foundation for our attack, and
Section 4 implements the attack. We discuss potential
countermeasures to the attack in Section 5. Section 6
concludes.

2 Background

We first describe the setting of our attack in a bit more
detail and then review the essential details of the water-
marking schemes we analyze.

2.1 Network Flow Watermarking
The setting for network flow watermarking is similar to
that of other digital media watermarks (and network flow
watermarks use similar techniques). The general model,
as shown in Figure 1, involves a network flow passing
through a watermarking point (typically a router of some
sort) that transforms, or distorts, the flow in some way
(typically by modifying packet timings by selectively de-
laying some packets). In the general setting, the water-
marker has a secret key and uses it to encode a message
in the traffic characteristics.

After watermarking, the flow undergoes some natu-
ral or intentional distortion. Natural distortion can take
the form of delays at intermediate routers (or rather,
variability of delays, i.e., jitter), but may also include
dropped or retransmitted packets, repacketization, and
other changes. In addition, an attacker may intention-
ally distort traffic characteristics in order to prevent the
watermark from being recovered.

The distorted flow finally arrives at a detection point.
The detector shares the secret key and uses it to extract
the message encoded in the watermark. A good water-
mark will allow reliable recovery of the message from
the watermarked flow despite the intermediate distortion.

In network flow watermarks, the message component
of the watermark may be used in two ways. First, all wa-
termarked flows may be marked with a single message.
In this case, the detector’s main goal is to decide whether
the watermark is present or not by checking whether the
decoded message is the correct one. Alternately, dif-
ferent flows may have a different message embedded,
so that when a watermarked flow is detected, it can be
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Figure 1: Network Flow Watermarking

Figure 2: An anonymous system.

linked with a particular marked flow. This comes at a
cost of less reliable detection, since the single-message
context creates more opportunities to detect errors. Our
attacks are designed to work in both single-message and
multiple-message contexts.

2.2 Watermarks in Anonymous Systems
At a very high level, an anonymous system maps a num-
ber of input flows to a number of output flows while hid-
ing the relationship between them, as shown in Figure 2.
The internal operation can be implemented by a mix net-
work [8], onion routing [23], or a simple proxy [6]. The
goal of an attacker, then, is to link an incoming flow to
an outgoing flow (or vice versa).

A watermark can be used to defeat anonymity pro-
tection by marking certain input flows and watching for
marks on the output flows. For example, a malicious
website might insert a watermark on all flows from the
site to the anonymizing system. A cooperating attacker
who can eavesdrop on the link between a user and the
anonymous system can then determine if the user is
browsing the site or not. Similarly, a compromised en-
try router in Tor [11] can watermark all of its flows, and
cooperating exit routers or websites can detect this wa-
termark.

Note that this does not enable a fundamentally new
attack on low-latency anonymous systems: it has been
long known [23] that an attacker who can observe a flow
at two points can determine if the flow is the same, un-
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less cover traffic is used. (In fact, deployed low-latency
systems such as Onion Routing [23], Freedom [1], and
Tor [11] have all opted to forego cover traffic due to it
being expensive, hoping instead that it will be difficult
for an attacker to observe a significant fraction of incom-
ing and outgoing flows.) However, watermarking makes
the attack much more efficient. With passive traffic anal-
ysis, if one attacker observes n input flows and another
observes m output flows, the attack will require O(n)
communication between the attackers and O(nm) com-
putation, as one attacker must transmit characteristics of
all n flows to the other, and then each output flow must
be matched against each input flow. With watermarking,
on the other hand, no communication needs to take place
between the two attackers after they have established a
shared secret key, and the computation cost is O(n) and
O(m) at the watermarker and detector respectively, as
the watermarker marks each input flow and the detector
checks each output flow for the presence of a mark.

Multi-Flow Attack In the above examples, a website
or an input router will insert the watermark into all the in-
put flows going through them. Therefore, it will be pos-
sible for the anonymous system to obtain multiple water-
marked flows. These flows can then be used to recover
the secret key and then remove the watermarks from sub-
sequent flows, using the techniques we describe below.
Our techniques are low-cost, requiring a small number
of watermarked flows and modest computation, so it is
easy to check whether watermarking is being applied by
a given website or router by aggregating its flows.

The only context where our attack does not apply is
in a traffic confirmation attack. In this case, an attacker
already has a strong suspicion that a particular input flow
corresponds to a particular output flow, and therefore
need only watermark a single flow. Traffic confirmation
attacks are a more rare use of traffic analysis, since they
only confirm existing suspicions, rather than revealing
new linkages between flows. Furthermore, the efficiency
gains of watermarks are not beneficial in this case, since
n = m = 1. Therefore, our attack will apply to the vast
majority of practical uses of watermarks in anonymous
systems.

2.3 Watermarks in Stepping Stones
A stepping stone is a host that is used to relay traffic
through an enterprise network to another remote destina-
tion, in order to hide the true origin of the flow. To detect
such hosts, an enterprise must be able to link an incom-
ing flow to the relayed outgoing flow. The situation is
therefore very similar to an anonymous communication
system, with n flows entering the enterprise and m flows
leaving. Once again, this task may be accomplished by

Figure 3: Stepping stone detection architecture.

passive traffic analysis [26, 29, 5, 12], but watermarks
make such detection much more efficient. Passive tech-
niques will require O(nm) computation and potentially
O(n) communication, if there are multiple border routers
through which traffic can enter or leave the enterprise.
With watermarking, border routers for an enterprise will
insert watermarks on all incoming flows, and check for
the presence of the mark on all outgoing flows, as shown
in Figure 3, reducing the computation cost to O(n) and
O(m) for the incoming and outgoing flows.

Multi-Flow Attack Since all incoming flows must be
marked, an attacker in control of a compromised host can
simply generate multiple external flows destined for that
host (and not relay them), and then collect the timing
characteristics of the flows as they arrive at the host to
recover the secret watermark key. Once this is accom-
plished, the key can be used to remove watermarks from
relayed flows, thus defeating stepping stone detection.

2.4 Interval Centroid-Based Watermark-
ing (ICBW)

We next review the scheme proposed by Wang et al. [25];
for more details of the scheme as well as some analysis
we refer the reader to [25]. The scheme is based on di-
viding the stream into intervals of equal lengths, using
two parameters: o, the offset of the first interval, and T ,
the length of each interval. A subset of 2n = 2rl of
these intervals are chosen at random, and then randomly
divided into two further subsets A and B each consist-
ing of n = rl intervals. Each of the sets A and B are
randomly divided to l subsets denoted by {Ai}l

i=1
and

{Bi}l
i=1

, each consisting of r intervals. The i-th water-
mark bit is encoded using the sets {Ai, Bi}. Therefore, a
watermark of length l can be embedded in the flow. Fig-
ure 4 depicts the random selection and grouping of time
intervals within a flow for watermark insertion.
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Figure 4: Random selection and assignment of time intervals within a packet flow for watermark insertion.

Figure 5: Distribution of packet arrival times in an inter-
val of size T before and after being delayed.

The watermarker and detector agree on the parameters
o, T and use a random number generator (RNG) and a
seed s to randomly select and assign intervals for water-
mark insertion. To keep the watermark transparent, all of
these parameters are kept secret. Depending on whether
the i-th watermark bit is 1 or 0, the watermarker delays
the arrival times of the packets at the interval positions in
sets Ai or Bi respectively, by a maximum of a. Figure 5
illustrates the effect of this delaying strategy over the dis-
tribution of packet arrival times in an interval of size T
(this operation is called “squeezing” by Wang et al.) Fi-
nally, the overall watermark embedding is illustrated in
Figures 6 (a) and (b).

As the result of this embedding scheme, the expected
value of aggregate centroid, i.e., the average offset of
the packet arrival time from the beginning of the cur-
rent length T interval, in either the intervals Ai (when
watermark bit is 1) or Bi (when watermark bit is 0) cor-
responding to bit i is increased by a

2
. The difference be-

tween the aggregate centroid of Ai and Bi now will be a
2

when watermark bit is 1 or −a
2

when watermark bit is 0.

The detector checks for the existence of the watermark
bits. The check on watermark bit i is performed by test-

(a) Insertion of watermark bit 0

(b) Insertion of watermark bit 1

Figure 6: ICBW bit insertion

ing whether the average difference of the aggregate cen-
troid of packet arrival times in the intervals Ai and Bi is
closer to a

2
or−a

2
. If it is closer to a

2
, then the watermark

bit is decoded as 1 and if it is closer to −a
2

, the bit is
declared a 0. By focusing on the arrival times of many
intervals (r of them for each bit of the watermark) rather
than individual packet timings, the ICBW approach is
robust to repacketization, insertion of chaff, and mixing
of data flows. Network jitter can shift packets from one
interval into another, but the suggested parameters for a
and T (350ms and 500ms respectively) are large enough
that few packets will be affected.

The secrecy of the interval positions Ai and Bi make
the mark difficult to detect or remove, as it is hard to dis-
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tinguish the patterns generated by the mark from natural
variation in traffic rates. We show in Sections 3 and 4,
however, that a simple technique allows an observer to
effectively recover the watermark positions and values.
This technique is applicable to any watermarking scheme
that creates periods of clear or low traffic at specific parts
of the flows across many flows. Next, we briefly describe
Interval-Based Watermarking (IBW), a flow watermark-
ing scheme proposed by Pyun et al. [21] to detect step-
ping stones. Our attacks also applies to this scheme.

2.5 Interval-Based Watermarking
Similar to ICBW, the watermarking scheme of Pyun
et al. [21] manipulates the arrival times of the packets
over a set of preselected intervals. The watermark em-
bedding is achieved by manipulating the rates of traffic
in successive intervals. There are two manipulations: an
interval Ii may be cleared by delaying all packets from
interval Ii until interval Ii+1, or it may be loaded by
delaying all packets from interval Ii−1 until interval Ii.
A loaded interval will therefore have twice the expected
number of packets, and a cleared one will have none.
To send a 0 bit in position i, the interval Ii is cleared
and Ii+1 is loaded; to send a 1, Ii is loaded and Ii+1 is
cleared. (Note that since clearing one interval implicitly
loads the next, it takes 3 intervals to send a bit.)

The watermarker and detector agree on the parameters
o, T and a list of positions S = {s1, . . . , sn}; all of these
parameters are secret. The watermarker encodes the wa-
termark bits at the interval positions si and the detector
checks for the existence of the watermark. The check is
performed by testing whether the data rate in interval Isi
differs from the rate in interval Isi+1 by a factor exceed-
ing a threshold; if it does, then a 0 or 1 bit is considered
detected. By focusing on data rates rather than individual
packet timings, the interval-based approach is robust to
repacketization of data flows.

The detection process may generate false positives due
to natural variation in packet rates, or false negatives, as
delays between the watermarker and repacketization at
the relay cause rates in intervals to shift. To ensure reli-
able transmission, each watermark bit is encoded in sev-
eral positions in the stream. Pyun et al. show that this
technique operates with very low false positive and false
negative rates.

2.6 Spread-Spectrum Watermarking
In the DSSS watermarking technique due Yu et al. [28],
a binary watermark is embedded in the flow to achieve
invisible traceback. In their proposed approach, each bit
of a length n binary watermark is embedded in an inter-
val of length Ts. Hence the whole watermark is inserted

Figure 7: A length-5 PN code and insertion of DSSS
watermark 110.

in an interval of length nTs. To embed a watermark bit
1, the rate of the packets in the designated interval of
length Ts are manipulated according to a Pseudo-Noise
(PN) code. The PN code is a quickly varying signal that
switched between +1 and −1 and duration of each ±1
period is Tc. In particular, Yu et al. [28] choose a length-
7 PN code for their implementation. When PN code is
+1, the rate of the flow remains intact, but when PN code
is −1, the rate of the flow is decreased for a duration of
Tc.2 On the other hand, to embed a watermark bit 0,
the flow is manipulated using the complement of the PN
code. Figure 7 depicts the embedding of watermark 110
for a PN code of length 5.

The watermarker and detector agree on the parame-
ter Ts and a Pseudo-Noise code. The detector recovers
the watermark by first applying a high-pass filter to the
received signal and subsequently passing it through de-
spreading and a low-pass filter. The details of the detec-
tor’s structure are inconsequential to our attack and the
interested reader is referred to [28].

Given that the watermark insertion technique in DSSS
reduces the flow rates over certain intervals across all
flows, it is vulnerable to our multi-flow attack.

3 Attack Analysis

In this section, we present a probabilistic analysis of our
attack using a model for interactive traffic. Though some
watermarked traffic may consist of non-interactive bulk
transfer traffic, we will show in Section 4.1 that interac-
tive traffic presents a more difficult case for our attack,
and thus we analyze it here. As DSSS watermarks work
well only against non-interactive traffic, our analysis here
applies only to IBW and ICBW, but as we demonstrate
experimentally, our attack will work on DSSS water-
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marks as well.

3.1 Model of Interactive Traffic
We first present a model for interactive traffic, as it is
essential to our analysis. Let fm denote the m-th flow in
a pool of interactive traffic flows. Given that the traffic
might be encrypted, we do not consider the content of
the packets; likewise, the sizes of packets representing
keystrokes are likely to be uniform. We thus consider
only the arrival time of the packets in the flow, allowing
us to model the flow as a point process.

Suppose we observed packet arrivals at times t1 <
t2 < · · · < tn in a fixed interval (0, τ ] such that ti is
the time the i-th packet arrived. The collection of arrival
times tm = (t1, t2, . . . , tn) specifies a flow fm. Further-
more, we model the interactive connection as a Markov-
modulated Poisson process (MMPP) [14, 15]. The set of
possible states are {0, 1}, where state 0 corresponds to
user typing characters and state 1 corresponds to periods
of silence. Figure 8 depicts this two-state MMPP.

Let X(t) denote the state of the process at time t.
When the process is in state 0, packet arrivals are mod-
eled as a renewal process; i.e. the interarrival times are
independent and identically distributed (i.i.d.). In case
of interactive traffic flow, this renewal process is often
modeled as Poisson [12, 5]. The Poisson assumption
means that the interarrival times of the packets, denoted
by θ, are exponentially distributed. Hence their probabil-
ity density function (PDF) is given by:

fθ(t) = λe−λ0t

where λ0 denotes the rate of the Poisson process. When
the process is in state 1, the arrivals are again modeled
as Poisson but with rate λ1 < λ0. Given that state 1
corresponds to a period of silence (no packet arrivals),
as soon as a packet arrives, the embedded Markov chain
transitions to state 0. Therefore, the transition probabil-
ities {Pij , i, j = 0, 1} of the embedded Markov chain
{Xn, n ≥ 0} are as follows:

P00 + P01 = 1,
P01 = 1, P11 = 0 (1)

and the embedded Markov chain is defined by the matrix:


P00 1
1− P00 0



The steady state probabilities π0, π1 of the embedded
chain Xn are given by:



π0

π1



=


P00 1
1− P00 0

 

π0

π1



λ λ

P

P =1

P

Figure 8: The embedded two-state Markov chain.

or:
π0 =

1
2− P00

, π1 =
1− P00

2− P00

The steady state probabilities P0, P1 of the Markov pro-
cess X(t) are given by [15]:

Pi =
πi

λi


k
πk

λk

or:

P0 =
λ1

λ1 + (1− P00)λ0
, P1 =

(1− P00)λ0

λ1 + (1− P00)λ0
(2)

The significance of the steady state probabilities of (2)
is that they capture the probability of each of the states
0 and 1 at any given point in time. Recall that ICBW
encodes the watermark bits “1” or “0” by delaying the
arrival times of the packets in the set of intervals Ai or
Bi respectively and IBW encodes the watermark bits “0”
or “1” by transferring the traffic of an interval of length
T to some adjacent interval. Therefore, they both create
periods of times with no arrivals in the flow. This period
for ICBW is of length a and for IBW is of length T .
When the embedded Markov chain is in state i, we can
compute the probability of zero occurring in a period of
length  starting at any given point as:

Pfi
m
(0; ) = e−λi (3)

since the waiting times are exponentially distributed and
therefore memoryless.

In general, given a flow fm generated from an MMPP,
from (3), the probability of having a period of length 
with no arrivals Pfm(0; ) is:

Pfm(0; ) = P0Pf0m
(0; ) + P1Pf1m

(0; )

= P0e
−λ0 + P1e

−λ1 (4)

where the steady state probabilities {P0, P1} are given
by (2).

A good watermarking scheme requires that the water-
marked stream should not reveal any clues of the pres-
ence of the watermark to unauthorized observer. There-
fore, it is desirable to pick  such that Pfm(0; ) above
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should be reasonably large, so that presence of silent pe-
riods does not give away the watermark. We next present
parameters of our two-state MMPP and show that, for
those parameters, the watermark indeed cannot be de-
tected by observing a single stream watermarked with
ICBW or IBW. However, we will show that if attackers
have access to multiple copies of a marked signal, they
can defeat the two watermarking schemes both when
multiple flows are watermarked with the same message
and when different messages are embedded in different
flows.

3.2 Parameter Selection and Goodness of
Fit

We estimated the parameters P00, λ0, and λ1 of our
MMPP model by using network traces of SSH connec-
tions taken at a wireless access point in our institution.
For a trace, we first estimated the underlying state of the
embedded Markov chain by choice of a threshold η. If
the interarrival time between two packets exceeded the
threshold η, we assumed that the process was in state 1
and if the interarrival time between two packets was less
than the threshold η, we assumed that the user was typing
and therefore the process was in state 0. Once the states
{Xn, n ≥ 0} of the underlying chain are determined, by
concatenation of the parts of the interactive traffic that
came from same underlying state, we could extract two
Poisson flows with rates λ0 and λ1 from the original flow.

Given that the expected number of arrivals of a Pois-
son process distribution with parameter λ in time interval
(0, t] is λt, we estimated the rates λ0 and λ1 by calculat-
ing the arrival rates of each of the two extracted flows.
Parameter P00 was estimated as the portion of the time
the chain spent at state 0. Our estimated values for the
transition probability P00 and the rates λ0 and λ1 were
as follows:

P00 = .96 λ0 = 5.6 λ1 = 0.57 (5)

To assess the goodness of fit of our MMPP model
with parameters of (5), we used a quantile–quantile (q–
q) plot [7]. Using the theoretical CDF of the model, the
observations are mapped into values in interval [0, 1]. If
the underlying statistical model of the data is consistent
with the observations, the values obtained from the map-
ping are uniformly distributed in the interval [0, 1]. To
assess the uniformity of the mapped values or equiva-
lently assessing the goodness of the theoretical model an
empirical CDF of the mapped values is compared against
the theoretical CDF of a uniform distribution, which is
a 45-degree reference line. The closer the CDF to this
reference line, the greater the evidence that the statisti-
cal model captures the underlying phenomenon. The q–
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Figure 9: Q–Q plot of Poisson and MMPP models with
our sample data.

q plot in Figure 9 shows that the MMPP model for the
interactive traffic with parameters (5) provides a good fit
for the data and significantly outperforms a simpler Pois-
son model, or a Pareto distribution that has been previ-
ously proposed to fit interactive traffic [19].

3.3 Multi-Flow Attack

Regardless of whether the ICBW or IBW watermark-
ing schemes are implemented using the same message
across all interactive flows or they use multiple messages
for different flows, they are subject to an averaging at-
tack. This is because both schemes embed watermarks
by emptying the same parts across various flows. Next,
we will explain our attack for both the single-message
and multiple-message watermarks.

3.3.1 Single-Message Watermarks

When ICBW or IBW watermarking schemes are imple-
mented using the same message across all interactive
flows, an attacker who has access to k watermarked flows
can form an aggregate of all the flows, taking the sorted
union of all the arrival times of packets in all flows. We
denote this aggregated stream by fk, where the subscript
k denotes the number of streams involved in forming the
aggregate flow.

Given that each interactive stream is independent of
all the other streams, the probability of having a period
of length T with no arrivals in the flow fk is given by:

P{Nfk
(ta + )−Nfk

(ta) = 0} =
k

i=1

Pfi(0; )

= Pfm(0; )k (6)
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Equation (6) shows that probability of having period of
length  with no arrivals decreases exponentially in k,
the number of copies used to form the aggregate flow fk.
Therefore, if the streams are not watermarked there is a
very small probability that the aggregate stream has peri-
ods of no arrivals. However, if both ICBW and IBW use
the same key and message across all interactive flows,
the aggregated copy of the watermarked flows always ex-
hibits patterns of no arrivals of length  that give away the
location of the watermark as well as the maximum delay
parameter a of ICBW and the period T of IBW.

Substituting the parameters of (5) into (4), assuming
 = 350ms, as suggested by Wang et al. [25], we have
Pfm(0; 0.35) = 0.33. Therefore, in an aggregate of as
few as 10 flows probability of a period of 350ms without
any arrivals is as low as Pfm

(0; 0.35)10 = 1.6 × 10−5.
Similarly, for  = 900ms, as used by Pyun et al. [21],
we have Pfm

(0; 0.9) = 0.17 and Pfm
(0; 0.9)10 = 2.4×

10−8.

3.3.2 Multi-Message Watermarks

If different flows are used to encode different messages,
simple aggregation will no longer work, since by switch-
ing between 1 and 0 bits, both ICBW and IBW apply
different transforms to different intervals. For example,
with ICBW, a given interval may be squeezed when a
certain bit is 0, and not squeezed when that bit is 1. By
aggregating flows where that bit changes, no empty peri-
ods will be detected.

However, by observing a few more flows, we can still
detect the presence of a watermark. Given a bit b and a
set of 2k−1 flows, by the pigeon hole principle, there ex-
ists a subset of k flows where the bit has the same value.
If we aggregate all the flows in that subset, we will find
clear intervals of length a or T , depending on the scheme
that is used.

To detect the watermark, then, we examine all
�
2k−1

k


subsets of k flows out of a collection of 2k − 1. For
each bit position, we will be able to find at least one sub-
set where that bit value is all the same, and we can thus
detect it with the same ease as when a single-valued wa-
termark is used. The number of subsets is, of course,
superexponential in k, but our attack works with val-
ues of k around 10, making such a search feasible, as�
19
10


= 92378.

Examining all these subsets increases the possibility
of a false positive—a naturally occurring cleared interval
in the aggregate flow. However, such false positives will
be relatively rare, so the attacker can estimate the value
of  and then discard intervals that do not match.

3.4 Impact of Timing Perturbations
Our analysis so far has assumed that the attacker sees the
timings of the watermarked stream directly. In reality,
these timings will be perturbed by network delays. As a
result, the intervals cleared by the watermark may have
some packets from previous intervals shifted into them
and no longer appear completely empty. Note that what
is relevant here is not the magnitude of the network de-
lay but its variance, or jitter, since delaying all packets
by an equal amount does not affect our attack. And if
the jitter is much less than , our attack will work equally
well: if jitter is <  with high probability, then we will
find clear intervals of length at least  −  in the k ag-
gregated watermarked streams, whereas the probability
of seeing such an interval in unwatermarked streams is
Pfm

(0; −)k ≈ Pfm
(0; )k, which is vanishingly small.

We observe that the studied parameters of the ICBW and
IBW schemes have  = 350ms or 900ms, in order to
resist traffic perturbations, repacketization, etc. The net-
work jitter, on the other hand, is two orders of magnitude
smaller. Our experiments on PlanetLab [3] show it to be
on the order of several milliseconds for geographically
distributed hosts, and this matches the results of previous
studies [18]. Therefore, it is indeed the case that the jitter
is <  , so it will not significantly affect our attack.

4 Implementation

Having shown the theoretical background behind our at-
tack, we now show the result of implementing it in prac-
tice. We developed algorithms to detect the presence of a
watermark, recover the secret parameters, and to remove
the watermark from new streams. We evaluated the al-
gorithms using both real flows gathered from traces and
synthetic flows generated using our MMPP model, pre-
sented in Section 3.1. We first present our attacks for
single-message watermarks, and then extend it to water-
marks that use multiple messages.

4.1 Watermark Detection
As above, our attack relies on collecting a series of flows
that are watermarked with the same message. These
flows are combined into a single flow and examined for
large gaps between packets. Figure 10(a) shows the
packet arrivals for 10 combined flows before and after
an ICBW watermark has been applied. The watermark
pattern is clearly visible in the combined flows, reveal-
ing the presence of a watermark. Figure 10(b) shows the
same process working with the IBW watermark scheme.

We also performed the same analysis for non-
interactive, bulk transfer traffic by applying the water-
mark to packet traces we collected from web downloads
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Figure 10: 10 flows before and after watermarking.

across a DSL connection. Figure 11(a) shows the packet
timings for 10 combined flows before and after a water-
mark. Bulk transfers have a somewhat more regular be-
havior, since they are controlled by the TCP algorithms,
rather than by individual users. This can be seen at the
beginning of the 10 combined flows before watermark:
the TCP slow start period results in a much lower rate
for the first few seconds of the connection. However,
this regularity quickly gets out of sync due to irregular
network delay and response times. In the graph of 10
watermarked flows, the intervals squeezed by the water-
mark are readily visible. In fact, because data transfer
flows are much more dense than interactive flows, the
watermark is visible even on a single flow (Figure 11(b)).

The DSSS watermark is intended to be applied to bulk
transfer traffic such as FTP, since it interferes with traf-
fic rate, rather than changing packet timings. A similar
multi-flow attack works against DSSS as well, as shown
in Figure 12. (We used the parameters of chip length
0.4s, chip sequence length of 7, and code length of 7.) In
this case, periods of high interference are clearly seen as
low-rate periods in the flows, allowing one to recover the
chip sequence and then decode the watermark.
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Figure 11: Watermark detection on bulk traffic.

4.2 Watermark Removal

Based on the combined graphs, it is easy to recover the
watermark parameters as well. We can build a template
of clear intervals by selecting all intervals larger than a
threshold; for example, Figure 13(a) shows the template
derived from 10 flows watermarked by ICBW. The esti-
mated template is somewhat imprecise, due to network
jitter, as well as the fact that small (10–20ms) gaps may
precede or follow the clear intervals even when 10 flows
are combined. However, this imprecision is not a prob-
lem since the watermark can still be effectively removed.
The template also lets us estimate the values of T and a.
We can average the lengths of clear intervals and the dis-
tance between two consecutive clear intervals to obtain a
relatively precise estimate. Armed with this information,
we can then modify a new flow to remove the watermark.

For ICBW, we have two choices: we can either shift
traffic into the clear intervals in the template, thereby
negating the squeezing action of the watermark, or find
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Figure 12: Average rate of 10 flows after DSSS water-
mark.

intervals that have not been squeezed and squeeze them.
We decided to implement the former approach since it
does not require as precise an estimate of T . Also, it
leaves the flow looking more natural. Our shift is imple-
mented as shown in Figure 13(b), by shifting all packets
in a period α before the clear interval into an interval
of length β inside the clear interval. Larger values of α
and smaller values of β will more significantly shift the
interval centroid back in a different direction; however,
very small values of β may not have the desired effect,
since the template is imprecise and too many packets
may get shifted without arriving into the correct inter-
val. Experimentally, we found that α = 0.9(T̂ − â) and
β = 0.8(T̂ − â) provide best results, where T̂ and â are
estimated values of T and a.

Table 1 shows the results of watermark removal.
We reimplemented the ICBW detection mechanism and
computed the Hamming distance of the encoded water-
mark to the detected one, collected over 100 flows. (We
show the average distance, with range shown in paren-
theses). With as few as 10 flows, we are able to get a
reasonably good estimate of T and a and remove the wa-
termark in most cases—the ICBW detection scheme uses
a Hamming distance threshold of 5–8 to decide when a
watermark has been detected. With 15 flows, we get a
more accurate template and estimate, and all 100 flows
will clear the template.

A similar approach can be used to attack the IBW wa-
termark; by delaying packets so that they fall into the
clear intervals, the clear intervals become indistinguish-
able from loaded ones. Table 2 shows the effect of apply-
ing our attack on the IBW watermark, where 24 bits are
encoded at different levels of redundancy. Even with a
redundancy of 80, most bits are not recovered correctly.
These results were obtained by using the code provided
by the authors of [21].

0 1 2 3 4 5

Time (s)

Template (detected)
Template (real)

(a) Template of clear intervals

T

a
α

β

(b) Shift to remove watermark

Figure 13: Watermark Removal

We expect a similar technique should work against
DSSS watermarks; a template of low rates can be in-
ferred from several flows. An attacker can then de-
crease rates in the non-interference section of the tem-
plate by dropping packets, or increase the rate in the
high-interference section by delaying packets into the
template. We do not have experimental results for DSSS
since the detection algorithm is fairly complex and we
did not have access to an implementation of it.

4.3 Multiple Messages
So far we have assumed that the watermarks on all of
the aggregated flows are the same. Here, we consider the
case where each watermark uses different messages. As
described in Section 3.3.2, we can still execute our attack
by relying on the fact that within a collection of 2k − 1
flows, for any given bit b, we can find k flows where this
bit has the same value.

Figure 14(a) plots the result of such a subset search.
By inspection, we can see that in the first subset of
flows, the interval (4.5,4.85) has been cleared. In the
second subset, this interval remains cleared and the in-
terval (0,0.35) becomes clear as well. The third subset
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Table 1: Results for removing ICBW watermarks
Num â T̂ Hamming Hamming Hamming Ave. Max
flows not watermarked watermarked attacked delay delay

10 365 492 17.9 2.67 13.9 33.6 164
(σ = 10.7) (σ = 15.2) (13–24) (1–7) (2–20)

15 353 504 17.6 2.74 16.1 42.6 188.2
(σ = 0.60) (σ = 1.62) (13–25) (0–6) (12–21)

20 346 504 17.2 2.68 16.4 45.4 194.3
(σ = 0.30) (σ = 0.50) (12–21) (0–5) (11–20)

Table 2: Watermark bits detected before and after apply-
ing the attack (watermark length is 24).

Rep. Bits detected Marked
Before attack After attack packets

1 7 3 53
5 14 5 156

10 24 4 505
15 24 2 754
20 24 2 967
24 24 2 1209
30 24 2 1440
35 24 2 1724
41 24 2 2008
45 24 2 2307
50 24 2 2697
55 24 2 3083
60 24 2 3296
65 24 2 3623
70 24 2 3876
75 24 2 4090
80 24 2 4343

has no packets in (2.0,2.35) and the fourth in (3.5,3.85).
Note that this pattern immediately lets us detect the pres-
ence of a watermark; Figure 14(b) shows the same flow
subsets on an unwatermarked section.

Recovery of the secret parameters can proceed largely
as in the single-message case. One difficulty is that with
the flow subsets, we may encounter large intervals that
are not precisely aligned with the interval positions. For
example, Table 3(a) lists the blank intervals longer than
0.2s in the last subset. There are a lot of wrong-size in-
tervals that result from the case when 8 or 9 of the flows
in the subset have had an interval squeezed, but the last
one or two add a few packets to the mix. To address this
concern, we can select the largest empty intervals in any
subset, as shown in Table 3(b). These will correspond to
intervals that have been squeezed on every flow. This can
be used to recover the watermark parameters of T and a.

Once these are obtained, the next step is to scan
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Figure 14: Subset approach to multiple message water-
marks

through all subsets and determine which intervals are al-
ways squeezed at the same time and call such lists Si;
these will correspond to either Ab or Bb for some bit b.
Then, for each Si, we find Sj such that Si and Sj are
never squeezed at the same time. This will tell us that
Si and Sj correspond to the same bit. Armed with this
knowledge, we can remove the watermark by observing
the watermarked stream for a short while, and when we
see intervals from Si that are being squeezed, we pro-
ceed to artificially squeeze intervals in Sj (or unsqueeze
further intervals in Si, or both).

Note that the subset technique can also be applied
when not all the flows are watermarked. For example, a
website may watermark only some connections that are
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Table 3: Blank intervals from subset of flows
(a) All blank intervals

Start End
2.08 2.32
3.50 3.85
4.03 4.25
5.13 5.33

11.59 11.85
18.14 18.37
19.56 19.79
25.58 25.82
30.06 30.34
34.08 34.35

... ...

(b) Largest blank intervals

Start End
130.98 131.35
140.49 140.86
151.99 152.36
161.99 162.35
235.99 236.37
306.49 306.86
334.49 334.86
368.49 368.86
43.99 44.36
51.98 52.35

... ...

of particular interest; by finding subsets that are all wa-
termarked, the mark can still be recovered. A scheme
that probabilistically marked some flows and used dif-
ferent messages at the same time would present a chal-
lenge to our attack; however, we suggest that a different
countermeasure be used, since it allows all flows to be
marked, which is desirable for most applications.

5 Countermeasures

We next consider several countermeasures to our attack.

5.1 Multiple Offsets

The watermarking schemes we analyze have the ability
to self-synchronize by trying different values for the off-
set o and using the best match. Thus, o can be changed
for different streams. The synchronization mechanism
can introduce more errors into the detection, but the use
of increased encoding redundancy can make up for it.

The use of different offsets makes our attack more dif-
ficult, since simply aggregating k flows will result in mis-
alignment, destroying the clear intervals. It is, of course,
possible to test different positions for o for each stream,
but to test n positions in k flows requires nk−1 trials (we
can hold the first flow fixed).

On the other hand, some alignments of two or three
flows can be discarded immediately, if such an alignment
results in few intervals that are clear of packets. Further-
more, the search for o can be imprecise at first: even if
each flow is aligned to within 0.1s of the correct position,
intervals of 150ms or 700ms will be seen in the average.
Thus, changing offsets makes our attack more difficult,
but not impossible to perform.

5.2 Multiple Positions
Another alternative is to choose different positions, in the
case of ICBW and IBW, and different PN codes in the
case of DSSS. Let us consider the case of ICBW. A wa-
termarker and detector must use the same assignment of
intervals to the sets Ai and Bi, as determined by the ran-
dom seed s, in order for the watermark to be successfully
recovered. However, a watermarker may decide to use
multiple seed values, s1, . . . , sn, and pick one of them at
random for each flow.

To deal with this, the detector would need to try to
recover the watermark with each possible si and pick the
best match. Once again, the probability of error grows
with n, but increased redundancy can again be used to
make up for it. Note that the probability of error falls
exponentially with increased redundancy, but grows only
roughly linearly with n.

We can once again use the subset attack to try to find k
flows that use the same seed value si; however, the com-
plexity grows quickly out of control. The probability of
a given set of k flows using the same seed is

�
1
n

k−1
,

which falls quite quickly even when k = 10. By the pi-
geon hole principle, within n(k − 1) + 1 flows we can
always find a subset of k flows with the same seed, but
the search space of all

�
n(k−1)+1

k


subsets grows super-

exponentially in n. For example, with n = 6 and k = 10,�
51
10


> 1010, resulting in an infeasible number of subsets

to enumerate.
The same principle can apply to IBW, by picking mul-

tiple sets of positions {si}, and to DSSS by using multi-
ple PN codes.

6 Conclusion

We have demonstrated an attack on the interval centroid-
based watermarking scheme and interval based water-
marking scheme that is highly successful, while requir-
ing a low amount of resources. Our attack is based on a
solid theoretical grounding, and has been validated with
a prototype implementation tested against the original
ICBW and IBW prototypes. We can remove the water-
mark from an existing flow for both schemes. Addition-
ally, in case of IBW we can also recover the watermark
parameters and values, allowing us to modify the water-
mark or insert it into other streams, thereby confusing
the detector. We have also suggested a countermeasure
to our attack—switching bit positions. This countermea-
sure can impose a very high computation cost and there-
fore disable the attack.

While the use of network flow watermarking tech-
niques for various security applications is quite new [27,
21, 25, 28], digital watermarking. and specifically mul-
timedia watermarking is a nearly mature field. Indeed,
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most of network flow watermarking schemes are inspired
by multimedia watermarks. To name a few,, Wang and
Reeves’s [27] scheme is a special instance of QIM wa-
termarking, a well-understood multimedia watermarking
technique [16]. The IBW scheme of Pyun et al. [21] is
based on the patchwork watermark of Bender et al. [4]
and the scheme of Yu et al. [28] is based on spread spec-
trum watermarking [9].

The current approach for designing network flow wa-
termarks suffers from the fact that. while watermark-
ing schemes are inspired by the digital watermarking
schemes, little attention is given to the entirety of the
watermarking design problem. For example, statistical
characteristics of the underlying media are always an
important consideration in digital watermarks, but net-
work watermark research does not adequately model the
effect that network traffic characteristics have on water-
marks; as we showed, the density of bulk traffic makes
it very difficult to insert a transparent watermark. Like-
wise, digital watermarks have long considered the possi-
bility that multiple watermarked documents can be used
to attack watermarks [10, 17], but we are unaware of pre-
vious work looking at the multi-flow threat model for
watermarking. We thus hope that future work on wa-
termarks will be informed by our work and perform a
broader analysis.
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Notes
1We are unaware of a quantitative comparison of the accuracy of

watermarking techniques with passive traffic analysis, but reported
false-positive rates for most watermarking techniques are quite low. In
any case, the two techniques can be combined to improve accuracy.

2Yu et al. suggest that this can be done by sending an interfering
flow across a bottleneck link; their scheme is thus unique in not requir-
ing full control of packet forwarding for the flow.


