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Abstract: In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) mod-
els, analyze the underlying architectures and propose a comprehensive identification framework. 
The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM cluster-
ing and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic 
inference mechanism. By this nature, this FNN model is geared toward capturing relationships 
between information granules known as fuzzy sets. The form of the information granules them-
selves (in particular their distribution and a type of membership function) becomes an important 
design feature of the FNN model contributing to its structural as well as parametric optimization. 
The identification environment uses clustering techniques (Hard C – Means, HCM) and exploits 
genetic optimization as a vehicle of global optimization. The global optimization is augmented 
by more refined gradient-based learning mechanisms such as standard back-propagation. The 
HCM algorithm, whose role is to carry out preprocessing of the process data for system model-
ing, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-
FNN (such as apexes of membership functions, learning rates and momentum coefficients) are 
adjusted using genetic algorithms. An aggregate performance index with a weighting factor is 
proposed in order to achieve a sound balance between approximation and generalization (predic-
tive) abilities of the model. To evaluate the performance of the proposed model, two numeric 
data sets are experimented with. One is the numerical data coming from a description of a cer-
tain nonlinear function and the other is NOx emission process data from a gas turbine power 
plant. 
 
Keywords: Multi-FNN (Fuzzy Neural Networks), information granules, evolutionary fuzzy 
granulation, linear fuzzy inference, HCM clustering, genetic algorithms (GAs), design method-
ology. 
 

1. INTRODUCTION 

The design of mathematical models is inherently 
associated with a panoply of complex and uncertain 
issues. Recently, much research has been accom-
plished by developing a broad range of fuzzy neural 
networks (FNNs) – systems that synergistically com-
bine the capabilities of fuzzy sets of handling uncer-
tain (granular) information and essential learning fea-
tures of neural networks. 

Fuzzy set theory has been introduced [1] to model 
uncertain and/or ambiguous characteristics present in 
any experimental data. Since its inception, the re-

search of fuzzy logic has been a focal point of various 
endeavors and demonstrated many fruitful results 
both in theory and application. 

In early approaches, the generation of fuzzy rules 
and the ensuing adjustments (optimization) of their 
membership functions were done by trial and error 
on a basis of available operator’s experience. Subse-
quently, designers find it difficult to develop adequate 
fuzzy rules and membership functions to reflect the 
essence of the data. This became even more profound 
when dealing with multidimensional data. Moreover, 
some useful information easily gets lost or ignored 
when human operators articulate their experience in 
the form of linguistic rules. A collection of manually 
developed fuzzy rules usually proves to be subopti-
mal. Consequently, there has arisen a genuine need 
for a sound optimization environment to construct 
and/or adjust a collection of linguistic rules. While 
there has been an impressive array of neuro-fuzzy 
approaches, comprehensive solutions are still to be 
developed. Interestingly, in this synergistic arrange-
ment of fuzzy sets and neural networks, they tend to 
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compensate for disadvantages of these two technolo-
gies when being used in the context of fuzzy rule-
based models. The essential advantage of neural net-
works lies in their adaptive nature and mechanisms of 
learning from historical data. In the context of rules, 
the learning concerns the parameters of the member-
ship functions. 

Takagi and Hayashi [2] proposed a fuzzy inference 
method driven by neural networks. Horikawa [3] dis-
cussed a neuro-fuzzy topology in which optimization 
is based on gradient-based update mechanisms. Ima-
saki [4] introduced structured neural networks whose 
fuzzy rules consist of premise network, inference 
network, and consequence network. Nomura [5] pro-
posed an auto-tuning method of fuzzy inference based 
on the delta rule. The problems reported there con-
cerned the number of membership functions that fluc-
tuated throughout the learning. Furthermore, the 
numbers of fuzzy rules increase with the addition of 
extra variables. 

In this paper, we use a generic FNN model based 
on linear inference method as a fuzzy inference 
method. The basic FNN combines fuzzy “If-then” 
rules with neural networks that are learned (opti-
mized) by means of the standard back-propagation 
algorithm. The structure of the network is constructed 
by partitioning fuzzy input-output space for each in-
dividual input variable. While conceptually simple, 
this approach exhibits a certain drawback: eventual 
relationships existing between the variables cannot be 
captured in this manner and reflected in the form of 
the ensuing fuzzy sets. To deal with shortcomings, we 
propose an idea of Multi-FNNs. First, a HCM cluster-
ing algorithm is used that carries out the input-output 
data preprocessing of all input variables viewed en 
block and develops a family of submodels that cope 
with homogeneous subsets of experimental data. Next, 
we use GAs [6-8] to support an overall optimization 
of the network. We introduce an aggregate objective 
function [9] that takes into account both training data 
and testing data. This index aims at achieving a sound 
balance between approximation and prediction capa-
bilities of the proposed model. 

At the experimental end, the proposed model is ap-
plied to numerical data of some three-variable nonlin-
ear function [3, 10-12] and NOx emission process 
data of a gas turbine power plant [13]. 

 
2. MULTI-FNN BASED ON INFORMATION 

GRANULATION 

In this section, we elaborate on the architecture and 
design process of Multi-FNNs. The architecture of the 
Multi-FNNs is based on a compressive and efficient 
framework of information granules with the aid of the 
HCM clustering method, and comes with fuzzy 
granulation formed through the space partition of the 

input variables of each single-FNN. 
 

2.1. Linear fuzzy inference-based FNN 
Here we discuss a type of “if-then” rules along 

with its development mechanisms of which the con-
clusion part comes with a linear fuzzy inference.  

In this sense, the conclusion is expressed in the 
form of a linear relationship between inputs and an 
output variable. The basic model of the proposed 
Multi-FNN comes in the form shown in Fig. 1.  

The fuzzy sets formed in the individual spaces 
(variables) form a preprocessing block of the FNN. 
The improved speed of learning is attributed to the 
usage of this interface. 

The notation used in Figure 1 requires some clari-
fication. The “boxes” and “circles” denote units of the 
FNN while “N” identifies a normalization procedure 
applied to the membership grades of the input vari-
able xi. The output fi(xi) of the “∑” neuron is de-
scribed by the nonlinear function fi. (We do not re-
strict ourselves to standard sigmoid functions as being 
commonly encountered in conventional neural net-
works). 

The output of the FNN ŷ  is governed by the fol-
lowing expression, 

1 1 2 2
1

ˆ ( ) ( ) ( ) ( )
m

m m i i
i

y f x f x f x f x
=

= + + = ∑" . (1) 

with m being the number of the input variables (viz. 
the number of the output fi’s of the “Σ” neurons in the 
network). As previously mentioned, FNN is implied 
by the introduced fuzzy partition of each input vari-
able. In this sense, we can regard each fi given by (1) 
as the following mapping (rule), 
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Fig. 1. Linear fuzzy inference-based basic FNN structure. 
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To be more specific, Rj is the j-th fuzzy rule while 
Aij denotes a fuzzy variable of the premise of the cor-
responding fuzzy rule and represents membership 
function µij as shown in Fig. 2. w0ij and waij are con-
stants of the consequence of the corresponding fuzzy 
rule. They express a connection (weight) existing be-
tween the neurons as we have already visualized in 
Fig. 1.  

Furthermore we confine ourselves to triangular 
membership functions and make their membership 
grades sum up to 1 (so as to lead to a fuzzy partition 
of the variable). Each membership function in the 
premise part of the fuzzy rule is assigned to be com-
plementary with neighboring ones in the form being 
shown in Fig. 2. 

The numeric mapping from xi to fi(xi) is determined 
by fuzzy inferences and a standard defuzzification. 
The inference result coming from (2) follows a stan-
dard center of gravity aggregation. 

( ) ( ) ( ) ( )
n n

i i ij i ij i ij ij i
j 1 j 1

f x µ x w0 x wa µ x
= =

= ⋅ +∑ ∑ . (3) 

In light of the properties of the fuzzy partition, we 
note that the input signal ix  activates only two 
neighboring membership functions labeled here by k 
and k+1 referred to in Fig. 2. Subsequently, (3) can be 
expressed as, 

( )( ) ( )( )
( ) .

( ) ( )
ik i ik i ik ik 1 i ik 1 i ik 1

i i
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The sum of the grades of these two neighboring 
membership functions labeled by k and k+1 is always 
equal to 1, that is, 1( ) ( ) 1ik i ik ix xµ µ ++ = . Then (4) 
reduces to the form. 

( ) ( ) ( )
( ) ( )

i i ik i ik i ik

ik 1 i ik 1 i ik 1

f x µ x µ0 x wa
µ x µ0 x wa+ + +

= ⋅ +

+ ⋅ +
   (5) 

The learning of the FNN is realized by adjusting 
the connections of the neurons; the modifications of 
their values, w0ij and waij, are accomplished through 
standard Back-Propagation (BP) algorithms. In this 
study, we use two measures (performance indexes). 
• The use of the Euclidean error as a performance 

measure, 
2ˆ( )p p pE y y= −                (6) 

ikµ 1+ikµ
ijµ

minx maxxix

)(1 iik x+µ

)( iik xµ

1

 
Fig. 2. MF definition before tuning (genetic optimization). 

where, Ep is an error for the p-th data, yp is the p-th 
target output data and ˆ py  stands for the p-th actual 
output of the model for this specific data point. For m 
input-output data pairs, an overall (global) perform-
ance index comes as a sum of the errors. 

2

1
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= −∑             (7) 

• An average percentage-based error (APE) that as-
sumes the form, 

1

ˆ1 100(%).
m p p

pp

y y
E

m y=

−
= ×∑         (8) 

As far as learning is concerned, the connections 
(here, wa) change in a standard fashion, 

( ) ( )wa new wa old wa= + ∆         (9) 

where, the updated formula follows the gradient de-
scent method, namely 

p
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            (10) 

with aη  being a positive learning rate. 
Moreover we have, 
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Combining (6) and (7), we derive, 
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Finally, we obtain, 

ˆ( ) ( )ij a p p ij iwa 2 η y y µ x∆ = ⋅ ⋅ − ⋅        (13) 

Quite commonly to accelerate convergence, a mo-
mentum term is added to the learning expression. The 
momentum itself is defined in the form, 

( ) ( ) ( )ij ijm t wa t wa t 1= − −          (14) 

Finally, the complete updated formula combining 
the already discussed components reads as, 

ˆ( ) ( )

( ( ) ( ))
ij a p p ij i i

a ij ij

wa 2 η y y µ x x

α wa t wa t 1

= ⋅ ⋅ − ⋅ ⋅

+ − −
    (15) 

Here, the momentum coefficient, αa is confined to the 
unit interval. 
 
2.2. Multi-FNN structure 

Conventional FNNs use HCM (Hard C-Means) 

(4)
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clustering to determine values of some initial parame-
ters of membership function through partition of the 
input space of systems [14]. In this study, we develop 
individual FNNs on the basis of some clusters of data 
being constructed through HCM clustering. The 
number of clusters corresponds to the number of the 
models (FNN structures), see Fig. 3. A bank of FNNs 
is used in parallel to build an overall model. Note that 
the data belonging to different clusters support the 
construction of the individual models. 

 
2.3. HCM clustering method  

It is worth emphasizing that the HCM clustering 
method has been used extensively not only to organ-
ize and categorize data, but it becomes useful in data 
compression and model identification. For the sake of 
completeness of the entire discussion, let us briefly 
recall the essence of the HCM algorithm. 

Suppose that we are given a set of data X={x1, x2, 
…, xn}, where xk =[xk1, …, xkm], n is the number of 
data and m is the number of variables. Let P(X) be 
the power set of X, that is, the set of all the subsets of 
X. A hard c-partition of X is the family 
{ ( ) :1 }iA P X i c∈ ≤ ≤ such that 1

c
ii A X= =∪  and 

i jA A φ∩ =  for1 i j c≤ ≠ ≤ . Each Ai is viewed as a 
cluster, so {A1, …, Ac} partitions X into c clusters. 
The hard c-partition can be reformulated through the 
characteristic (membership) function of the element 
xk in Ai. Specifically, define 

1,
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k i
ik

k i

A
u

A
∈

=  ∉

x
x

 

where, k X∈x , ( )iA P X∈ and i=1,2,…,n. Clearly, 
uik=1 means that xk belongs to cluster Ai. Given the 
value of uik, we can uniquely determine a hard c-
partition of X, and vice versa. The elements of the 
partition matrix uik satisfy the following three condi-
tions: 

{0,1}iku ∈ , 1 i c≤ ≤ , 1 k n≤ ≤         (16) 
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Fig. 3. Multi-FNN structure and ensuing development 
environment. 
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At the interpretation end, (16) and (17) mean that 
each k X∈x  should belong to one and only one 
cluster. (18) requires that each cluster Ai must contain 
at least one and at most n-1 data point. By collecting 
uik with 1 i c≤ ≤  and 1 k n≤ ≤  into a c×n matrix 
U=[uik], we obtain the matrix representation for hard 
c-partition, defined as follows. 

1 1
| {0,1}, 1, 0

c n

C ik ik ik
i k

M u u u n
= =

  = ∈ = < < 
  

∑ ∑U   

(19) 

Step 1: Fix the number of clusters (2 )c c n≤ <  

and initialize the partition matrix (0)
CM∈U  

Step 2: Calculate the center vectors vi of each clus-
ter: 

( )
1 2{ , , , , , }r
i i ij imi v v v v=v " "          (20) 
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Where, [uik]= U(r), i = 1, 2, …,c, j=1, 2, …,m. 
Step 3: Update the partition matrix U(r); these 

modifications are based on the standard Euclidean 
distance function between the data points and the pro-
totypes, 

1/ 2
2

1
( ) ( )

m

ik k i k i kj ij
j
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(21) 

( ) ( )
( 1) 1 min{ }  for  all  

0 otherwise

r r
r ik jk

ik
d d j c

u +  = ∈= 


     

(22) 

Step 4: Check the termination criterion. If 

|| U(r+1) − U(r)|| ε (tolerance level)≤    (23) 

Stop; otherwise set r=r+1 and return to Step 2 
According to the procedure, training data is parti-

tioned as several groups based on its characteristics. 
We calculate the distance between the center vector 

of each partitioned training data group and testing 
data by (21), and then testing data are partitioned 
close to the center vector of each partitioned training 
data group. Here, vi is the center value of the training 
data, but when we partition the training data, xk repre-
sents the training data and when we partition the test-
ing data, xk represents the testing data. Partitioned 
data are then used towards the design of the individ-
ual FNNs. 
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Fig. 4. Partition of training and testing data. 

The partition of training and testing data is sche-
matically visualized in Fig. 4. Partitioning of the 
training data is shown through phases (1) - (3), Fig. 4. 
The way in which the testing data are processed on 
the basis of the previously constructed cluster centers 
is displayed as phase (5). Finally, the testing data set 
is partitioned as visualized by (6) in Fig. 4. 
 

3. OPTIMIZATION OF THE FNN MODEL 

The task of optimizing any complex model in-
volves two main problems. Firstly, a class of some 
optimization algorithms must be chosen so that it is 
applicable to the requirements implied by the problem 
at hand. Secondly, various parameters of the optimi-
zation algorithm must be tuned in order to achieve the 
best performance of the algorithm. 

Genetic algorithms (GAs) are optimization tech-
niques based on the principles of natural evolution. In 
essence, they are search algorithms that use opera-
tions found in natural genetics to guide a comprehen-
sive search over the parameter space. GAs have been 
theoretically and empirically proven to provide robust 
search capabilities in complex spaces offering a valid 
approach to problems requiring efficient and effective 
searching. 

To determine suitable values of the parameters for 
any given problem, GAs is developed.  
 
3.1. Genetic algorithms 

The need to handle optimization problems whose 
objective functions are complex and non-
differentiable arises in many areas of system analysis 
and synthesis. While there are a number of analytic 
and numerical optimization techniques aimed at these 
tasks, there exists a wide range of problems that are 
out of reach by standard gradient-oriented techniques. 
Among objective functions that are highly challeng-
ing to these classical methods are those that are non-
convex, multi-modal, and noisy [8]. 

Genetic algorithms [6-8] have proven to be useful 

in the optimization of such problems because of their 
ability to efficiently use historical information to ob-
tain new solutions with enhanced performance and 
the global nature of search supported there. Genetic 
algorithms are also theoretically and empirically 
proven to support robust searches in complex search 
spaces. Moreover, they do not get trapped in local 
minima as opposed to gradient decent techniques be-
ing quite susceptible to this shortcoming. GAs are 
population-based optimization techniques. 

The search of the solution space is completed with  
the aid of several genetic operators. There are three 
basic genetic operators used in any GA- supported 
search, reproduction, crossover and mutation. Repro-
duction is a process in which the mating pool for the 
next generation is chosen. Individual strings are cop-
ied into the mating pool according to their fitness 
function values. Crossover usually proceeds in two 
steps. First, members from the mating pool are mated 
at random. Second, each pair of strings undergoes 
crossover as follows: a position l along the string is 
selected uniformly at random from the interval [1, l-
1], where l is the length of the string.  

Two new strings are created by swapping all char-
acters between the positions k and l. Mutation is a 
random alteration of the value of a string position. In 
a binary coding, mutation means changing a zero to a 
one or vice versa. Mutation occurs with small prob-
ability. Those operators, combined with the proper 
definition of the fitness function, constitute the main 
body of the genetic computation. A general flowchart 
of the genetic algorithm is shown in Fig. 5. 

In this paper, for the optimization of the FNN 
model, GAs use the binary type serial method, rou-
lette-wheel in the selection operator, one-point cross-
over in the crossover operator, and inversion in the 
mutation operator. Here, we use 100 generations, 60 
populations, 10 bits per string, a crossover rate equal 
to 0.6, and mutation probability equal to 0.1. Fig. 7 
shows how a string is composed in GAs. Where, vari-
able x1, x2, …, and xk denote input variables, learning  
 

Start

Initialization
(computing a random population)

Evalution
(calculation of fitness)

Reproduction
(Crossover & Mutation)

Selection

Solution found Stop
YES
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Fig. 5. A general GA flowchart. 
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Fig. 6. Data structure of genetic algorithms for opti-

mization of the FNN model. 
 
rate, and momentum coefficient of the FNN model, cij 
denotes the vertical point of membership functions 
for each input variable, learning rate, and momentum 
coefficient. 
 
3.2. The objective function with a weight factor 

The objective function (performance index) is a ba-
sic instrument guiding the evolutionary search in the 
solution space [9]. The objective function includes 
both the training data and testing data and comes as a 
convex sum of two components, 

( , _ ) (1 ) _f PI E PI PI E PIθ θ= × + − ×  (24) 

PI and E_PI denote the performance index for the 
training data and testing data, respectively. Moreover 
θ  is a weighting factor that allows us to strike a bal-
ance between the performance of the model for the 
training and testing data. Depending upon the values 
of the weighting factor, several specific cases of the 
objective function are worth distinguishing. 

If 1θ =  then the model is optimized based on the 
training data. No testing data is taken into considera-
tion. 

If 0.5θ =  then both the training and testing data 
are taken into account. Moreover, it is assumed that 
they exhibit the same impact on the performance of 
the model.  

The case θ α=  where [0, 1]α ∈  embraces both 
the cases stated above. The choice of α  establishes 
a certain tradeoff between the approximation and 
generalization aspects of the FNN model. 

The performance index used in the ensuing nu-
merical experiments will be as Euclidean distance, 
see (7) and (8) while θ  is regarded as an extra pa-
rameter. 

 
4. SIMULATION AND DISCUSSION OF   

RESULTS 

Once the identification methodology has been es-
tablished, we proceed with intensive experimental 
studies. In this section, we provide three numerical 
examples to evaluate the advantages and the effec-
tiveness of the proposal approach. These include the 

numerical data of three-input nonlinear function [3, 
10-12] and the NOx emission process data of a gas 
turbine power plant [13]. The performance indexes 
(PI) used here are: (7) for NOx emission process data 
and (8) for the three-variable nonlinear function. 
 
4.1. Three-input nonlinear function 

In this experiment, we use the same numerical data 
as in the existing literature, cf. [3,10-12]. The nonlin-
ear function to be modeled is expressed as  

0.5 1 1.5 2
1 2 3(1 )y x x x− −= + + + .          (25) 

We’ve considered 40 pairs [11] of the original in-
put-output data. 20 out of the 40 pairs of input-output 
data are used as a learning set; the remaining portion 
serves as a testing set. The performance index is de-
fined by (8). Here the number of membership func-
tions for each input variable is set to three. As shown 
in Table 1, we can achieve enhanced performance of 
Multi-FNNs by the HCM data partition with c=2, in 
comparison to any arbitrary data partition. 

Fig. 7 visualizes the final results (listed in Table 1) 
treated as a function of the weighting factor θ . 

 

 
(a) PI                  (b) E_PI 

Fig. 7. Performance index of Multi-FNN treated as a 
function of θ . 

Table 1. Performance Index in the number of clusters, 
c=2. 

Arbitrary data partition 
FNN 1 FNN 2 Final result θ  

PI E_PI PI E_PI PI E_PI
0.0 2.813 2.993 2.380 3.710 2.597 3.351
0.25 3.159 3.033 2.439 3.304 2.799 3.168
0.5 2.790 3.209 1.721 3.473 2.255 3.341
0.75 1.961 4.610 1.682 4.236 1.821 4.423
1.0 1.907 4.445 1.491 5.958 1.699 5.201

Partitioned data by HCM clustering 
FNN 1 FNN 2 Final result θ  

PI E_PI PI E_PI PI E_PI
0.0 1.057 1.143 4.356 0.197 2.706 0.670
0.25 0.491 1.200 0.711 0.574 0.601 0.887
0.5 0.304 1.274 0.666 0.615 0.485 0.945
0.75 0.381 1.270 0.614 0.636 0.497 0.953
1.0 0.320 1.311 0.633 1.097 0.477 1.204
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Fig. 8. Performance index of Multi-FNN treated as a 

function of the weighting factor for selected 
number of the clusters. 

 

Table 2. Comparison of identification errors for se-
lected fuzzy models. 

MODEL PI E_PI 
Type 1 0.84 1.22 Shinichi's 

Model [3] Type 2 0.73 1.28 
Model I 1.5 2.1 Sugeno's 

Model [10] Model II 1.1 3.6 
Linear model [11] 12.7 11.1 

GMDH [12] 4.7 5.7 
θ =0.5 2.670 3.063

Single-FNN 
Linear 

fuzzy infer-
ence θ =1.0 2.652 3.309

θ =0.5 0.174 0.689
θ =0.75 0.210 0.679Our model 

Linear 
fuzzy infer-

ence θ =1.0 0.168 1.182
 
Fig. 8 depicts the values of the performance index 

of Multi-FNNs treated as a function of the weighting 
factor and the number of the clusters. 

The preferred results (that is PI=0.174, E_PI= 
0.689) are reported when using three clusters and 
when setting the weighting factor (θ ) to be equal to 
0.5. 

Table 2 contains a comparative analysis including 
several previous models. Sugeno’s fuzzy models I 
and II are based on the linear inference method while 
Shinichi’s models are fuzzy models obtained by using 
the back-propagation algorithm of fuzzy-neural net-
works. Compared with these models, the Multi-FNNs 
emerge as the ones with high accuracy and improved 
prediction capability. 

 
4.2. NOx emission process of a gas turbine power 

plant 
The NOx emission process is also modeled using the 

data from gas turbine power plants. Until now, almost 
all NOx emission processes are based on a “standard” 
mathematical model in order to obtain regulation data 
from the control process. However, such models do not 
develop the relationships between variables of the NOx 
emission process and parameters of its model in an 
effective manner. A NOx emission process of a GE gas 
turbine power plant located in Virginia, U. S. A., has 
been chosen in this modeling study.  

The input variables include AT (Ambient Tempera-
ture at site), CS (Compressor Speed), LPTS (Low 

Pressure Turbine Speed), CDP (Compressor Dis-
charge Pressure), and TET (Turbine Exhaust Tem-
perature). The output variable is NOx [13]. The per-
formance index is defined by (7). 
Using NOx emission process data, the regression 
equation (model) reads as follows 

1 2

3 4 5

163 77341 0 06709 0 00322
0 00235 0 26365 0 20893

y - . - . x . x
. x . x . x

= +
+ + +

   (26) 

This simple model comes with the value of 
PI=17.68 and E_PI=19.23. We will be using these 
results as a reference point when discussing FNN 
models. 

The comparison of the performance index of the 
HCM - partitioned data (c=2) with an arbitrary data 
partition is shown in Table 3. It becomes apparent that 
the clustering contributes to the improved perform-
ance of the model. 

The performance of the model is also visualized in 
Fig. 9. 

In the case of the NOx emission process of a gas 
turbine power plant, this dataset comes with four or 
more input variables and exhibits strong nonlinear  

 

Table 3. Performance Index in case of data partition-
ing into two clusters, c=2. 

Arbitrary data partition 
FNN 1 FNN 2 Final result θ  

PI E_PI PI E_PI PI E_PI
0.0 0.500 0.778 0 278.2 0.250 139.4
0.25 0.525 0.945 0.004 283.0 0.265 142.2
0.5 0.394 0.963 0.004 283.0 0.199 142.0
0.75 0.450 0.966 0.001 286.6 0.225 143.8
1.0 0.444 1.156 0 484.0 0.222 242.5

Partitioned data by HCM clustering 
FNN 1 FNN 2 Final result θ  

PI E_PI PI E_PI PI E_PI
0.0 0.907 1.297 4.570 5.507 2.457 3.013
0.25 0.777 1.597 3.270 5.086 1.832 3.019
0.5 0.860 1.416 2.843 4.927 1.699 2.847
0.75 0.702 1.618 2.924 6.791 1.642 3.727
1.0 0.746 1.951 0.162 139.5 1.256 58.04
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Fig. 9. Performance index of Multi-FNNs treated as a 
function of θ . 
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Table 4. Performance index vis-a-vis the changes in 
the number of MFs and the type of fuzzy in-
ference method. 

PI 
No. of MFs 
per input 

Tr_PI Va_PI Te_PI

2 14.509 13.700 4.605

3 8.763 10.924 3.613

6 3.810 5.782 2.457
 

Table 5. Performance Index according to the number 
of clusters. 

Multi-FNN Single-
FNN Cluster 2 Cluster 3 Cluster 4θ  

PI E_PI PI E_PI PI E_PI PI E_PI
0.0 4.461 5.496 2.457 3.013 1.348 2.122 1.092 2.214

0.25 3.910 5.776 1.832 3.019 1.169 2.049 1.431 2.152
0.5 4.038 6.028 1.699 2.847 1.140 2.653 1.076 2.250

0.75 3.620 5.560 1.642 3.727 1.054 3.078 0.720 2.025
1.0 3.795 6.814 1.256 58.04 0.840 3.183 0.793 2.910

 
characteristics. To determine the performance of the 
fuzzy model, an overall dataset (260 pairs of I/O data) 
is split into three parts, namely a training dataset (100 
pairs of I/O data), validation dataset (100 pairs of I/O 
data) and testing dataset (60 pairs of I/O data). Table 
4 quantifies the values of the performance index 
when varying selected parameters of the model. 

Here, Tr_PI, Va_PI and Te_PI denote the perform-
ance index for the training dataset, validation dataset 
and testing dataset, respectively. When the number of 
membership functions for each input variable in 
creases, we note enhanced performance of the model.  

As shown in Table 4, in case of 6 MFs per input 
variable, the variation ratio (slope) of the perform-
ance index of the single-FNN model does not change 
radically. This led us to accept six fuzzy sets for each 
input variable. Equally as in other experiments, the 
NOx emission dataset is split into two parts, namely a 
training dataset and a testing dataset. 

Fig. 10 depicts the values of the performance index 
of Multi-FNNs that are treated as a function of the 
weighting factor and the number of the clusters. 
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Fig. 10. Performance index of Multi-FNNs treated as 

a function of the weighting factor for a se-
lected number of the clusters. 
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Fig. 11. Genetic optimization of the FNN model (θ =0.75). 
 
Preferred results (that is PI=0.720, E_PI=2.025) are 
reported when using four clusters with the weighting 
factor (θ ) equal to 0.75. Refer also to Fig. 10. 

The results of the genetic optimization (four clus-
ters) are shown in Fig. 11. 
 

5. CONCLUSION 

In this paper, we proposed Multi-FNNs as parallel-
structures of fuzzy neural networks. The construction 
of Multi-FNNs dwells on the hybrid technologies 
combined with HCM clustering, linear fuzzy infer-
ence-based FNN, and genetic algorithms. Here, HCM 
clustering is used not only to analyze data that is 
characteristic of nonlinear and complex actual sys-
tems but also to construct a well-organized and effec-
tive model. Further, an efficient identification tech-
nique is presented that automatically extracts the op-
timal parameters of the FNN using the genetic algo-
rithm and the weighting factor of an objective func-
tion. The underlying idea deals with the optimization 
of information granules by exploiting techniques of 
clustering and evolutionary computing. 

The experimental studies clearly revealed that we 
could obtain superior performance (both approxima-
tion and generalization capabilities) for two com-
monly used experimental datasets. 
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