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ABSTRACT

We present results from the first self-consistent multi-fluid simula-

tions of chromospheric magnetic reconnection in a weakly ionized reacting

plasma. We simulate two dimensional magnetic reconnection in a Harris

current sheet with a numerical model which includes ion-neutral scat-

tering collisions, ionization, recombination, optically thin radiative loss,

collisional heating, and thermal conduction. In the resulting tearing mode

reconnection the neutral and ion fluids become decoupled upstream from

the reconnection site, creating an excess of ions in the reconnection region

and therefore an ionization imbalance. Ion recombination in the reconnec-

tion region, combined with Alfvénic outflows, quickly removes ions from

the reconnection site, leading to a fast reconnection rate independent of

Lundquist number. In addition to allowing fast reconnection, we find

that these non-equilibria partial ionization effects lead to the onset of the

nonlinear secondary tearing instability at lower values of the Lundquist

number than has been found in fully ionized plasmas. These simulations

provide evidence that magnetic reconnection in the chromosphere could

be responsible for jet-like transient phenomena such as spicules and chro-

mospheric jets.

Subject headings: Magnetic reconnection - Sun: chromosphere - Sun: mag-

netic fields
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1. Introduction

Magnetic reconnection is the general process by which free magnetic energy

stored in a plasma can be converted into kinetic and thermal energy by breaking

the frozen-in constraint which exists for a perfectly conducting plasma. Magnetic

reconnection occurs in a variety of astrophysical plasmas, including the interstellar

medium (ISM), galactic disks, and the solar atmosphere (Zweibel & Yamada 2009).

It has been suggested as a cause of many transient phenomena, such as solar flares

and X-ray jets (Moore et al. 2011), magnetospheric substorms (Borg et al. 2007; Mi-

lan et al. 2007) and solar γ-ray bursts (Emslie et al. 2005; Tanuma & Shibata 2005).

Reconnection also occurs in laboratory plasmas (Gray et al. 2010), and plays a key

role in the self-organization of fusion plasmas (Park et al. 2006; Gangadhara et al.

2007).

Magnetic reconnection has long been considered as a mechanism for creating

transient phenomena in the corona, such as solar flares, coronal mass ejections, and

more recently X-ray jets (see review by Moore et al. (2011)). In addition, recent

observations of the solar chromosphere, the cooler, weakly ionized plasma below the

solar corona, have suggested that reconnection is occurring there also. In particular,

the quiet chromosphere exhibits localized, transient outflows on a number of different

length-scales. The largest class of such outflows are called “chromospheric jets” (Shi-

bata et al. 2007). These are surges of plasma, observed in Hα and Ca-II, with typical

lifetimes of 200-1000 s, lengths of 5 Mm, and velocities at their base of 10 km/s. Anal-

ysis of observations of chromospheric jets with Hinode have shown “blobs” of plasma

within the jet outflow (Shibata et al. 2007). A smaller class of these outflows are

called “spicules” (Sterling 2000), and are mainly observed on the solar limb, though

possible disk counterparts have recently been identified in blue-shifts of Ca I and Hα

emission (Sekse et al. 2012). Spicules have lifetimes of 10-600 s, lengths of up to 1

Mm and velocities of 20-150 km/s.

A unified model of chromospheric outflow generation has recently been suggested

by Shibata et al. (2007) and Moore et al. (2011). The basic structure of the theoreti-

cal model consists of the so-called “anemone” structure: a bipole field emerging into

and reconnecting with a unipolar field. By changing the size of the emerging bipole,

this simple model has been presented as a way of explaining spicules and chromo-

spheric jets, as well as solar X-ray jets. Other evidence that magnetic reconnection

is a possible driver of chromospheric transient phenomena includes Alfvénic flows in

spicules and “blobs” of plasma in chromospheric jets, both of which are by-products

of magnetic reconnection.
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A naive estimate of the reconnection rate M (the rate at which magnetic field

reconnects and ejects plasma) for these chromospheric phenomena can be made by

dividing the inflow rate of plasma into the reconnection site by the outflow rate. The

simple “anemone” structure described above has a flux inflow reservoir which is of

the same size as the outflow region, and when this reservoir of flux is depleted, the

reconnection stops. Therefore a typical size L is used for both inflow and outflow

regions, and given an outflow speed vout, and a lifetime tlife, the reconnection rate

can be estimated asM ≈ L
vouttlife

. Taking the range of lifetimes, lengths and velocities

for chromospheric jets gives a minimum ofM ≈ 0.5. Doing the same for spicules gives

a minimum of M ≈ 0.01.

Traditionally, magnetic reconnection has been considered within the single-fluid,

fully ionized, magnetohydrodynamic (MHD) framework, which is applicable to col-

lisional plasmas. For a highly conducting plasma, the diffusion due to electron-ion

collisions is negligible and the magnetic fieldlines are frozen into the plasma. Recon-

nection occurs when the frozen-in constraint is broken on timescales much shorter

than the classical diffusion time, by allowing fieldlines to reconnect through a narrow

diffusion region. Parker (1957) and Sweet (1958) were the first to formulate magnetic

reconnection as a local process by considering a current layer of width δ much smaller

than its length L, and with non-zero resistivity (η) due to electron-ion collisions. The

model assumes steady state, i.e., the rate of plasma flowing into the diffusion region is

equal to the rate of plasma flowing out, and takes the length L to be the characteristic

system length scale. Using Ohm’s law for a fully ionized, single fluid plasma

E+ v ×B = ηj, (1)

and using the plasma momentum equation, a simple scaling law for the reconnection

rate can be derived:

M ≡ vin
vA

≈
√

η

µ0vAL
=

1√
S
. (2)

Here S = µ0vAL/η is the Lundquist number, and vA = B/
√
ρµ0 is a typical Alfvén

velocity, with B evaluated upstream from the current sheet and ρ evaluated in the

current sheet. From this analysis, it can also be shown that the current sheet aspect

ratio σ ≡ δ
L
scales as

σ ∝ 1√
S
. (3)

Using the one dimensional (1D) semi-implicit model for the quiet Sun of Ver-

nazza et al. (1981) gives a mass density of 7.4×10−8 kg/m3 for the chromosphere at 1

Mm above the solar surface. Using a magnetic field strength of 50 G gives an Alfvén

speed of approximately 15 km/s. The temperature at 1 Mm in this 1D model is ≈
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6000 K and the electron density is ≈ 1017 m−3, which gives the electron-ion collision

frequency to be 107 s−1, and the Spitzer resistivity to be 0.004 Ωm. Assuming a typ-

ical length scale of 0.1 Mm gives a Lundquist number of S ≈ 106 and a Sweet-Parker

reconnection rate of M ≈ 10−3. This is slower than the M ≥ 0.01 required if recon-

nection is to explain the observed lifetimes of both chromospheric jets and spicules.

The problem is greater in the corona, where S ≈ 109, and the Sweet-Parker model

predicts reconnection rates much too slow relative to those implied from observations.

This is the general problem of the Sweet-Parker model: the predicted reconnection

rate is significantly slower than almost all atmospheric transient phenomena.

Petschek (1964) modified the Sweet-Parker reconnection formulation by allowing

plasma to be redirected by standing shock waves which are setup at the ends of the

diffusion region. This allowed for a shorter diffusion region, with length L′, and the

reconnection rate increased by
√

L/L′. The maximum reconnection rate was found to

be M = π
8 ln(S)

. For a value of S = 106, this gives 0.065: substantially faster than the

Sweet-Parker prediction of 0.001, and within the range observed for chromospheric

spicules, though still too small for chromospheric jets.

While the Petschek model predicts faster reconnection rates than the Sweet-

Parker prediction, numerical simulations can only reproduce the Petschek reconnec-

tion regime if the resistivity is localized near the X-point - so-called anomalous resis-

tivity due to turbulence in the current layer or ion-cyclotron wave effects (Uzdensky

2003; Shay et al. 2004) - or if ion-electron drift terms are retained in the Ohm’s law

(Birn et al. 2001).

More recently, Loureiro et al. (2007) and Huang & Bhattacharjee (2010) con-

sidered the secondary tearing instability of the Sweet-Parker current sheet in a fully

ionized plasma as an alternative means for obtaining fast reconnection. When the

current sheet aspect ratio (σ ≡ δ/L) reached a critical value of σc = 1/200, the sheet

became unstable to the secondary tearing instability. Here, thinner current sheets

were created between the primary plasmoids, which were themselves then prone

to breaking into secondary plasmoids. With Sweet-Parker scaling in the laminar

regime, they found that secondary onset occurred for a critical Lundquist number Sc
of Sc = 1/σ2

c = 4 × 104. Above this value, the reconnection rate was independent

of S: M = 1/
√
Sc. For a chromospheric Lundquist number of S = 106, the recon-

nection rate as a result of the plasmoid instability gives M = 1/
√
Sc = 5 × 10−3, 5

times the Sweet-Parker prediction. Thus, the secondary instability allows reconnec-

tion independent of the mechanism which breaks the frozen-in constraint, but still

gives reconnection rates slower than is needed to explain the parameters associated

with chromospheric reconnection events. While secondary tearing may be the cause
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of the plasma “blobs” seen in chromospheric jets, until now no simulations have been

performed to see if chromospheric magnetic reconnection could yield these plasmoids.

This paper studies magnetic reconnection in the partially ionized chromosphere,

focusing on both fast laminar reconnection and plasmoid formation. The plasma-

β, the ratio of plasma pressure to magnetic pressure, can be as high as 102 and

as low as 10−4 in this region of the solar atmosphere (Gary 2001). The average

mass density falls over 4 orders of magnitude in a few Mm (Vernazza et al. 1981)

from the photosphere to the base of the corona. The ionization fraction, defined

as the percentage of the plasma which is ionized, ranges from 0.1% to 50%, as the

neutral density falls off faster than the ionized component density. In the bulk of the

chromosphere the average collision time between neutral atoms and ions is of the order

of ms (Vernazza et al. 1981). This is much less than a typical chromospheric time

scale of 7 s, based on a typical Alfvén velocity of 15 km/s and a typical length scale of

100 km. Hence the ions and neutrals are often treated as a single fluid. However, when

magnetic diffusion length scales become as small as the neutral-ion collision mean free

path, e.g., at magnetic reconnection sites, the decoupling of neutrals and ions cannot

necessarily be neglected, and chromospheric magnetic reconnection should be studied

in a multi-fluid framework.

Partial ionization affects magnetic reconnection in several ways. The most obvi-

ous is the effect on the resistivity. Ion-neutral collisions introduce a Pedersen resis-

tivity (or equivalently, an ambipolar diffusion) in the single-fluid MHD formulation,

which acts perpendicular to the magnetic field (Braginskii 1965). Brandenburg &

Zweibel (1994, 1995) showed that this ambipolar dissipation can create thin current

structures in weakly ionized plasmas. The ionization level can also affect the recon-

nection rate through the Alfvén speed: for coupled systems, the outflow Alfvén speed

depends on the total plasma density, but for decoupled systems it depends only on

the ionized component density.

Previously, Vishniac & Lazarian (1999), Heitsch & Zweibel (2003a), and Lazarian

et al. (2004) considered magnetic reconnection in the weakly ionized ISM, using a 1D

analytic approach (note that the 1D paradigm assumes that outflow is negligible). In

the reconnection inflow, if the ions that are pulled in by the reconnecting magnetic

field are decoupled from the neutrals, an excess of ions can build up in the reconnection

region. Recombination can then act as a sink for the ions, also decoupling them from

the field. Given a sufficiently large recombination sink, the reconnection rate can

become independent of the resistivity. This prediction has not been studied in higher

dimensional magnetic reconnection configurations. Below, we examine this and other

aspects of magnetic reconnection in a weakly ionized plasma within a two-dimensional
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(2D) numerical model.

Smith & Sakai (2008) and Sakai & Smith (2009) performed two-fluid (ion+neutral)

simulations of the coalescence of magnetic structures in partially ionized plasmas.

They found that the reconnection rate for a fixed resistivity decreased as the plasma

became less ionized, suggesting that jets associated with fast reconnection must occur

in the upper chromosphere, where the ionization level is higher. However, in their

investigations, the collision frequency and ionization/recombination rates did not de-

pend self-consistently on the local plasma parameters (temperature and density), and

therefore did not vary with space and time during the magnetic reconnection, a phe-

nomena which is vital to test the predictions of Vishniac & Lazarian (1999), Heitsch

& Zweibel (2003a), and Lazarian et al. (2004). In addition, their choice of resistivity

was approximately 10 Ωm, which is 4 orders of magnitude larger than a typical value

in the chromosphere, and their Lundquist number was subsequently a relatively low

value of approximately 10.

In this paper, the first self consistent 2D simulations of chromospheric magnetic

reconnection in a weakly ionized reacting plasma are performed. The numerical model

used to simulate this reconnection is presented in §2. The results are presented in

§3, with particular focus on the scaling of the reconnection rate with resistivity, and

the onset of the plasmoid instability. In §4 these results are used to evaluate the

likelihood that magnetic reconnection can explain transient phenomena observed in

the chromosphere such as spicules and jets.

2. Numerical Method

2.1. Multi-Fluid Partially Ionized Plasma Model

A partially ionized reacting multi-fluid hydrogen plasma model is used to simulate

reconnection in the solar chromosphere. For a detailed description and derivation of

the model the reader is directed to Meier (2011) and Meier & Shumlak (2012). The

model is implemented in the implicit, adaptive high order finite (spectral) element

code framework, HiFi (Lukin 2008).

The full model consists of three fluids, ion (i), electron (e), and neutral (n). The

fluids can undergo recombination, ionization and charge exchange interactions, with

Γrα denoting the reaction rate for interaction r affecting fluid α.

The recombination reaction rate for ions (the rate of change of ion number density
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due to recombination), Γreci , is defined as

Γreci ≡ −niνrec, (4)

where the recombination frequency

νrec = ne
1

√

T ∗
e

2.6× 10−19m3s−1 (5)

is obtained from Smirnov (2003) and T ∗
e is the electron temperature Te specified in

eV.

The ionization reaction rate for neutrals, Γionn , is defined as

Γionn ≡ −nnνion, (6)

where the ionization frequency

νion = neA
1

X + φion/T ∗
e

(

φion
T ∗
e

)K

e−φion/T
∗

em3s−1 (7)

is given by the practical fit from Voronov (1997), using the values A = 2.91× 10−14,

K = 0.39, X = 0.232, and the Hydrogen ionization potential φion = 13.6eV. Note

that Γioni = −Γionn , and Γrecn = −Γreci .

The charge exchange reaction rate, Γcx is defined as

Γcx ≡ σcx(Vcx)ninnVcx (8)

where

Vcx ≡
√

4

π
v2T i +

4

π
v2Tn + v2in (9)

is the representative speed of the interaction and v2in ≡ |vi − vn|2 with vα denoting the

velocity of species α. The thermal speed of species α is given by vTα =
√

2kBTα
mα

, where

Tα is the temperature, mα is the corresponding particle’s mass, and kB is Boltzmann’s

constant. Functional forms for the charge exchange cross-section σcx(Vcx) can be

found in Meier (2011).

The multi-fluid model can be expressed by taking the neutral continuity equation,

momentum equation, and energy (or pressure) equation to obtain a set of equations

for the neutral fluid, and combining the electron and ion versions of these equations

to obtain a set of equations for the “ionized” fluid. These equations are supplemented

with Faraday’s Law, and the required transport closure equations. Assuming charge

neutrality in a hydrogen plasma, the electron and ion number densities are set equal
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to each other (ni = ne). Also the ionized and neutral atom masses are set equal to the

proton mass (mi = mn = mp). The resulting system of partial differential equations

(PDEs) is given below.

Continuity:

Due to charge neutrality, only the ion and neutral continuity equations are required.

∂ni
∂t

+∇ · (nivi) = Γioni + Γreci , (10)

∂nn
∂t

+∇ · (nnvn) = Γrecn + Γionn . (11)

Momentum:

The electron and ion momentum equations are summed and terms of order (me/mp)
1/2

and higher are neglected to give:

∂

∂t
(minivi) +∇ · (minivivi + Pi + Pe) = j×B+Rin

i + Γioni mivn − Γrecn mivi

+ Γcxmi(vn − vi) +Rcx
in −Rcx

ni. (12)

The neutral momentum equation is

∂

∂t
(minnvn) +∇ · (minnvnvn + Pn) = −Rin

i + Γrecn mivi − Γioni mivn

+ Γcxmi(vi − vn)−Rcx
in +Rcx

ni. (13)

Here the current density is

j = eni(vi − ve) =
∇×B

µ0

. (14)

The momentum transferRαβ
α is the transfer of momentum to species α due to identity-

preserving collisions with species β:

Rαβ
α = mαβnαναβ(vβ − vα), (15)

where mαβ =
mαmβ
mα+mβ

. The collision frequency ναβ is given by

ναβ = nβΣαβ

√

8kBTαβ
πmαβ

, (16)

with Tαβ =
Tα+Tβ

2
. The cross-section Σin = Σni is 1.41 × 10−19 m2, and the cross-

section Σen = Σne is 1×10−19 m2, assuming solid sphere elastic collisions (Draine et al.
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1983). The cross section for ion-electron collisions, Σei = Σie, is assumed to be πr2d
where rd is the distance of closest approach (e2/(4πǫ0kBTei) with ǫ0 the permittivity

of free space and e the elementary charge).

The momentum transfer from species β to species α due to charge exchange is

Rcx
αβ. As found by Pauls et al. (1995) and detailed in Meier (2011) and Meier &

Shumlak (2012), appropriate approximations for these terms are

Rcx
in ≈ −miσcx(Vcx)ninnvinv

2
Tn

[

4

(

4

π
v2T i + v2in

)

+
9

4π
v2Tn

]−1/2

, (17)

and

Rcx
ni ≈ miσcx(Vcx)ninnvinv

2
T i

[

4

(

4

π
v2Tn + v2in

)

+
9

4π
v2T i

]−1/2

. (18)

The pressure tensor is Pα = PαI + πα where Pα is the scalar pressure and πα is

the viscous stress tensor, given by πα = −ξα[∇vα+(∇vα)
⊤] where ξα is the isotropic

dynamic viscosity coefficient for the fluid α.

Internal Energy:

Again, combining the electron and ion energy equations together and neglecting terms

of the order (me/mp)
1/2 and higher gives:

∂

∂t

(

εi +
Pe

γ − 1

)

+ ∇ ·
(

εivi +
Peve
γ − 1

+ vi · Pi + ve · Pe + hi + he

)

= j · E

+ vi ·Rin
i +Qin

i − Γrecn
1

2
miv

2
i −Qrec

n + Γioni (
1

2
miv

2
n − φion) +Qion

i

+ Γcx
1

2
mi

(

v2n − v2i
)

+ vn ·Rcx
in − vi ·Rcx

ni +Qcx
in −Qcx

ni. (19)

The neutral energy equation is

∂εn
∂t

+ ∇ · (εnvn + vn · Pn + hn)

= −vn ·Rin
i +Qni

n − Γioni
1

2
miv

2
n −Qion

i + Γrecn
1

2
miv

2
i +Qrec

n

+ Γcx
1

2
mi(v

2
i − v2

n) + vi ·Rcx
ni − vn ·Rcx

in +Qcx
ni −Qcx

in. (20)

Here εα ≡ mαnαv
2
α/2 + Pα/(γ − 1) is the internal energy density of fluid α, and the

term Γioni φion represents optically thin radiative losses. The ratio of specific heats

is denoted by γ. Qαβ
α is the heating of species α due to interaction with species β,

which is a combination of frictional heating and a thermal transfer between the two

populations: Qαβ
α = Rαβ

α · (vβ −vα)+mαβnαναβ(Tβ −Tα). The heat fluxes he, hi are
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calculated using the Braginskii closure for a magnetized plasma, and can be written

as

hα =
[

κ‖,αb̂b̂+ κ⊥,α(I− b̂b̂)
]

· ∇kBTα (21)

where κ‖,α(Tα) and κ⊥,α(nα, Tα, |B|) account for the effects of thermal diffusion par-

allel to and perpendicular to the magnetic field direction (b̂) respectively, and whose

functional forms can be found in Braginskii (1965).

The neutral thermal conduction is isotropic hn = −κn∇kBTn. Qr
α denotes

thermal energy gain of species α due to a reaction r, with Qion
i = Γioni

3
2
kBTn and

Qrec
n = Γrecn

3
2
kBTi. Q

cx
αβ denotes heat flow from species β to species α due to charge

exchange (Meier 2011; Meier & Shumlak 2012). The temperature of the neutrals is

given by Tn = Pn/(nnkB); and the ion and electron temperatures are assumed to be

equal such that Ti = Pi/(nikB) = Pe/(nekB) = Te.

Ohm’s Law:

The generalized Ohm’s law is given by the electron momentum equation:

∂

∂t
(meneve) +∇ · (meneveve) − Γionn mevn + Γreci meve

= −ene(E+ ve ×B)−∇ · Pe +Rei
e +Ren

e .(22)

In the HiFi implementation all terms on the left hand side of Equation (22) are

neglected, as in the chromosphere of the Sun, the electron inertial scale c/ωpe is likely

much smaller than magnetic diffusion length scales. However, the electron viscous

stress tensor is preserved in order to represent the effects of microturbulence and 3D

instabilities (Che et al. 2011), and also to damp the dispersive Whistler and kinetic

Alfvén waves at the shortest resolvable wavelengths. Note that the electron-neutral

collision term Ren
e cannot be neglected. Using the identity vi = ve + j/eni, and the

definition w ≡ vi − vn, Eq. (22) can then be written as

E+ (vi ×B) = ηj+
j×B

eni
− 1

eni
∇ · Pe −

meνen
e

w, (23)

where

η =
mene(νei + νen)

(ene)2
(24)

is the electron, or Spitzer, resistivity, which includes electron-ion and electron-neutral

collisions. The system is closed by the use of Faraday’s law ∂B
∂t

= −∇× E.

It is worth noting how the model presented here differs from the partially ionized

single-fluid model used in Leake & Arber (2006) and Arber et al. (2007). The single-

fluid approach implicitly assumes that the ions and neutrals are in ionization balance,
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which is determined by the average density and temperature, and the center of mass

velocity used in the Ohm’s law is an average over ions and neutrals. The Pedersen

resistivity, present in this partially ionized single-fluid approach, is a consequence of

this center of mass velocity. The multi-fluid model presented here follows the ions and

neutrals separately, thus self-consistently including the interactions between ions and

neutrals which are represented by the Pedersen resistivity in the single-fluid approach.

A key advantage of the multi-fluid model used in this paper is that ions and electrons

are allowed to be out of local thermodynamic equilibrium (LTE). This will be shown

to be vital for the onset of fast reconnection in chromospheric plasmas.

2.2. Normalization

The equations are non-dimensionalized by dividing each variable (C) by its

normalizing value (C0). The set of equations requires a choice of three normaliz-

ing values. Normalizing values for the length (L0 = 1 × 105 m), number density

(n0 = 3.3× 1016 m−3), and magnetic field (B0 = 1× 10−3 T) are chosen. From these

values the normalizing values for the velocity (v0 = B0/
√
µ0mpn0 = 1.20×105 m/s−1),

time (t0 = L0/v0 = 0.83 s), temperature (T0 = mpB
2
0/kBµ0mpn0 = 1.75 × 106 K),

pressure (P0 = B2
0/µ0 = 0.80 Pa) and resistivity (η0 = µ0L0v0 = 1.5 × 104 Ωm), can

be derived.

2.3. Initial conditions and simplified equations

The simulation domain extends from -36L0 to 36L0 in the x direction and -6L0

to 6L0 in the y direction, with a periodic boundary condition in the x-direction and

perfectly-conducting boundary conditions in the y-direction. The size of the domain

has been chosen so that the boundaries and the particular boundary conditions do

not affect any properties of the reconnection region centered and localized near x =

0, y = 0.

The initial neutral fluid number density is 200n0 (6.6 × 1018 m−3), and the ion

fluid number density is n0 (3.3 × 1016 m−3). This gives a total (ion+neutral) mass

density of 1.11 × 10−8 kg.m−3, and an initial ionization level (ψi ≡ ni/(ni + nn)) of

0.5 %. The initial electron, ion and neutral temperatures are set to 0.005T0 (8750K).

These initial conditions are consistent with lower to middle chromospheric conditions,

based on 1D semi-empirical models of the quiet Sun (Vernazza et al. 1981).
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In this plasma parameter regime, ion-neutral identity preserving collisions and

charge exchange (CX) interactions are equally important and have a very similar effect

of collisionally coupling neutral and ion fluids with a neutral-ion collision mean free

path of Lni = vT,n/νn,i = 140 m. However, the detailed CX physics is substantially

more complicated and so for simplicity of interpretation CX interactions are neglected

in this initial study and will be considered in future work. Charge exchange terms

(terms with the superscript cx) in Equations (12)-(20) are thus dropped.

The ion inertial scale for these plasma parameters is c/ωpi ≈ 1m, which is much

smaller than any scale of interest. Consequently, we neglect the Hall (j×B) and the

electron pressure tensor (∇ · Pe) terms in Equation (23), the electron viscous stress

tensor (∇·πe) in Equation (12) and Equation (19), and set electron velocity ve equal

to ion velocity vi in Equation (19). Similarly, Malyshkin & Zweibel (2011) showed

that in the geometry of a reconnection current sheet electron-neutral collisions are

only important in calculating resistivity, and so the term meνen
e

w in Equation (23)

is also dropped. With these simplifications, we solve the following set of governing

PDEs:

Continuity:

∂ni
∂t

+∇ · (nivi) = Γioni + Γreci , (25)

∂nn
∂t

+∇ · (nnvn) = Γrecn + Γionn . (26)

Momentum:

∂

∂t
(minivi) +∇ · (minivivi + Pi + Pe) = j×B+Rin

i + Γioni mivn − Γrecn mivi,(27)

∂

∂t
(minnvn) +∇ · (minnvnvn + Pn) = −Rin

i + Γrecn mivi − Γioni mivn. (28)

Internal Energy:
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∂

∂t

(

εi +
Pe

γ − 1

)

+ ∇ ·
(

εivi +
γPevi
γ − 1

+ vi · Pi + hi + he

)

(29)

= j · E+ vi ·Rin
i +Qin

i − Γrecn
1

2
miv

2
i −Qrec

n (30)

+ Γioni (
1

2
miv

2
n − φion) +Qion

i , (31)

∂εn
∂t

+ ∇ · (εnvnvn · Pn + hn) = −vn ·Rin
i +Qni

n

− Γioni
1

2
miv

2
n −Qion

i + Γrecn
1

2
miv

2
i +Qrec

n . (32)

Ohm’s Law:

E+ (vi ×B) = ηj. (33)

Note that to investigate the scaling of the reconnection rate with the Lundquist

number (S), the Spitzer resistivity η is made a parameter of the simulations. The

values used for η are [0.5, 1, 2, 4, 8, 20]×10−5η0, and so η lies in the range [0.08,3] Ωm.

The viscosity coefficients for neutrals and ions are set to ξi = ξn = 10−3ξ0 and the

neutral thermal conduction coefficient is κn = 4×10−3κ0. The normalizing constants

are ξ0 = mpn0L0v0 and κ0 = mpn0L0v
3
0/T0. Note that for these plasma parameters

the isotropic neutral heat conduction is much faster than any of the anisotropic heat

conduction tensor components for either ions or electrons, with collisional ion-neutral

heat exchange Qin
i ≫ ∇·(hi+he). Thus, thermal diffusion for all species is dominated

by neutral heat conduction and is primarily isotropic.

A Harris current sheet is used for the initial magnetic configuration, and is given

here in terms of the in-plane magnetic flux Az:

Az = −B0λψ ln cosh (y/λψ) (34)

where B = ∇× Azêz and λψ = 0.5L0 is the initial width of the current sheet.

To provide the outward force to maintain this current sheet, both the ionized

pressure Pp = Pi + Pe and the neutral pressure Pn are increased in the sheet:

Pp(y) = Pp +
1

2

F

cosh2 (y/λψ)
, (35)

Pn(y) = Pn +
1

2

1− F

cosh2 (y/λψ)
, (36)

where F = 0.01P0 is chosen to maintain an approximate ionization balance of 0.5%

inside the current sheet. These perturbations ensure that the total (ion and neutral)
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pressure perturbation balances the Lorentz force of the magnetic field in the current

sheet:

0 = −∇(Pn + Pp) + j×B. (37)

At the same time, a relative velocity between ions and neutrals is required, so that

the frictional force Rin
i can couple the ionized and neutral fluids and keep the fluids

individually in approximate force balance:

0 = −∇Pp + j×B+Rin
i , and (38)

0 = −∇Pn −Rin
i . (39)

To give this balance, we choose an initial ion velocity

viy(y) =
(F − 1)

ninnνin

tanh (y/λψ)

λψ cosh
2 (y/λψ)

n2
0v

2
0

P0

. (40)

To this initial steady state a small, local perturbation of the flux, A1
z is added to

initiate the primary tearing instability and start the magnetic reconnection:

A1
z = −ǫe−

(

x
4λψ

)

2

e
−
(

y

λψ

)

2

(41)

where ǫ = 0.01B0L0. The initial state is shown in Figure 1. Only a subset of the

domain is shown, and the y axis is stretched by a factor of 40, so that thin structures

can be clearly seen in the plots. Using the symmetry of the initial conditions, only the

top right quadrant of the domain is simulated, with the use of appropriate boundary

conditions.

3. Results

3.1. Decoupling of inflow during magnetic reconnection

As mentioned in the previous section, η is made a parameter of the simulations,

and is not dependent on the local plasma parameters, so that a general scaling law of

reconnection rate with resistivity can be derived. Six simulations are performed which

have values of the resistivity of [0.5, 1, 2, 4, 8, 20]×10−5η0. Firstly, the generic processes

that are evident in the simulations are highlighted by focusing on one particular

value of η = 0.5 × 10−5η0. Later, a relationship between reconnection rate and η is

determined for the range of η in these simulations.

Figure 2 shows the early evolution of the reconnection region resulting from

the initial perturbation. The Harris current sheet undergoes the tearing instability,
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magnetic field reconnects at the X-point and flux is ejected. By t = 537.5t0 a Sweet-

Parker-like reconnection region has been formed. At this stage, ions are pulled in by

the magnetic field and drag the neutrals with them.

Figure 3 shows the ion and neutral flow fields, on a smaller subdomain of the

simulation, centered on the reconnection region. Panel 3a) shows the vertical veloc-

ities at time t = 537.5t0, with ions on the top left quadrant and neutrals on the top

right quadrant. Panel 3b) shows the magnitude of the horizontal velocity, again with

ions on the top left quadrant and neutrals on the top right quadrant. The bottom

two quadrants of panels a) and b) show the flow vectors for ions, on the left, and

for neutrals, on the right, both scaled to the same magnitude. The vertical velocities

in panel 3a) show that the ions and neutrals are decoupled, with the ions flowing

faster into the reconnection region than the neutrals. The difference between neutral

and ion velocity is approximately 90% of the ion velocity. The horizontal velocities

in panel 3b) show that the ion and neutral outflows (the strong horizontal velocity

at x=+/-2.5L0) are coupled. The difference between the ion and neutral outflow is

negligible compared to the actual flow. The Alfvén speed can be estimated using the

upstream magnetic field of Bup = 0.6B0, taken at the point in the current sheet where

the current amplitude reaches half its maximum value, and the total number density

at the center of the sheet of 280n0 to give vA = 0.035v0. The coupled outflow of ions

and neutrals, which has a maximum of 0.015v0, is thus approximately half the Alfvén

speed (based on total number density, as the outflow is coupled) at this time. Later

in time the outflow increases to the Alfvén speed.

This feature of the η = 5 × 10−6η0 simulation is common to all six simulations.

The ions and neutrals inflows are decoupled, as ions are pulled in by reconnecting

magnetic field and the neutrals are dragged in via collisions. The timescale of inflow

is fast enough that the collisions cannot keep the neutrals completely coupled to the

ions and an excess of ions builds up in the reconnection region, creating an ionization

imbalance. This is the situation considered for astrophysical plasmas by both Vish-

niac & Lazarian (1999), who treated weakly ionized reconnection with an analytic

approach, and Heitsch & Zweibel (2003a), who calculated analytic and numerical

solutions of 1D steady state models of weakly ionized reconnection.

3.2. Reconnection rate scaling with resistivity

As described in the previous section, the plasma in the reconnection region is

out of ionization balance as the neutrals are largely left behind by the ions. Figure

4 shows the four components contributing to ∂ni
∂t

in the ion continuity equation. The
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top left quadrant shows the loss due to recombination, the bottom left quadrant shows

the loss due to outflow (horizontal gradient in horizontal momentum of ions), the top

right quadrant shows the gain due to inflow (vertical gradient in vertical momentum),

and the bottom right shows the gain due to ionization. The color scheme is based

on a log-scale, and shows that within the reconnection region gains due to ionization

are negligible relative to the other three terms. Looking at the largest values for the

remaining three terms, the losses due to recombination and outflow are comparable,

and add up to equal the gain due to inflow. This shows that the reconnection region is

close to a steady state, with inflow of ions balanced by comparable contributions from

recombination and outflow. Recall that the 1D models of Vishniac & Lazarian (1999)

and Heitsch & Zweibel (2003a) assumed that recombination was fast enough to domi-

nate over the outflow, and thus the horizontal direction (along the current sheet) was

ignorable. Instead, Figure 4 shows that for the self-consistently created reconnection

region in this parameter range the recombination and outflow are comparable and so

2D effects cannot be neglected.

The nature of the steady state balance in these reconnection simulations has

important consequences for the scaling of the reconnection rate. In the standard

Sweet-Parker reconnection scenario, inflow of ions into the reconnection region is

assumed to be balanced by outflow of ions. This, along with other assumptions,

gives the standard scaling of the normalized inflow rate (reconnection rate) of M ∝√
η ∝ 1/

√
S. For the weakly ionized plasma in these simulations, the situation is

very different due to the ionization imbalance.

The standard steady-state argument of the Sweet-Parker model can be modified

to include the reacting multi-fluid equations, in order to derive a scaling relationship

for the reconnection rate. Figure 5 shows a cartoon of the reconnection region in these

simulations. The reconnection region, inside which the frozen-in constraint is broken

by resistivity η, has width δ and length L. There is an external ion density of ni,ext and

a current sheet ion density of ni,CS. The inflow of ions into the reconnection region

is vin, the outflow of ions is vout, and the upstream magnetic field is Bup. Assuming

that the system is in steady state, i.e., that ∂ni
∂t

= 0, and integrating around the

reconnection region gives

ni,extvinL = ni,CS(δvout + δLνrec − δLνion), (42)

where νrec and νion are the recombination and ionization frequencies, defined in Equa-

tions (5) and (6). Defining νout ≡ vout/L, and equating Ohm’s law evaluated inside

(E = ηj) and outside (E = vinBup) of the reconnection region,

vinBup = ηj ≈ ηBup

δµ0

, (43)
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to eliminate δ, this steady state equation can be rewritten as

vin ≈
√

η

µ0

ni,CS
ni,ext

(νout + νrec − νion). (44)

For a plasma in ionization balance, νrec = νion, and ni,ext ≈ ni,CS. Using these

relationships and the total momentum equation to derive vout = vA (where vA =
Bup√
µ0ρtotal

), recovers the standard Sweet Parker scaling law

M ≡ vin
vA

≈
√

η

vALµ0

=

√

1

S
, (45)

where Bup is the magnetic field upstream of the current sheet, and ρtotal is the total

(ion + neutral) density in the reconnection region.

In contrast, in these reacting two-fluid simulations, the system non-linearly and

self-consistently forms a current layer where plasma is out of ionization balance, where

the recombination is comparable to the outflow, and where ionization is negligible

compared to both recombination and outflow. Hence the inflow rate can be approxi-

mated by

vin ≈
√

η

µ0

ni,CS
ni,ext

(νout + νrec). (46)

Note that this equation does not by itself indicate how the reconnection rate will

depend on S, as it is not clear how νrec, ni,CS, and ni,ext depend on S from the

equations. We will therefore use our series of simulations performed over a range of

η to determine the reconnection rate dependence on S.

For all six simulations the effective Lundquist number is defined by

Ssim ≡ vA,0Lsimµ0

η
, (47)

where Lsim = 2.75L0. Note that Lsim is much smaller than the horizontal extent of

the domain. We define vA,0 as the Alfvén velocity given a field strength of B0 and

number density 201n0, i.e., based on the initial background magnetic field and number

density. Note that Ssim varies over simulations due to η only. The reconnection rate

is defined by

Msim ≡ ηjmax
voutBup

. (48)

Here, jmax is the maximum value of the current density, located at (x, y) = (xj, 0),

within the reconnection region, and Bup is evaluated at (xj, δsim) where δsim is the y
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location on the line x = xj at which the current density reaches jmax/2, i.e., half-width

at half-max of the current sheet.

For each simulation, the value of Msim is taken at a time when the length of

the current sheet, defined by the distance from the original X-point to the location

of maximum outflow vout equals Lsim. This happens at a different time for each

simulation, but in all cases prior to the onset of any secondary instabilities of the

current sheet. This instantaneous value ofMsim is plotted for each simulation against

the effective Lundquist number Ssim in Figure 6. The dashed line shows the single-

fluid Sweet-Parker predicted scaling M ∝ 1/
√
S. Over the range of S which these six

simulations cover, the reconnection rate is only weakly dependent on the Lundquist

number, with a slow decrease in Msim with increasing Ssim. The reconnection rate

is much faster than the Sweet-Parker reconnection rate, as a direct result of the

decoupling of ions from neutrals and the enhanced recombination in the reconnection

region. As discussed in section 3.3, plasmoid formation increases the reconnection rate

for Ssim > Sc. We also note that each of these simulations have been performed with

the same viscosity coefficient, and it is known that the reconnection rate dependency

on resistivity weakens when viscous effects in the reconnection layer become important

(Park et al. 1984).

Figure 7 shows the scaling of the reconnection region aspect ratio σsim ≡ (δsim/Lsim)

with Ssim for the six simulations. Also shown is the Sweet-Parker scaling of 1/
√
S.

The simulations do not exhibit the σ ∝ 1/
√
S scaling but show an approximate

1/S scaling (the power law fit through the simulation points has an exponent of

−1.1± 0.17). This 1/S scaling is consistent with the result of Figure 6, that Msim is

approximately independent of Ssim. This is shown as follows: Assume that vout does

not substantially vary over different simulations, and note that Ssim only changes over

simulations due to η. Then using the definition of Msim and jmax ≈ Bup/δsim gives

Msim ∝ ηjmax/Bup ≈ η/δsim ∝ 1/Ssimσsim ≈ const.

3.3. The secondary (plasmoid) instability

As discussed above, at a critical aspect ratio of σc = 1/200, a resistive current

sheet can become unstable to a secondary tearing instability known as the plas-

moid instability. Of the six two-fluid simulations in this paper, three cases show

evidence of secondary tearing. Figure 8 shows the onset of the plasmoid instability

for the simulation with η = 0.5 × 10−5η0, with the two contours of magnetic flux

at Az = −0.0681B0L0 (white line) and Az = −0.0687B0L0 (black line) following

the evolution of two particular field-lines in time. The initial laminar current sheet
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breaks up into a number of plasmoids, with thinner current sheets between them. The

current density and recombination rate within this fragmented reconnection region

are shown in Fig. 8 on a pseudo-color scale. During this phase of the reconnection

the formation of a plasmoid chain redistributes the ionized plasma within the cur-

rent sheet, which is otherwise approximately uniformly distributed throughout the

reconnection region, into regions of higher and lower electron number density. Since

Γreci ∝ n2
e, the recombination rate is increased within the plasmoids with respect to

the sub-layers between them. This leads to the plasmoid magnetic flux collapsing

on itself (i.e, disappearing as it would in vacuum) at a rate comparable to or faster

than the plasmoids are exhausted out of the reconnection region. This collapse can

affect the expected distribution of plasmoid sizes and the ionization fraction within

the plasmoids relative to the background medium in the reconnection exhaust.

Huang & Bhattacharjee (2010) found that in a fully ionized plasma, the onset of

the plasmoid instability occurred at a critical value of Lundquist number of 4 × 104

which, with the Sweet-Parker scaling of current sheet width with Lundquist number,

corresponds to a critical current sheet aspect ratio of 1/200, as shown by the dashed

line in Figure 7. The three simulations that undergo secondary tearing are shown

as diamonds in Figure 7. The intersection of a power law fit to the σsim(Ssim) data

intersects the σsim = 1/200 line at a value of Ssim = 104. The simulation with

Ssim = 104 exhibits the plasmoid instability, as do the two simulations with higher

Ssim (shown as diamonds in the Figure). These two facts support the postulation

of Loureiro et al. (2007) that the criterion for the plasmoid instability is that the

aspect ratio decreases below a critical value. For our simulations, as for Huang &

Bhattacharjee (2010), this critical value is 1/200.

To demonstrate the change in reconnection rate due to the plasmoid instability,

Msim is evaluated again later in each of the three plasmoid-unstable simulations. It

is difficult to measure Msim during the plasmoid instability, as the reconnection rate

varies with time, depending on the plasmoid evolution. To give an idea of how the

plasmoid instability is affecting the reconnection rate we plot in red in Figure 6 the

range of Msim observed after plasmoid formation in each simulation until the current

sheet width becomes spatially unresolved. It is apparent, particularly in higher Ssim
simulations, that the reconnection rate increases as the plasmoids develop. Thus, the

reconnection rate in this regime is determined by both the fast recombination of ions,

and the effect of the secondary tearing instability.
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4. Discussion

In this paper magnetic reconnection in the solar chromosphere is simulated using

a partially ionized reacting multi-fluid plasma model. The number densities and

ionization levels are consistent with lower to middle chromospheric conditions. The

dependence of reconnection rate on Lundquist number is investigated by setting the

resistivity to be a parameter of the simulations. A simple 2D Harris current sheet

configuration with a local perturbation to the in-plane flux is used. The system self-

consistently and non-linearly creates a reconnection region which is out of ionization

balance, due to the decoupling of ion and neutral inflows. The model is able to capture

this physical effect as the two fluids are followed separately, and the ionization and

recombination rates are self-consistently calculated based on local plasma parameters.

In the reconnection region, recombination of excess ions is comparable to the outflow

of ions, which leads to fast reconnection independent of the Lundquist number, and

when normalized properly, the reconnection rate is approximately 0.1. It is worth

noting that guide (out of plane) magnetic field, not included in these simulations,

will have an effect on the scaling, as the flux associated with the guide field can

inhibit fast reconnection (Heitsch & Zweibel 2003b).

The onset of fast reconnection in weakly ionized astrophysical plasmas was pre-

dicted by Vishniac & Lazarian (1999) and Heitsch & Zweibel (2003a), assuming that

recombination dominates outflow in the current sheet so the system could be treated

with one dimensional analysis. In this regime Heitsch & Zweibel (2003a) found that

fast reconnection occurred when

Z =
β
3/γ
0

10

trecombtΩ
t2AD

< Zc (49)

where Zc was either 10
−4 for the numerical solution, or 10−2 for the theoretical solu-

tion, β0 ≡ Pi+Pe
B2/µ0

, trec is the timescale of recombination, tΩ ≡ L2/η, and tAD ≡ L2/ηp.

In our multi-fluid simulations, the smallest resistivity is η ≈ 0.08 Ωm, ηp ≈ 0.3 Ωm,

and trec = 1/νrec ≈ 30 s, and so Z ≈ 4 × 10−5, which lies in the ‘fast’ reconnection

regime of Heitsch & Zweibel (2003a). While we have shown that while the prediction

of fast reconnection by Vishniac & Lazarian (1999) and Heitsch & Zweibel (2003a)

holds in the chromosphere, in 2D reconnection the recombination is not the domi-

nant mechanism for the removal of ions from the reconnection region, as outflows are

equally important.

The critical aspect ratio at which secondary tearing sets in, σc = 1/200, is reached

at a lower Lundquist number than has previously been seen in single-fluid simulations

with β ≈ 1 (Huang & Bhattacharjee 2010; Samtaney et al. 2009). This is because
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in this fast reconnection regime σ ∝ 1/S, compared to Sweet-Parker reconnection

where σ ∝ 1/
√
S. Note that Ni et al. (2012) found that for β = 50, the onset occurs

at a Lundquist number of 2000-3000, and an aspect ratio of 1/60. The plasmoids

which form due to secondary tearing in these simulations are losing ions due to re-

combination, and so their evolution is potentially very different from those seen in

fully ionized simulations. The further evolution of the plasmoid beyond the initial

formation and collapse seen here is left to a follow-up investigation.

It has been conjectured that current sheets are ubiquitous in the chromosphere

(Goodman & Judge 2012). It has also been established that spicules and chromo-

spheric jets are ubiquitous solar phenomena (Sterling 2000). Magnetic reconnection

in chromospheric current sheets is therefore a promising mechanism to link these

two ubiquitous phenomena, and would explain the formation of spicules and chro-

mospheric jets. These simulations show that the chromosphere can exhibit fast re-

connection with rates that are comparable to the estimated reconnection rates of

observed outflows, as well as the creation of plasmoids, or “blobs” of plasma, due

to the secondary tearing mode. The reconnection outflow velocities we find in these

simulations are 5 km/s, which is close to the speeds observed for chromospheric jets,

but is small compared to the speeds of 20-150 km/s observed for spicules. Using

the scaling argument that vout ∝ Bup/
√
ni + nn, we expect that by increasing the

magnetic field from 10G to 50G, and by moving higher up in the chromosphere where

the neutral density is an order of magnitude lower (and the ionization level increases

from 0.5% to 10%) spicule-like outflow velocities of up to 80 km/s can realistically be

achieved.

The current sheets formed in these simulations of chromospheric reconnection are

out of ionization balance to such a degree that short recombination times of 30 s are

created. These times are much smaller than the estimated 3 minute recombination

time of an acoustic shock heated chromosphere (Carlsson & Stein 2002), highlight-

ing magnetic reconnection as the prime transient phenomena in the chromosphere

driving non-LTE recombination. The major advantage of the multi-fluid approach

over single-fluid models is that it can self consistently produce non-LTE high ion

density structures. This paper has shown that such ion density structures form in

magnetic reconnection, and that the resulting fast recombination affects the reconnec-

tion physics. Hence multi-fluid simulations such as these are vital to understanding

transient phenomena in the chromosphere.

Finally, it should be noted that Shay et al. (2004) and others have argued that the

addition of the ion inertial and/or finite Larmor radius effects to single-fluid resistive

MHD is essential to obtain the resistivity-independent “universal” fast reconnection
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rate of M ≈ 0.1. The simulation results presented here yield this same resistivity-

independent reconnection rate without any of the ion-electron decoupling effects;

relying instead on the combination of enhanced recombination rate with generation

of the secondary plasmoids in the reconnection region.
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Ionized Pressure

Current Density

Neutral Pressure

Vertical Ion Velocity

Fig. 1.— Initial conditions for a subset of the whole domain. Note that the y-

coordinate is expanded by a factor of 40. The top left quadrant shows ionized pressure

((Pi + Pe)/P0), the top right quadrant shows neutral pressure (Pn/P0), the bottom

left quadrant shows current density (j/(B0/µ0L0)), and the bottom right quadrant

shows vertical ion velocity (vi,y/v0). The solid lines are 10 contour levels of the flux

Az evenly distributed in the interval [−0.04,−0.015]B0L0.
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a)

b)

c)

t=297.5 t0

t=397.5 t0

t=537.5 t0

Fig. 2.— Formation of Sweet-Parker current sheet for the simulation where η =

0.5 × 10−5η0. Current density (j/B0/(µ0L0)) is shown in the color contours, and 10

contour lines show Az, evenly distributed in the interval [−0.04,−0.015]B0L0.
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a) 

b) 

Fig. 3.— Plots of ion and neutral flow, showing inflow decoupling and outflow cou-

pling during reconnection. Panel a) shows color contours of the vertical velocity

(vi,y/v0) for the ions (top left quadrant) and for the neutrals (vn,y/v0, top right quad-

rant). The contour lines show 10 values of Az, regularly distributed in the interval

[−0.04,−0.01]B0L0. The arrows on the bottom left quadrant represent the plasma

flow, and those on the bottom right quadrant the neutral flow. Panel b) shows the

same as panel a) but for the magnitude of horizontal velocity for ions (|vi,x/v0|) and
neutrals (|vn,x/v0|).
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∂(nivi,y )

∂y
−Γrec

i

Γion
i

∂(nivi,x )

∂x

Fig. 4.— The steady state reconnection region showing contributing sources and

sinks of ions in the current sheet (in units of L−3
0 t−1

0 ): Top left quadrant shows rate

of loss of ions due to recombination. Bottom left quadrant shows rate of loss of ions

due to outflow
∂nivi,x
∂x

. Top right shows rate of gain of ions due to inflow −∂nivi,y
∂y

.

Bottom right quadrant shows rate of gain of ions due to ionization. The solid lines

are 10 contour lines of Az, evenly distributed in the interval[−0.0378,−0.037]B0L0.

This shows that loss of ions due to recombination and outflow are comparable, and

combine to balance the inflow of ions, with ionization playing an insignificant role.
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Bup ni,ext

ni,cs

vin

vout

Fig. 5.— Cartoon of the Sweet-Parker reconnection scenario. The current sheet

length is L and width is δ. The magnetic field just upstream from the current sheet

is Bup. The ion inflow and outflow speeds are vin and vout, respectively. The external

and current sheet ion number densities are ni,ext and ni,CS, respectively.
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Fig. 6.— Normalized magnetic reconnection rateMsim for 6 simulations with different

Lundquist number (Ssim). The squares show the reconnection rate taken at a time in

each simulation when the length of the current sheet has reached Lsim = 2.75L0, and

in all simulations is before the onset of the plasmoid instability. The red lines show the

range in reconnection rate taken again at later times in the three plasmoid-unstable

simulations, after the plasmoids are formed. The dashed line is the Sweet-Parker

scaling lawM ∝ 1/
√
S. The dot-dashed line shows the separation between plasmoid-

stable and plasmoid-unstable regimes for these multi-fluid simulations, and is given

by the value of Ssim where the power law fit of the simulation data σsim(Ssim) meets

the σsim = 1/200 line in Figure 7.
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Fig. 7.— Scaling of simulation current sheet aspect ratio σsim with Lundquist number

(Ssim). The squares are simulations where no secondary (plasmoid) instability is seen,

and the diamonds are simulations where plasmoids are observed. The dotted line is

the theoretical aspect ratio at which the plasmoid instability sets in. The dashed line

is the Sweet-Parker scaling law (∝
√

1/S). The solid line shows a line of best fit of

the data to a power law. The exponent in the power law is −1.1 ± 0.17. This solid

line intersects the σsim = 1/200 line at approximately Ssim = 104.
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Fig. 8.— Plasmoid formation and evolution: Recombination rate Γreci L3
0t0 (left) and

current density jµ0L0/B0 (right), and two contour levels of Az of−0.0681B0L0 (white)

and −0.0687B0L0 (black), at three different times in the simulation where η = 0.5×
10−5η0.
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