
194 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

Multi-FNN Identification Based on HCM Clustering and

Evolutionary Fuzzy Granulation

Ho-Sung Park and Sung-Kwun Oh

Abstract: In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) mod-
els, analyze the underlying architectures and propose a comprehensive identification framework.
The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM cluster-
ing and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic
inference mechanism. By this nature, this FNN model is geared toward capturing relationships
between information granules known as fuzzy sets. The form of the information granules them-
selves (in particular their distribution and a type of membership function) becomes an important
design feature of the FNN model contributing to its structural as well as parametric optimization.
The identification environment uses clustering techniques (Hard C – Means, HCM) and exploits
genetic optimization as a vehicle of global optimization. The global optimization is augmented
by more refined gradient-based learning mechanisms such as standard back-propagation. The
HCM algorithm, whose role is to carry out preprocessing of the process data for system model-
ing, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-
FNN (such as apexes of membership functions, learning rates and momentum coefficients) are
adjusted using genetic algorithms. An aggregate performance index with a weighting factor is
proposed in order to achieve a sound balance between approximation and generalization (predic-
tive) abilities of the model. To evaluate the performance of the proposed model, two numeric
data sets are experimented with. One is the numerical data coming from a description of a cer-
tain nonlinear function and the other is NOx emission process data from a gas turbine power
plant.

Keywords: Multi-FNN (Fuzzy Neural Networks), information granules, evolutionary fuzzy
granulation, linear fuzzy inference, HCM clustering, genetic algorithms (GAs), design method-
ology.

1. INTRODUCTION

The design of mathematical models is inherently
associated with a panoply of complex and uncertain
issues. Recently, much research has been accom-
plished by developing a broad range of fuzzy neural
networks (FNNs) – systems that synergistically com-
bine the capabilities of fuzzy sets of handling uncer-
tain (granular) information and essential learning fea-
tures of neural networks.

Fuzzy set theory has been introduced [1] to model
uncertain and/or ambiguous characteristics present in
any experimental data. Since its inception, the re-

search of fuzzy logic has been a focal point of various
endeavors and demonstrated many fruitful results
both in theory and application.

In early approaches, the generation of fuzzy rules
and the ensuing adjustments (optimization) of their
membership functions were done by trial and error
on a basis of available operator’s experience. Subse-
quently, designers find it difficult to develop adequate
fuzzy rules and membership functions to reflect the
essence of the data. This became even more profound
when dealing with multidimensional data. Moreover,
some useful information easily gets lost or ignored
when human operators articulate their experience in
the form of linguistic rules. A collection of manually
developed fuzzy rules usually proves to be subopti-
mal. Consequently, there has arisen a genuine need
for a sound optimization environment to construct
and/or adjust a collection of linguistic rules. While
there has been an impressive array of neuro-fuzzy
approaches, comprehensive solutions are still to be
developed. Interestingly, in this synergistic arrange-
ment of fuzzy sets and neural networks, they tend to

Manuscript received April 23, 2002; accepted March 24,

2003.This study was supported by the Korea Energy Man-
agement Corporation (2001).

Ho-Sung Park is with the Department of Electrical Elec-
tronic & Information Engineering, Wonkwang University,
Korea. (e-mail:neuron@wonkwang.ac.kr).

Sung Kwun Oh is with the Department of Electrical
Electronic & Information Engineering, Wonkwang Univer-
sity, Korea. (e-mail:ohsk@wonkwang.ac.kr).

International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

195

compensate for disadvantages of these two technolo-
gies when being used in the context of fuzzy rule-
based models. The essential advantage of neural net-
works lies in their adaptive nature and mechanisms of
learning from historical data. In the context of rules,
the learning concerns the parameters of the member-
ship functions.

Takagi and Hayashi [2] proposed a fuzzy inference
method driven by neural networks. Horikawa [3] dis-
cussed a neuro-fuzzy topology in which optimization
is based on gradient-based update mechanisms. Ima-
saki [4] introduced structured neural networks whose
fuzzy rules consist of premise network, inference
network, and consequence network. Nomura [5] pro-
posed an auto-tuning method of fuzzy inference based
on the delta rule. The problems reported there con-
cerned the number of membership functions that fluc-
tuated throughout the learning. Furthermore, the
numbers of fuzzy rules increase with the addition of
extra variables.

In this paper, we use a generic FNN model based
on linear inference method as a fuzzy inference
method. The basic FNN combines fuzzy “If-then”
rules with neural networks that are learned (opti-
mized) by means of the standard back-propagation
algorithm. The structure of the network is constructed
by partitioning fuzzy input-output space for each in-
dividual input variable. While conceptually simple,
this approach exhibits a certain drawback: eventual
relationships existing between the variables cannot be
captured in this manner and reflected in the form of
the ensuing fuzzy sets. To deal with shortcomings, we
propose an idea of Multi-FNNs. First, a HCM cluster-
ing algorithm is used that carries out the input-output
data preprocessing of all input variables viewed en
block and develops a family of submodels that cope
with homogeneous subsets of experimental data. Next,
we use GAs [6-8] to support an overall optimization
of the network. We introduce an aggregate objective
function [9] that takes into account both training data
and testing data. This index aims at achieving a sound
balance between approximation and prediction capa-
bilities of the proposed model.

At the experimental end, the proposed model is ap-
plied to numerical data of some three-variable nonlin-
ear function [3, 10-12] and NOx emission process
data of a gas turbine power plant [13].

2. MULTI-FNN BASED ON INFORMATION

GRANULATION

In this section, we elaborate on the architecture and
design process of Multi-FNNs. The architecture of the
Multi-FNNs is based on a compressive and efficient
framework of information granules with the aid of the
HCM clustering method, and comes with fuzzy
granulation formed through the space partition of the

input variables of each single-FNN.

2.1. Linear fuzzy inference-based FNN
Here we discuss a type of “if-then” rules along

with its development mechanisms of which the con-
clusion part comes with a linear fuzzy inference.

In this sense, the conclusion is expressed in the
form of a linear relationship between inputs and an
output variable. The basic model of the proposed
Multi-FNN comes in the form shown in Fig. 1.

The fuzzy sets formed in the individual spaces
(variables) form a preprocessing block of the FNN.
The improved speed of learning is attributed to the
usage of this interface.

The notation used in Figure 1 requires some clari-
fication. The “boxes” and “circles” denote units of the
FNN while “N” identifies a normalization procedure
applied to the membership grades of the input vari-
able xi. The output fi(xi) of the “∑” neuron is de-
scribed by the nonlinear function fi. (We do not re-
strict ourselves to standard sigmoid functions as being
commonly encountered in conventional neural net-
works).

The output of the FNN ŷ is governed by the fol-
lowing expression,

1 1 2 2
1

ˆ () () () ()
m

m m i i
i

y f x f x f x f x
=

= + + = ∑" . (1)

with m being the number of the input variables (viz.
the number of the output fi’s of the “Σ” neurons in the
network). As previously mentioned, FNN is implied
by the introduced fuzzy partition of each input vari-
able. In this sense, we can regard each fi given by (1)
as the following mapping (rule),

0j
i ij ij ij i ijR : IF x is A then y w x wa= + . (2)

N

N

x1

xi

ŷ

∑

1

f1(x1)

fi(xi)

N

N

1

Π

Π

Π

Π

∑

∑

∑

∑

∑

∑

w011

w01j

w0i1

w0ij

wai1

waij

wa11

wa1j

A11

A1j

Ai1

Aij

)(iij xµ

Fig. 1. Linear fuzzy inference-based basic FNN structure.

196 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

To be more specific, Rj is the j-th fuzzy rule while
Aij denotes a fuzzy variable of the premise of the cor-
responding fuzzy rule and represents membership
function µij as shown in Fig. 2. w0ij and waij are con-
stants of the consequence of the corresponding fuzzy
rule. They express a connection (weight) existing be-
tween the neurons as we have already visualized in
Fig. 1.

Furthermore we confine ourselves to triangular
membership functions and make their membership
grades sum up to 1 (so as to lead to a fuzzy partition
of the variable). Each membership function in the
premise part of the fuzzy rule is assigned to be com-
plementary with neighboring ones in the form being
shown in Fig. 2.

The numeric mapping from xi to fi(xi) is determined
by fuzzy inferences and a standard defuzzification.
The inference result coming from (2) follows a stan-
dard center of gravity aggregation.

() () () ()
n n

i i ij i ij i ij ij i
j 1 j 1

f x µ x w0 x wa µ x
= =

= ⋅ +∑ ∑ . (3)

In light of the properties of the fuzzy partition, we
note that the input signal ix activates only two
neighboring membership functions labeled here by k
and k+1 referred to in Fig. 2. Subsequently, (3) can be
expressed as,

()() ()()
() .

() ()
ik i ik i ik ik 1 i ik 1 i ik 1

i i
ik i ik 1 i

µ x w0 xwa µ x w0 x wa
f x

µ x µ x
+ + +

+

+ + +
=

+

The sum of the grades of these two neighboring
membership functions labeled by k and k+1 is always
equal to 1, that is, 1() () 1ik i ik ix xµ µ ++ = . Then (4)
reduces to the form.

() () ()
() ()

i i ik i ik i ik

ik 1 i ik 1 i ik 1

f x µ x µ0 x wa
µ x µ0 x wa+ + +

= ⋅ +

+ ⋅ +
 (5)

The learning of the FNN is realized by adjusting
the connections of the neurons; the modifications of
their values, w0ij and waij, are accomplished through
standard Back-Propagation (BP) algorithms. In this
study, we use two measures (performance indexes).
• The use of the Euclidean error as a performance

measure,
2ˆ()p p pE y y= − (6)

ikµ 1+ikµ
ijµ

minx maxxix

)(1 iik x+µ

)(iik xµ

1

Fig. 2. MF definition before tuning (genetic optimization).

where, Ep is an error for the p-th data, yp is the p-th
target output data and ˆ py stands for the p-th actual
output of the model for this specific data point. For m
input-output data pairs, an overall (global) perform-
ance index comes as a sum of the errors.

2

1

1 ˆ() .
m

p p
p

E y y
m =

= −∑ (7)

• An average percentage-based error (APE) that as-
sumes the form,

1

ˆ1 100(%).
m p p

pp

y y
E

m y=

−
= ×∑ (8)

As far as learning is concerned, the connections
(here, wa) change in a standard fashion,

() ()wa new wa old wa= + ∆ (9)

where, the updated formula follows the gradient de-
scent method, namely

p
ij a

ij

E
wa η

wa

 ∂
∆ = −  ∂ 

 (10)

with aη being a positive learning rate.
Moreover we have,

ˆ ()
.

ˆ ()
p p p i i

ij p i i ij

E E y f x
wa y f x wa
∂ ∂ ∂ ∂

− = − ⋅ ⋅
∂ ∂ ∂ ∂

 (11)

Combining (6) and (7), we derive,

())ˆ(2ˆ
ˆˆ

2
pppp

pp

p yyyy
yy

E
−=−

∂
∂

−=
∂

∂
− ,

ˆ
1, ().

()
p ij

ij i
i i ij

y Cy
x

f x wa
µ

∂ ∂
= =

∂ ∂
 (12)

Finally, we obtain,

ˆ() ()ij a p p ij iwa 2 η y y µ x∆ = ⋅ ⋅ − ⋅ (13)

Quite commonly to accelerate convergence, a mo-
mentum term is added to the learning expression. The
momentum itself is defined in the form,

() () ()ij ijm t wa t wa t 1= − − (14)

Finally, the complete updated formula combining
the already discussed components reads as,

ˆ() ()

(() ())
ij a p p ij i i

a ij ij

wa 2 η y y µ x x

α wa t wa t 1

= ⋅ ⋅ − ⋅ ⋅

+ − −
 (15)

Here, the momentum coefficient, αa is confined to the
unit interval.

2.2. Multi-FNN structure

Conventional FNNs use HCM (Hard C-Means)

(4)

International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

197

clustering to determine values of some initial parame-
ters of membership function through partition of the
input space of systems [14]. In this study, we develop
individual FNNs on the basis of some clusters of data
being constructed through HCM clustering. The
number of clusters corresponds to the number of the
models (FNN structures), see Fig. 3. A bank of FNNs
is used in parallel to build an overall model. Note that
the data belonging to different clusters support the
construction of the individual models.

2.3. HCM clustering method

It is worth emphasizing that the HCM clustering
method has been used extensively not only to organ-
ize and categorize data, but it becomes useful in data
compression and model identification. For the sake of
completeness of the entire discussion, let us briefly
recall the essence of the HCM algorithm.

Suppose that we are given a set of data X={x1, x2,
…, xn}, where xk =[xk1, …, xkm], n is the number of
data and m is the number of variables. Let P(X) be
the power set of X, that is, the set of all the subsets of
X. A hard c-partition of X is the family
{ () :1 }iA P X i c∈ ≤ ≤ such that 1

c
ii A X= =∪ and

i jA A φ∩ = for1 i j c≤ ≠ ≤ . Each Ai is viewed as a
cluster, so {A1, …, Ac} partitions X into c clusters.
The hard c-partition can be reformulated through the
characteristic (membership) function of the element
xk in Ai. Specifically, define

1,
0,

k i
ik

k i

A
u

A
∈

=  ∉

x
x

where, k X∈x , ()iA P X∈ and i=1,2,…,n. Clearly,
uik=1 means that xk belongs to cluster Ai. Given the
value of uik, we can uniquely determine a hard c-
partition of X, and vice versa. The elements of the
partition matrix uik satisfy the following three condi-
tions:

{0,1}iku ∈ , 1 i c≤ ≤ , 1 k n≤ ≤ (16)

1
1

c

ik
i

u
=

=∑ , k {1,2, ,n}∀ ∈ " (17)

Cluster 1

Output

Cluster n

Genetic
Algorithms

Objective function with
weighting factor : f(PI, E_PI)+

I/O data Partition of
Data

Partition of
Data ∑Decision of

No. of clusters

Cluster 2

Input 1

Input 2

Input n

Output 1

Output n

FNN 1

FNN 2

FNN n

HCM
Clustering

Selection of fuzzy inference
method : Simplified & Linear +

Fig. 3. Multi-FNN structure and ensuing development
environment.

1
0

n

ik
k

u n
=

< <∑ , i {1,2, ,c}∀ ∈ " (18)

At the interpretation end, (16) and (17) mean that
each k X∈x should belong to one and only one
cluster. (18) requires that each cluster Ai must contain
at least one and at most n-1 data point. By collecting
uik with 1 i c≤ ≤ and 1 k n≤ ≤ into a c×n matrix
U=[uik], we obtain the matrix representation for hard
c-partition, defined as follows.

1 1
| {0,1}, 1, 0

c n

C ik ik ik
i k

M u u u n
= =

  = ∈ = < < 
  

∑ ∑U

(19)

Step 1: Fix the number of clusters (2)c c n≤ <

and initialize the partition matrix (0)
CM∈U

Step 2: Calculate the center vectors vi of each clus-
ter:

()
1 2{ , , , , , }r
i i ij imi v v v v=v " " (20)

() () ()

1 1

n n
r r r

kjij ik ik
k k

v u x u
= =

= ⋅∑ ∑

Where, [uik]= U(r), i = 1, 2, …,c, j=1, 2, …,m.
Step 3: Update the partition matrix U(r); these

modifications are based on the standard Euclidean
distance function between the data points and the pro-
totypes,

1/ 2
2

1
() ()

m

ik k i k i kj ij
j

d d x v
=

 
 = − = − = −
  
∑x v x v

(21)

() ()
(1) 1 min{ } for all

0 otherwise

r r
r ik jk

ik
d d j c

u +  = ∈= 


(22)

Step 4: Check the termination criterion. If

|| U(r+1) − U(r)|| ε (tolerance level)≤ (23)

Stop; otherwise set r=r+1 and return to Step 2
According to the procedure, training data is parti-

tioned as several groups based on its characteristics.
We calculate the distance between the center vector

of each partitioned training data group and testing
data by (21), and then testing data are partitioned
close to the center vector of each partitioned training
data group. Here, vi is the center value of the training
data, but when we partition the training data, xk repre-
sents the training data and when we partition the test-
ing data, xk represents the testing data. Partitioned
data are then used towards the design of the individ-
ual FNNs.

198 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

HCM
Clustering

Training Data

Testing Data
Partition of Testing Data by

center vector of Training Data

Cluster center of Training
Data

Partitioned Training Data

Partitioned Testing Data

(1) (2) (3)

(4) (5) (6)

Fig. 4. Partition of training and testing data.

The partition of training and testing data is sche-
matically visualized in Fig. 4. Partitioning of the
training data is shown through phases (1) - (3), Fig. 4.
The way in which the testing data are processed on
the basis of the previously constructed cluster centers
is displayed as phase (5). Finally, the testing data set
is partitioned as visualized by (6) in Fig. 4.

3. OPTIMIZATION OF THE FNN MODEL

The task of optimizing any complex model in-
volves two main problems. Firstly, a class of some
optimization algorithms must be chosen so that it is
applicable to the requirements implied by the problem
at hand. Secondly, various parameters of the optimi-
zation algorithm must be tuned in order to achieve the
best performance of the algorithm.

Genetic algorithms (GAs) are optimization tech-
niques based on the principles of natural evolution. In
essence, they are search algorithms that use opera-
tions found in natural genetics to guide a comprehen-
sive search over the parameter space. GAs have been
theoretically and empirically proven to provide robust
search capabilities in complex spaces offering a valid
approach to problems requiring efficient and effective
searching.

To determine suitable values of the parameters for
any given problem, GAs is developed.

3.1. Genetic algorithms

The need to handle optimization problems whose
objective functions are complex and non-
differentiable arises in many areas of system analysis
and synthesis. While there are a number of analytic
and numerical optimization techniques aimed at these
tasks, there exists a wide range of problems that are
out of reach by standard gradient-oriented techniques.
Among objective functions that are highly challeng-
ing to these classical methods are those that are non-
convex, multi-modal, and noisy [8].

Genetic algorithms [6-8] have proven to be useful

in the optimization of such problems because of their
ability to efficiently use historical information to ob-
tain new solutions with enhanced performance and
the global nature of search supported there. Genetic
algorithms are also theoretically and empirically
proven to support robust searches in complex search
spaces. Moreover, they do not get trapped in local
minima as opposed to gradient decent techniques be-
ing quite susceptible to this shortcoming. GAs are
population-based optimization techniques.

The search of the solution space is completed with
the aid of several genetic operators. There are three
basic genetic operators used in any GA- supported
search, reproduction, crossover and mutation. Repro-
duction is a process in which the mating pool for the
next generation is chosen. Individual strings are cop-
ied into the mating pool according to their fitness
function values. Crossover usually proceeds in two
steps. First, members from the mating pool are mated
at random. Second, each pair of strings undergoes
crossover as follows: a position l along the string is
selected uniformly at random from the interval [1, l-
1], where l is the length of the string.

Two new strings are created by swapping all char-
acters between the positions k and l. Mutation is a
random alteration of the value of a string position. In
a binary coding, mutation means changing a zero to a
one or vice versa. Mutation occurs with small prob-
ability. Those operators, combined with the proper
definition of the fitness function, constitute the main
body of the genetic computation. A general flowchart
of the genetic algorithm is shown in Fig. 5.

In this paper, for the optimization of the FNN
model, GAs use the binary type serial method, rou-
lette-wheel in the selection operator, one-point cross-
over in the crossover operator, and inversion in the
mutation operator. Here, we use 100 generations, 60
populations, 10 bits per string, a crossover rate equal
to 0.6, and mutation probability equal to 0.1. Fig. 7
shows how a string is composed in GAs. Where, vari-
able x1, x2, …, and xk denote input variables, learning

Start

Initialization
(computing a random population)

Evalution
(calculation of fitness)

Reproduction
(Crossover & Mutation)

Selection

Solution found Stop
YES

NO

Fig. 5. A general GA flowchart.

International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

199

Generation

Population
(Individual)

Variable

Chromosome
(String)

Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5

Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5

c11 c12 c21 c22 ck1

x1 xkx2

0 1 1 0 0 1 0 1 1 1

Fig. 6. Data structure of genetic algorithms for opti-

mization of the FNN model.

rate, and momentum coefficient of the FNN model, cij
denotes the vertical point of membership functions
for each input variable, learning rate, and momentum
coefficient.

3.2. The objective function with a weight factor

The objective function (performance index) is a ba-
sic instrument guiding the evolutionary search in the
solution space [9]. The objective function includes
both the training data and testing data and comes as a
convex sum of two components,

(, _) (1) _f PI E PI PI E PIθ θ= × + − × (24)

PI and E_PI denote the performance index for the
training data and testing data, respectively. Moreover
θ is a weighting factor that allows us to strike a bal-
ance between the performance of the model for the
training and testing data. Depending upon the values
of the weighting factor, several specific cases of the
objective function are worth distinguishing.

If 1θ = then the model is optimized based on the
training data. No testing data is taken into considera-
tion.

If 0.5θ = then both the training and testing data
are taken into account. Moreover, it is assumed that
they exhibit the same impact on the performance of
the model.

The case θ α= where [0, 1]α ∈ embraces both
the cases stated above. The choice of α establishes
a certain tradeoff between the approximation and
generalization aspects of the FNN model.

The performance index used in the ensuing nu-
merical experiments will be as Euclidean distance,
see (7) and (8) while θ is regarded as an extra pa-
rameter.

4. SIMULATION AND DISCUSSION OF

RESULTS

Once the identification methodology has been es-
tablished, we proceed with intensive experimental
studies. In this section, we provide three numerical
examples to evaluate the advantages and the effec-
tiveness of the proposal approach. These include the

numerical data of three-input nonlinear function [3,
10-12] and the NOx emission process data of a gas
turbine power plant [13]. The performance indexes
(PI) used here are: (7) for NOx emission process data
and (8) for the three-variable nonlinear function.

4.1. Three-input nonlinear function

In this experiment, we use the same numerical data
as in the existing literature, cf. [3,10-12]. The nonlin-
ear function to be modeled is expressed as

0.5 1 1.5 2
1 2 3(1)y x x x− −= + + + . (25)

We’ve considered 40 pairs [11] of the original in-
put-output data. 20 out of the 40 pairs of input-output
data are used as a learning set; the remaining portion
serves as a testing set. The performance index is de-
fined by (8). Here the number of membership func-
tions for each input variable is set to three. As shown
in Table 1, we can achieve enhanced performance of
Multi-FNNs by the HCM data partition with c=2, in
comparison to any arbitrary data partition.

Fig. 7 visualizes the final results (listed in Table 1)
treated as a function of the weighting factor θ .

(a) PI (b) E_PI

Fig. 7. Performance index of Multi-FNN treated as a
function of θ .

Table 1. Performance Index in the number of clusters,
c=2.

Arbitrary data partition
FNN 1 FNN 2 Final result θ

PI E_PI PI E_PI PI E_PI
0.0 2.813 2.993 2.380 3.710 2.597 3.351
0.25 3.159 3.033 2.439 3.304 2.799 3.168
0.5 2.790 3.209 1.721 3.473 2.255 3.341
0.75 1.961 4.610 1.682 4.236 1.821 4.423
1.0 1.907 4.445 1.491 5.958 1.699 5.201

Partitioned data by HCM clustering
FNN 1 FNN 2 Final result θ

PI E_PI PI E_PI PI E_PI
0.0 1.057 1.143 4.356 0.197 2.706 0.670
0.25 0.491 1.200 0.711 0.574 0.601 0.887
0.5 0.304 1.274 0.666 0.615 0.485 0.945
0.75 0.381 1.270 0.614 0.636 0.497 0.953
1.0 0.320 1.311 0.633 1.097 0.477 1.204

200 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

0 0.25 0.5 0.75 1.0
0

0.5

1

1.5

2

2.5

3

No. of ClustersShape
1
2
3
4
5

θ

PI

0 0.25 0.5 0.75 1.0
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
No. of ClustersShape

1
2
3
4
5

θ

E_PI

0 0.25 0.5 0.75 1.0
0

0.5

1

1.5

2

2.5

3

No. of ClustersShape
1
2
3
4
5

θ

f(
PI

, E
_P

I)

Fig. 8. Performance index of Multi-FNN treated as a

function of the weighting factor for selected
number of the clusters.

Table 2. Comparison of identification errors for se-
lected fuzzy models.

MODEL PI E_PI
Type 1 0.84 1.22 Shinichi's

Model [3] Type 2 0.73 1.28
Model I 1.5 2.1 Sugeno's

Model [10] Model II 1.1 3.6
Linear model [11] 12.7 11.1

GMDH [12] 4.7 5.7
θ =0.5 2.670 3.063

Single-FNN
Linear

fuzzy infer-
ence θ =1.0 2.652 3.309

θ =0.5 0.174 0.689
θ =0.75 0.210 0.679Our model

Linear
fuzzy infer-

ence θ =1.0 0.168 1.182

Fig. 8 depicts the values of the performance index

of Multi-FNNs treated as a function of the weighting
factor and the number of the clusters.

The preferred results (that is PI=0.174, E_PI=
0.689) are reported when using three clusters and
when setting the weighting factor (θ) to be equal to
0.5.

Table 2 contains a comparative analysis including
several previous models. Sugeno’s fuzzy models I
and II are based on the linear inference method while
Shinichi’s models are fuzzy models obtained by using
the back-propagation algorithm of fuzzy-neural net-
works. Compared with these models, the Multi-FNNs
emerge as the ones with high accuracy and improved
prediction capability.

4.2. NOx emission process of a gas turbine power

plant
The NOx emission process is also modeled using the

data from gas turbine power plants. Until now, almost
all NOx emission processes are based on a “standard”
mathematical model in order to obtain regulation data
from the control process. However, such models do not
develop the relationships between variables of the NOx
emission process and parameters of its model in an
effective manner. A NOx emission process of a GE gas
turbine power plant located in Virginia, U. S. A., has
been chosen in this modeling study.

The input variables include AT (Ambient Tempera-
ture at site), CS (Compressor Speed), LPTS (Low

Pressure Turbine Speed), CDP (Compressor Dis-
charge Pressure), and TET (Turbine Exhaust Tem-
perature). The output variable is NOx [13]. The per-
formance index is defined by (7).
Using NOx emission process data, the regression
equation (model) reads as follows

1 2

3 4 5

163 77341 0 06709 0 00322
0 00235 0 26365 0 20893

y - . - . x . x
. x . x . x

= +
+ + +

 (26)

This simple model comes with the value of
PI=17.68 and E_PI=19.23. We will be using these
results as a reference point when discussing FNN
models.

The comparison of the performance index of the
HCM - partitioned data (c=2) with an arbitrary data
partition is shown in Table 3. It becomes apparent that
the clustering contributes to the improved perform-
ance of the model.

The performance of the model is also visualized in
Fig. 9.

In the case of the NOx emission process of a gas
turbine power plant, this dataset comes with four or
more input variables and exhibits strong nonlinear

Table 3. Performance Index in case of data partition-
ing into two clusters, c=2.

Arbitrary data partition
FNN 1 FNN 2 Final result θ

PI E_PI PI E_PI PI E_PI
0.0 0.500 0.778 0 278.2 0.250 139.4
0.25 0.525 0.945 0.004 283.0 0.265 142.2
0.5 0.394 0.963 0.004 283.0 0.199 142.0
0.75 0.450 0.966 0.001 286.6 0.225 143.8
1.0 0.444 1.156 0 484.0 0.222 242.5

Partitioned data by HCM clustering
FNN 1 FNN 2 Final result θ

PI E_PI PI E_PI PI E_PI
0.0 0.907 1.297 4.570 5.507 2.457 3.013
0.25 0.777 1.597 3.270 5.086 1.832 3.019
0.5 0.860 1.416 2.843 4.927 1.699 2.847
0.75 0.702 1.618 2.924 6.791 1.642 3.727
1.0 0.746 1.951 0.162 139.5 1.256 58.04

0 0.25 0.5 0.75 1.0
0

0.5

1

1.5

2

2.5

3

3.5

4

 : By arbitrary data partition
 : By HCM Clustering

θ

PI

0 0.25 0.5 0.75 1.0

0

50

100

150

200

250

 : By arbitrary data partition
 : By HCM Clustering

θ

E_PI

 (a) PI (b) E_PI

Fig. 9. Performance index of Multi-FNNs treated as a
function of θ .

International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

201

Table 4. Performance index vis-a-vis the changes in
the number of MFs and the type of fuzzy in-
ference method.

PI
No. of MFs
per input

Tr_PI Va_PI Te_PI

2 14.509 13.700 4.605

3 8.763 10.924 3.613

6 3.810 5.782 2.457

Table 5. Performance Index according to the number
of clusters.

Multi-FNN Single-
FNN Cluster 2 Cluster 3 Cluster 4θ

PI E_PI PI E_PI PI E_PI PI E_PI
0.0 4.461 5.496 2.457 3.013 1.348 2.122 1.092 2.214

0.25 3.910 5.776 1.832 3.019 1.169 2.049 1.431 2.152
0.5 4.038 6.028 1.699 2.847 1.140 2.653 1.076 2.250

0.75 3.620 5.560 1.642 3.727 1.054 3.078 0.720 2.025
1.0 3.795 6.814 1.256 58.04 0.840 3.183 0.793 2.910

characteristics. To determine the performance of the
fuzzy model, an overall dataset (260 pairs of I/O data)
is split into three parts, namely a training dataset (100
pairs of I/O data), validation dataset (100 pairs of I/O
data) and testing dataset (60 pairs of I/O data). Table
4 quantifies the values of the performance index
when varying selected parameters of the model.

Here, Tr_PI, Va_PI and Te_PI denote the perform-
ance index for the training dataset, validation dataset
and testing dataset, respectively. When the number of
membership functions for each input variable in
creases, we note enhanced performance of the model.

As shown in Table 4, in case of 6 MFs per input
variable, the variation ratio (slope) of the perform-
ance index of the single-FNN model does not change
radically. This led us to accept six fuzzy sets for each
input variable. Equally as in other experiments, the
NOx emission dataset is split into two parts, namely a
training dataset and a testing dataset.

Fig. 10 depicts the values of the performance index
of Multi-FNNs that are treated as a function of the
weighting factor and the number of the clusters.

0 0.25 0.5 0.75 1.0
0.5

1

1.5

2

2.5

3

3.5

4

4.5

No. of ClustersShape
1
2
3
4

θ

PI

0 0.25 0.5 0.75 1.0
1

2

3

4

5

6

7

No. of ClustersShape
1
2
3
4

θ

E_PI

0 0.25 0.5 0.75 1.0
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

No. of ClustersShape
1
2
3
4

θ

f(
PI

, E
_P

I)

Fig. 10. Performance index of Multi-FNNs treated as

a function of the weighting factor for a se-
lected number of the clusters.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

FNN 1

FNN 3

FNN 4

FNN 2

PI

Generation
10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

FNN 1

FNN 3

FNN 4

FNN 2
E_PI

Generation
Fig. 11. Genetic optimization of the FNN model (θ =0.75).

Preferred results (that is PI=0.720, E_PI=2.025) are
reported when using four clusters with the weighting
factor (θ) equal to 0.75. Refer also to Fig. 10.

The results of the genetic optimization (four clus-
ters) are shown in Fig. 11.

5. CONCLUSION

In this paper, we proposed Multi-FNNs as parallel-
structures of fuzzy neural networks. The construction
of Multi-FNNs dwells on the hybrid technologies
combined with HCM clustering, linear fuzzy infer-
ence-based FNN, and genetic algorithms. Here, HCM
clustering is used not only to analyze data that is
characteristic of nonlinear and complex actual sys-
tems but also to construct a well-organized and effec-
tive model. Further, an efficient identification tech-
nique is presented that automatically extracts the op-
timal parameters of the FNN using the genetic algo-
rithm and the weighting factor of an objective func-
tion. The underlying idea deals with the optimization
of information granules by exploiting techniques of
clustering and evolutionary computing.

The experimental studies clearly revealed that we
could obtain superior performance (both approxima-
tion and generalization capabilities) for two com-
monly used experimental datasets.

REFERENCES
[1] L. A. Zadeh, “Fuzzy sets,” Inf. Control 8, pp

338-353, 1965.
[2] H. Takagi and I. Hayashi, “NN-driven fuzzy rea-

soning,” Int. J. of Approximate Reasoning, vol.5,
no.3, pp. 191-212, 1991.

[3] S. Horikawa, T. Furuhashi, and Y. Uchigawa,
“On fuzzy modeling using fuzzy neural net-
works with the back propagation algorithm,”
IEEE trans. Neural Networks, vol.3, no.5, pp.
801-806, 1992.

[4] N. Imasaki, J. Kiji, and T. Endo, “A fuzzy rule
structured neural networks,” Journal of Japan
Society for Fuzzy Theory and Systems, vol.4,
no.5, pp. 987-995, 1992 (in Japanese).

[5] H. Nomura and Wakami, “A self-tuning method
of fuzzy control by descent methods,” 4th
IFSA'91. pp.155-159, 1991.

[6] D. E. Golderg, Genetic Algorithm in search, Op-

202 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

timization & Machine Learning, Addison Wesley,
1989.

[7] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Springer-
Verlag, Berlin Heidelberg, 1996.

[8] D. Jong, K. A. Are Genetic Algorithms Function
Optimizers?, Parallel Problem Solving from Na-
ture 2, Manner, R. and Manderick, B. eds.,
North-Holland, Amsterdam.

[9] S. K. Oh and W. Pedrycz, “Identification of
fuzzy systems by means of an auto-tuning algo-
rithm and its application to nonlinear systems,”
Fuzzy Sets and Syst., vol. 115, no. 2, pp. 205-230,
2000.

[10] G. Kang and M. Sugeno, “Fuzzy modeling,”
Trans. SICE, vol. 23, no. 6, pp. 106-108, 1987(in
Japanese).

[11] M. Sugeno, Fuzzy Control. Tokyo, Japan:Nikkan
Kogyo Shimbun-sha, 1988 (in Japanese).

[12] T. Kondo, “Revised GMDH algorithm estimat-
ing degree of the complete polynomial,” Tran. of
the Society of Instrument and Control Engineers,
vol. 22, no. 9, pp. 928-934, 1986.

Ho-Sung Park received the B.S. and
M.S. degrees in control and instru-
mentation engineering from Wonk-
wang University, Korea in 1999 and
2001, respectively. He is currently a
Ph. D. student at the same institute.
His research interests include fuzzy
and hybrid systems, neurofuzzy
models, genetic algorithms, and

computational intelligence. He is a member of KIEE and
ICASE.

[13] G. Vachtsevanos, V. Ramani, and T. W. Hwang,
Prediction of Gas Turbine NOx Emissions using
Polynomial Neural Network, Technical Report,
Georgia Institute of Technology, Atlanta, 1995.

[14] S. K. Oh, K. C. Yoon, H. K. Kim, “The design of
optimal fuzzy-neural networks structure by
means of ga and an aggregate weighted per-
formance index,” The Institute of Control, Auto-
mation and Systems Engineers(ICASE), vol. 6,
no. 3, pp. 273-283, March 2000.

[15] B. J. Park, W. Pedrycz and S. K. Oh, “Identifica-
tion of fuzzy models with the aid of evolutionary
data granulation,” IEE Proc.-Control Theory and
Applications, vol. 148, Issue 05, pp. 406-418,
September 2001.

[16] S. K. Oh, Fuzzy Model & Control System by C-
Programming, Naeha press, 2002.

[17] S. K. Oh, Computational Intelligence by Pro-
gramming focused on Fuzzy, Neural Networks,
and Genetic Algorithms, Naeha press, 2002.

Sung-Kwun Oh received the B.S.,
M.S., and Ph. D. degrees in electrical
engineering from Yonsei University,
Seoul, Korea, in 1981, 1983 and 1993,
respectively. During 1983-1989, he
worked as the Senior Researcher in
the R&D Lab. of Lucky-Goldstar
Industrial Systems Co., Ltd. He was a
Postdoctoral fellow in the Department

of Electrical and Computer Engineering at the University
of Manitoba, Canada, from 1996 to 1997. He is currently
an Associate Professor in the School of Electrical, Elec-
tronic and Information Engineering, Wonkwang University,
Korea. His research interests include fuzzy systems, fuzzy-
neural networks, automation systems, advanced Computa-
tional Intelligence, and intelligent control. He is a member
of IEEE. He currently serves as an Associate Editor for the
Korean Institute of Electrical Engineers (KIEE) and the
Institute of Control, Automation & Systems Engineers
(ICASE), Korea.

