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Abstract: Multi-focus image fusion integrates images from multiple focus regions of the same scene
in focus to produce a fully focused image. However, the accurate retention of the focused pixels
to the fusion result remains a major challenge. This study proposes a multi-focus image fusion
algorithm based on Hessian matrix decomposition and salient difference focus detection, which can
effectively retain the sharp pixels in the focus region of a source image. First, the source image was
decomposed using a Hessian matrix to obtain the feature map containing the structural information.
A focus difference analysis scheme based on the improved sum of a modified Laplacian was designed
to effectively determine the focusing information at the corresponding positions of the structural
feature map and source image. In the process of the decision-map optimization, considering the
variability of image size, an adaptive multiscale consistency verification algorithm was designed,
which helped the final fused image to effectively retain the focusing information of the source image.
Experimental results showed that our method performed better than some state-of-the-art methods
in both subjective and quantitative evaluation.

Keywords: multi-focus image fusion; Hessian matrix decomposition; salient difference focus detection

1. Introduction

The limited depth of field of a camera causes it to only focus on one area of a scene,
which makes it impossible for it to focus on all objects simultaneously. Multi-focus image
fusion (MFIF) [1] aims to integrate multiple images of the same scene captured at different
focal length settings into a fused all-in-focus image, which can be considered a collection of
optimally focused pixels extracted from a set of source images. Fused images can provide
a more comprehensive, objective, and reasonable interpretation of a scene than single-
source images. Currently, MFIF is widely used in various fields, including microscopic
imaging, weather phenomenon detection, intelligent surveillance, and so on. MFIF methods
generally focus on the pixel level and can be approximately classified into deep-learning-,
transform domain-, and spatial domain-based methods.

Recently, deep-learning techniques have become popular in computer vision [2], and
several deep-learning-based image fusion methods have emerged [3–6]. Convolutional neu-
ral network (CNN) and adversarial generative network (GAN)-based fusion frameworks
are two commercial multi-focus image fusion frameworks. Liu et al. [7] first introduced
CNNs into the multi-focus fusion task. This scheme generates a focus decision map by
learning a binary classifier to determine whether each pixel is focused and optimizes this
map using postprocessing methods, such as consistency verification, to improve the quality
of the fusion results.

Amin-Naji et al. [6] proposed an ensemble-learning-based method that directly gener-
ates the final decision map by combining the decision maps of different models to reduce
the postprocessing steps and improve the computational efficiency of the fusion algorithm.
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Unlike CNN methods, decision graph-based GAN methods use generators to learn the
mapping relationship from source images to decision graphs and generate fusion results,
which also perform better in the field of multi-focus image fusion. Zhang et al. [4] proposed
an unsupervised GAN with adaptive and gradient joint constraints to fuse multi-focus
images, which effectively preserves their sharpness and textural details. Although deep-
learning-based methods can be rapidly developed in multi-focus image fusion, and in
turn, advance the technology, they also have the following drawbacks [8]: (1) Most deep-
learning-based methods use starkly different key points for different image task settings to
achieve good fusion performance. Different processing measures are designed for different
tasks, which results in insufficient generalizability of such methods. (2) Most supervised
methods use synthetic datasets. However, these training data are not consistent with real
multi-focus images. Consequently, they cannot efficiently process real multi-focus images.

Transform-domain-based methods involve three main steps: decomposition, fusion,
and reconstruction. The fusion process also includes the design of fusion rules, whereas
decomposition and reconstruction are performed using a certain decomposition tool of
the transform domain. Examples of classical algorithms are contrast pyramid [9], Laplace
pyramid [10], and discrete wavelet transform [11]. Subsequently, multiscale geometric
analysis tools with higher directional sensitivity than the wavelet transform were devel-
oped, such as nonsubsampled contourlet transform (NSCT) [12] and nonsubsampled
shearlet transform [13].

Recently, the method based on the transform domain has been actively used because of
its similarity to the human visual system, which is from close to fine. To improve the perfor-
mance of the multi-focus image fusion method based on the transform domain, Li et al. [12]
combined residual removal with NSCT to leverage the visual effect characteristics of the
transform domain at the focus edges. Sparse representation (SR)-based methods fuse in the
sparse domain and include image decomposition and reconstruction processes. Therefore,
SR [14] can serve as an important branch of transform domain technology. The core idea of
SR is that image signals can be represented as a linear combination of a “few” atoms from a
pre-learned dictionary. SR-based methods usually employ a sliding window technique to
achieve an approximately translational invariant fusion process.

Yang et al. [15] first introduced SR in multi-focus image fusion. However, the per-
formance of model fusion did not achieve satisfactory results owing to the use of a fixed-
basis-based dictionary. Zhang et al. [16] developed an image fusion algorithm based on
analytic–synthetic dictionary pairs, which effectively combines the advantages of analysis
and synthesis SR to improve the fusion performance of SR. With the development of SR,
convolutional SR [17] has been used to solve the block-effect problem that frequently occurs
with SR-based methods. In addition, SR methods based on low-rank sparse decomposition
and dictionary learning have emerged [18,19], and these methods generally achieve image
fusion and quality enhancement simultaneously.

Although the transform domain-based methods have superior performance and
powerful generalizability in image fusion, they also have three considerable draw-
backs: (1) Most multiscale transformation methods are inefficient in handling multilayer
and multidirectional decomposition, as details of the source image can be lost during
decomposition and reconstruction. (2) The sparse coding methods based on SR are
computationally complex and taxing, which is not conducive to practical applications.
(3) Inadequate consideration of spatial consistency in the fusion process can cause the
loss of spatial information, resulting in brightness or color distortion [20].

Spatial domain-based methods directly consider the intensity information of pixels on
the source image and can retain more spatial information of the source image compared to
the transform domain methods. Such methods can be broadly classified as pixel-, block-,
and area-based methods. The simplest pixel-based method directly averages all pixels on
the source image. However, this method is highly sensitive to noise and tends to lose detail
as the contrast decreases. Several block- and region-based methods have been developed
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recently [21–24] to solve this problem and more comprehensively consider the spatial
information of the source image.

In the block-based algorithm, the image is first decomposed into equal-size image
blocks, and then the focus measurement (FM) is used to determine the focus blocks. How-
ever, the approach of choosing an appropriate block size is a major challenge. Larger blocks
may contain pixels in both focused and out-of-focus regions, while smaller blocks are
not conducive to FM. To address these limitations, a previous study [23] used quadtree
decomposition in multi-focus image fusion.

Region-based algorithms [25] generally segment the source image into different regions
before fusion. Although they can avoid the block effect to a certain extent, when a region is
partially segmented, it will generate erroneous segmentation results and affect the quality
of fusion results. Regardless of the type of algorithm, block- or area-based, the goal is to
determine the focus characteristics of each pixel in the most appropriate way. Therefore,
FM plays a critical role as a tool in determining whether a pixel is in or out of focus. It is
highly dependent on the edge details and textural information of the image, which may
yield suboptimal results if FM is performed directly on the source image.

In addition, FM’s judgment of the pixel focus characteristics can be incorrect due to
the diversity and complexity of images, which usually occurs in the boundary between the
focused and out-of-focus regions of the image. This also leads to artifacts at the boundaries
of the fusion results of several sophisticated algorithms. To accurately determine the
focusing characteristics of pixels, this study proposes a multi-focus image fusion method.

First, the Hessian matrix is introduced to decompose the source image and obtain
the Hessian-matrix feature map of the source image, which highlights the significant
information. Meanwhile, to accurately determine the locations of the focused pixel points
and avoid interference from out-of-focus pixels at the focus boundary, a focus detection
method based on the salient difference analysis strategy is proposed. This method can
effectively detect pixels with significant activity using the significance difference between
pixels, so that the focus information of the source image can be effectively integrated into
the fused image.

The contributions of this study are as follows:

1. A simple yet effective multi-focus image fusion method based on the Hessian-matrix
with salient-difference focus detection is proposed.

2. A pixel salient-difference maximization and minimization analysis scheme is proposed
to weaken the influence of pixels with similar activity levels at the focus boundary. It
can effectively distinguish pixels in the focus and out-of-focus regions and produce
high-quality focus decision maps.

3. An adaptive multiscale-consistency-verification scheme is designed in the postpro-
cessing stage, which can adaptively optimize the initial decision maps of different
sizes, solving the limitations caused by fixed parameters.

The remainder of this paper is organized as follows: Section 2 introduces the Hessian
matrix. Section 3 details the proposed multi-focus image fusion algorithm based on the
Hessian matrix and focus difference analysis. Section 4 presents the experimental results
and comparative experiments. Finally, the conclusions of the study are presented in
Section 5.

2. Related Works
Hessian Matrix and Image Decomposing

In multi-focus images, the focused areas contain more significant information, such as
edges, structures, and textures, than the blurred areas. Generally, significant information is
detected in the source image before constructing the focus decision map. Most algorithms
based on FM are more sensitive to this edge and detail information. Therefore, the method
to effectively detect the detailed information within the focused region is the central prob-
lem of multi-focus image fusion research. Xiao et al. [26] proposed an image-decomposition
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strategy based on a multiscale Hessian matrix to make FM perform better and reduce image
blurring and pseudo-edge problems. The feature map obtained after image decomposition
by this matrix can clearly express the feature information of the source image and facilitate
the implementation of focus detection.

Source images fA and fB are used as the input, for which the Hessian matrix is defined
as follows:

H(x, y, σ) =

[
Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

]
(1)

where Lxx(x, y, σ) is the convolution of the Gaussian second-order partial derivative
∂2/∂x2g(σ) with image f at the point (x, y), and it is the same with Lxy(x, y, σ) and
Lyy(x, y, σ).

As a Hessian matrix can extract features with rotational invariance from images at
multiple scales [27], the Hessian matrix can be improved to a multiscale Hessian matrix
(MSH) weighted at different scales as follows:

MSH(x, y) =
n

∑
j=1

vj H
(
x, y, σj

)
(2)

where j is the j-th scale, n is the number of scales, and vj is the weight at scale j. Inspired by
reference [25], in this study, we take the weights v1 = 0.8 for scale σ = 0.4, and v2 = 0.2
for scale σ = 1.2. Based on Equation (2), the feature image FIM(x, y) of source images can
be extracted by setting the threshold λ as follows:

FIM(x, y) =
{

1, MSH(x, y) > λ
0, MSH(x, y) ≤ λ

(3)

We set λ = 0.0002 as the threshold for extracting the image features. For more
information about the Hessian matrix, read [26].

3. Proposed Multi-Focus Image Fusion Method
3.1. Overview

In this section, we present a detailed introduction to the multi-focus image fusion
method based on a Hessian matrix with significant difference focus detection. Figure 1
depicts the general framework of fusion to better illustrate the general flow of the pro-
posed algorithm. The proposed algorithm consists of four important stages: significant
information representation, pixel salient-difference analysis, focused decision map opti-
mization, and fusion result reconstruction. As shown in Figure 1, we decompose the source
image in the first stage using a multiscale Hessian matrix to obtain the feature region
map; subsequently, we use PSML and ML to process the feature region map to obtain four
salient images reflecting different information. In the second stage, we process the four
significant maps to obtain the initial focused decision map using the pixel salient-difference
analysis scheme, and the detailed procedure is given in Section 3.3. In the third stage,
the “bwareaopen” fill filter and the adaptive multiscale consistency verification algorithm
are used to optimize the initial decision map and increase its accuracy in determining the
focus properties of the pixels. In the final stage, the reconstruction of the fusion results is
completed after the final decision map is obtained.
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3.2. Significant Information Expression

The goal of multi-focus image fusion is to synthesize the focusing information from
each source image; therefore, to obtain a fully focused image, the pixels being focused
must be accurately determined. Typically, in multi-focus images, the focused area pixels
tend to be more prominent than the out-of-focus area pixels. Therefore, we can first obtain
the saliency map of the source image, and then determine the degree of pixel focus by
judging the saliency of pixels. Thus, the saliency decision map corresponding to the source
image can be obtained. The sum of the modified Laplacian (SML) is an effective tool for
representing the significant information in images. The mathematical expression of the ML
is as follows:

∇2
ML f (x, y) = |2 f (x, y)− f (x− step, y)− f (x + step, y)|

+|2 f (x, y)− f (x, y− step)− f (x, y + step)| (4)

where step denotes the step size, using variable spacing (step) between pixels to calculate
the ML and thus adapt to changes in texture size, which can usually be set to 1. The SML is
defined as follows:

SML( f (x, y), α) = ∑i=x+α

i=x−α ∑j=y+α

j=y−α
∇2

ML f (i, j) f or ∇2
ML f (x, y) ≥ L (5)

where α is the radius of the window, L is the threshold set to 0, and α is set to 3.
Traditional ML only considers the pixels around the central one in both horizontal and

vertical directions. Kong et al. [28] improved the traditional ML by considering the other
four pixels on the diagonal that contain critical information. The improved ML expression
is as follows:

∇2
ML f (x, y) = |2 f (x, y)− f (x− step, y)− f (x + step, y)|+ |2 f (x, y)−
f (x, y− step)− f (x, y + step)|+ |2 f (x, y)− f (x− step, y− step)−

f (x + step, y + step)|+ |2 f (x, y)− f (x− step, y + step)− f (x + step, y−
step)|

(6)
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So the improved SML (ISML) can be expressed as follows:

ISML( f (x, y), α) = ∑i=x+α

i=x−α ∑j=y+α

j=y−α
∇2

ML f (i, j) f or ∇2
ML f (i, j) ≥ L (7)

The ISML value of each pixel of the feature region map FIM obtained by Equation (3)
is expressed as follows:

MA = ISML(FIMA(x, y), α) (8)

MB = ISML(FIMB(x, y), α) (9)

where FIMA and FIMB are the feature region maps obtained by using the Hessian matrix
to decompose the source image fA and fB, respectively. Furthermore, MA and MB are the
saliency maps of FIMA and FIMB, respectively.

3.3. Pixel Salient Difference Analysis (PSDA)

First, we calculate its modified Laplace value within a small window near the pixel
origin (x, y).

SA(x, y) = ∇2
MLFIMA(x, y) (10)

SB(x, y) = ∇2
MLFIMB(x, y) (11)

To find the most and least salient pixel points in the source image, the maximum and
minimum ML maps of the source image are found, respectively, and are mathematically
expressed as follows:

Smax(x, y) = max(SA(x, y), SB(x, y)) (12)

Smin(x, y) = min(SA(x, y), SB(x, y)) (13)

where Smax(x, y) and Smin(x, y) are the maximum and minimum ML maps of all source
images, respectively. Smax can be approximated as a fully focused saliency map, while Smin
is a fully out-of-focus saliency map as ML can reflect the focusing information of the image,
and the salient information of each position of SA(x, y) and SB(x, y) is contained in Smax.
The difference salient map (DSM) between Smax and Smin can be calculated as follows:

DSM = Smax − Smin (14)

Meanwhile, the difference map (DM) between MA and MB can be calculated by:

DM = MA −MB (15)

As observed in the ISML maps in Figure 2, the significant information in the source
image can be effectively extracted using ISML. The DM is the difference map between
two ISML maps. Only the focused region in the source image was retained in the DM,
which can be clearly observed at the boundary between the focused and out-of-focus
areas. Although the scheme can effectively detect the focused pixels, it also detects some
false pixel information at the boundary of the salient map by DM. Figure 3 illustrates the
intermediate process of pixel salient-difference analysis.
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Smax and Smin in the figure represent the salient pixel information of fully focused
and fully out-of-focus images, respectively, whereas DSM reflects the maximum difference
of salient pixel information within the source image. Therefore, by comparing DM and
DSM, we can judge the salience of pixels in the source image, and then reflect the focusing
characteristics of those pixels. However, in the DM, MA and MB are the ISML maps of
the source image, and the difference between them is not as evident as Smax and Smin. We
propose the following rules to comprehensively consider DSM and DM, and thus obtain
the initial decision map (IDM):

IDM =

{
1, i f DM ≥ µ× DSM
0, otherwise

(16)

where µ is a custom threshold.

3.4. Focused Decision Map Optimization
3.4.1. Step 1—Small Area Removal Filter

Considering the inevitable presence of some wrongly selected pixel areas in the IDM.
The IDMs in Figure 4 reveal a few small, isolated areas in the focus region, which consist
of a few wrongly selected pixels. To solve this problem, we used the “bwareaopen” filter to
eliminate the isolated areas or holes containing the erroneous pixels in the focus area.

MDM = bwareaopen(IMD, S/45) (17)

where S represents the area of the source image. Equation (17) was used to eliminate
the isolated areas in the IMD smaller than S/45 using the “bwareaopen” filter to obtain the
middle decision map (MDM). Figure 4 illustrates the optimization process of the decision
map. Figure 4 reveals that, compared with the IMD, the MDM can further correct the
wrongly selected pixels in the decision map and improve the focus detection accuracy.
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3.4.2. Step 2—Adaptive multiscale consistency verification

Meanwhile, considering the consistency of the target, we used the consistency verifica-
tion technique [29] to optimize the MDM. The traditional consistency verification technique
only uses one window to determine whether the pixel is in the focus region.

M̂(x, y) =

 1, i f ∑
(a,b)∈δ

MDM(x + a, y + b) ≥ δ/2

0, otherwise
(18)

where δ denotes a square field window centered at (x, y). However, this type of method is
used with fixed window size and cannot effectively consider the values of the pixel under
a varying size, which can easily cause pixel judgment errors in the boundary area between
the focused and out-of-focus regions. Moreover, due to the diversity of images, a fixed
window size may have different effects on different decision maps, and even lead to serious
damage of the focus region in the decision map, introducing a large area of erroneous pixels.
Therefore, the selection of window size is crucial for consistency verification. We proposed
an adaptive multiscale consistency verification scheme to solve the problem effectively. We
set up two windows to determine whether the pixels were focused, and the mathematical
formula is expressed as follows:

FDM(x, y) =

 1, i f ∑
(a,b)∈δA

MDM(x + a, y + b)− ∑
(i,j)∈δB

MDM(x + i, y + j) ≥ ϕ2/2

0, otherwise
(19)

where δA and δB are two square domain windows of different sizes centered at (m, n),
δA = T2, δB = (T − 14)2. FDM is the final decision map. Assuming that the size of the
source image is M× N, ϕ = log2max(M, N)× 14 + 3. The final decision map in Figure 4
shows that the erroneously selected pixels at the boundary of the MDM have been removed,
and the focus boundary has become smooth and complete.

3.5. Fusion Result Reconstruction

With the final decision map FDM obtained, the fusion result can be derived from the
following equation:

F(x, y) =
{

fA(x, y), i f FDM(x, y) = 1
fB(x, y), otherise

(20)

4. Experiments
4.1. Experimental Setup

The results were compared with 11 state-of-the-art fusion methods to verify the validity
of the proposed method. Eight objective evaluation metrics were used for the quantitative
analysis, and the specific experimental setup is explained below.

4.1.1. Image Datasets

We used two of the most popular publicly available datasets for testing, one of which
is the “Lytro” dataset [30] of multi-focus color images (see Figure 5). The other is a
classic grayscale multi-focus image dataset. [Online]. Available: http://imagefusion.org/
(accessed on 20 October 2022). (see Figure 6).

http://imagefusion.org/
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4.1.2. Compared Methods

To verify the effectiveness and advancement of the proposed method, we compared
11 current state-of-the-art methods, as follows:

• Multi-focus image fusion based on NSCT and residual removal [12] (NSCT-RR).
• Multiscale weighted gradient-based fusion for multi-focus images [22] (MWGF).
• Multi-focus image fusion by Hessian matrix based decomposition [26] (HMD).
• Guided filter-based multi-focus image fusion through focus region detection [24] (GFDF).
• Analysis–synthesis dictionary-pair learning and patch saliency measure for image

fusion [16] (YMY).
• Image fusion with convolutional sparse representation [17] (CSR).
• Ensemble of CNN for multi-focus image fusion [6] (ECNN).
• Towards reducing severe defocus spread effects for multi-focus image fusion via an

optimization based strategy [5] (MFF-SSIM).
• MFF-GAN: An unsupervised generative adversarial network with adaptive and gradi-

ent joint constraints for multi-focus image fusion [4] (MFF-GAN).
• U2Fusion: A unified unsupervised image fusion network [31] (U2Fusion).
• IFCNN: A general image fusion framework based on convolutional neural network [32]

(IFCNN).
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Among them, NSCT-RR is a method of combining the spatial and transform domains.
MWGF, HMD, and GFDF are spatial domain methods based on focus detection, YMY
and CSR are methods based on SR, and ECNN, MFF-SSIM, MFF-GAN, U2Fusion and
IFCNN are methods based on deep learning. The 11 methods cover various types of current
multi-focus image fusion methods. In a sense, they also espouse the latest developments
in the field. Therefore, the performance of the proposed method will be validated by
comparison with them. The parameter settings of all 11 methods were identical to those in
the respective published literature.

4.1.3. Objective Evaluation Metrics

Objective evaluation has been a challenge in image fusion, and individual metrics
cannot effectively reflect the full information of the fusion results. Therefore, to compre-
hensively and effectively evaluate the fusion results of different algorithms to compare the
fusion performance, we used eight popular quantitative evaluation metrics for multi-focus
image fusion:

• Normalized mutual information (QMI) [33].
• Nonlinear correlation information entropy (QNCIE) [34].
• Gradient-based fusion performance (QG) [35].
• Image fusion metric based on a multiscale scheme (QM) [36].
• Image fusion metric based on phase congruency (QP) [37].
• Average gradient (AG) [38].
• Chen–Blum metric (QCB) [39].
• Chen-Varshney metric (QCV) [40].

More specifically, QMI is a measure of the mutual information between the fused image
and the source image, and QNCIE is used to measure the nonlinear correlation information
entropy between the fusion result and the source image; it can be seen that these two
metrics belong to the information theory-based metrics. QG is used to evaluate the amount
of edge information, and QM is an image fusion metric based on a multi-scale scheme
implemented using two-level Haar wavelets to measure the degree of edge preservation at
different scale spaces. QP is a phase congruency-based metric since the moments contain
corner and edge information of the image. Furthermore, the metric can be defined using
the principal moments of the image phase coherence. AG represents the average gradient.
A large value indicates that the fused image contains more gradient information, which
means better fusion performance. QCB is constructed based on local saliency, global saliency,
and similarity. It evaluates the fused image from the perspective of visual saliency. Both
QCB and QCV belong to human perception-inspired fusion metrics. The above eight metrics
can evaluate the fusion performance of different methods in a comprehensive way, which
makes our experiments more convincing.

For QCV, a smaller value indicates better performance, while a larger value means
better performance for the rest of the seven metrics.

4.1.4. Parametric Analysis

In the proposed method, two key parameters were to be analyzed: threshold µ in
Equation (16) and threshold T in Equation (18) that controls the size of windows δA and
δB. To find the appropriate parameters, we selected a set of images from Lytro as the test
images (Figure 7). First, we set the threshold T to 17 and varied µ. We observed that the
boundary of the focus region became blurred when µ > 0.55, and a boundary discontinuity
appeared at the site of the sportsman’s elbow. Meanwhile, when µ = 0.85, several small
black holes appeared in the focus area, which caused the final fusion to contain the wrong
pixel information. This scenario did not occur when µ = 0.4 or 0.45.
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Figure 7. Results of the analysis of the parameter µ. (a,b) Two multi-focus source images, and the
remainder are the final decision maps with different threshold values µ.

However, the golf club wielded by the sportsman can be observed. We observed that
the boundary of the club becomes particularly thick when the value of µ is too small or
significantly larger than the actual focused boundary. This results in residual artifacts at
the border of the fused image. In summary, the best performance for image fusion was
achieved when µ = 0.55. Hence, we set the threshold µ to 0.55.

µ was fixed at 0.55, and different thresholds T were separately set to find the best
T value. Table 1 lists the average of the scores of six evaluation metrics for different
parameters T on Lytro. The best scores are emboldened. As observed in the table, three
metrics achieved the best score when T = 15 or 17. In terms of all the values, the performance
of each metric was intermediate and high when T = 17. Hence, in this study, we set the
threshold T to 17.

Table 1. Average quantitative evaluation in terms of different T on the Lytro dataset.

T QMI QNICE QG QM QP AG QCB QCV

15 1.1703 0.8447 0.7266 2.9721 0.8501 6.9495 0.8085 20.6197
17 1.1675 0.8443 0.7261 2.9743 0.8526 6.9556 0.8088 17.3249
19 1.1656 0.8441 0.7253 2.9747 0.8519 6.9479 0.8077 16.5342
21 1.1646 0.8440 0.7244 2.9744 0.8499 6.9369 0.8078 16.5145
23 1.1637 0.8438 0.7232 0.9737 0.8478 6.9235 0.8076 16.7755

In summary, the values of the two key parameters can be set as (µ = 0.55, T = 17).

4.2. Subjective Analysis of the Fusion Results

The fusion results of the source image “children” in the Lytro dataset for different
methods are displayed in Figure 8. Each fusion image was subtracted from the same
source image to derive its own difference map. The cleaner the focused region in the
difference map, the better the performance of the method. The figures demonstrate that all
the methods obtained good fusion results. The difference map shows that the five methods
YMY, CSR, MFF-GAN, U2Fusion and IFCNN still contained several pieces of background
information in the out-of-focus region. Additionally, not all pixels of the fused image
originated from the focused region on the source image, which resulted in the loss of some
information and reduced the clarity of the image (Figure 8e,f,i–k).
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Figure 8. Fusion example 1: (a–l) Fusion results of NSCT-RR, MWGF, HMD, GFDF, YMY, CSR,
ECNN, MFF-SSIM, MFF-GAN, U2Fusion, IFCNN and the proposed method, respectively.

Although the other methods did not show this effect, MWGF, HMD, GFDF, and
ECNN also produced residual artifacts at the focus boundary, proving that none of them
could better preserve the boundary between the focused and out-of-focus regions of the
source image (Figure 8b–d,g). At the connection between the person’s hat and ear, the
NSCT-RR method produced a discontinuous focus boundary, and the MFF-SSIM method
produced blur at the boundary of the ear. The resulting fused image was inferior to the
image obtained by the proposed method in several aspects (Figure 8a,h). In contrast,
the focused region in the difference map of the proposed method was clean, and the
focused boundary was continuous (Figure 8j). This indicates that most of the focused
pixels in the source image were retained in the fusion result. In summary, the proposed
method efficiently preserved the visual quality of the fusion results, judged the pixel
focus characteristics, and led in terms of the overall performance compared to the 11
state-of-the-art methods.

The fusion results of the source image “globe” in the Lytro dataset obtained by
different methods are displayed in Figure 9. Figure 9a,b are two multi-focus source
images, and Figure 9c–l highlight the fusion results obtained by different methods.
For better comparison of the performances, local areas at the same location of each
fused image were enlarged. First, as indicated in red, the magnified area of Figure 9,
YMY, CSR, ECNN, MFF-GAN and U2Fusion produced images with blurred boundaries
(Figure 9g–i,k,l).
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Figure 9. Fusion example 2: (a,b) The source images. (c–n) Fusion results of NSCT-RR, MWGF,
HMD, GFDF, YMY, CSR, ECNN, MFF-SSIM, MFF-GAN, U2Fusion, IFCNN and the proposed
method, respectively.

Although the quality of fused images obtained by GFDF, MFF-SSIM and IFCNN
methods was improved, the clarity was lower (Figure 9f,j,m). A closer examination
of the edges of the person’s hand in the images under NSCT-RR, MWGF, and HMD
revealed discontinuities (Figure 9c–e). Compared with the above methods, the proposed
method produced the most continuous, complete, and clean focus boundary of the fused
image (Figure 9l). Hence, the algorithm can effectively transfer the focusing information
to the source image and effectively determine the focusing properties of the focusing
boundary pixels.

Figure 10 illustrates the fusion results of the synthetic multi-focus source image
“Woman in Hat” from the Grayscale dataset under different methods. Overall, all
methods achieved acceptable fusion results. However, as observed in Figure 10e–k,
the fusion results of YMY, CSR, ECNN, MFF-SSIM, MFF-GAN, U2Fusion and IFCNN
methods lost some source image focus information and produced blurriness. For
example, their difference maps revealed the presence of residual information in the
out-of-focus regions.
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Figure 10. Fusion example 3: (a–l) Fusion results of NSCT-RR, MWGF, HMD, GFDF, YMY, CSR,
ECNN, MFF-SSIM, MFF-GAN, U2Fusion, IFCNN and the proposed method, respectively.

The enlarged areas in Figure 10c–f confirmed that HMD, GFDF, YMY, and CSR could
not accurately segment the focal region, and even produced incorrect segments at the
boundaries. The MWGF method produced an evident artifact, which resulted in blurred
edges of the fusion results (Figure 10b). Further, the NSCT-RR method effectively preserved
the pixel information in the focused region on the source image (Figure 10a).

However, the performance of the proposed method for the retention of the focused
boundary was superior to that of NSCT-RR, as it produced better visual effects at the
boundary (Figure 10j). In summary, the proposed method distinguished the focused and
out-of-focus regions more accurately than the other methods, and the resulting fusion
results had better subjective visual performance.

4.3. Objective Analysis of the Fusion Results

In addition to the subjective visual comparison, we also objectively evaluated the 12
methods on the Lytro and Grayscale datasets. The top four scores are also indicated. As
indicated in Tables 2 and 3, the proposed method scored the best in terms of four indices,
QMI, QNICE, QG, and QCB. It also scored the best in terms of energy information, detail
information, and retention of human-eye visual effects. As indicated in Table 2, although
the proposed algorithm did not have the best scores on the remaining four metrics, the
scores of three metrics, QM, QP and AG, were among the top three, and the score of metric
QCV was above average. In addition, from Table 3, it can be found that the proposed
algorithm had the top four scores in two metrics, QM and QP, and although it performed
poorly in the remaining metrics AG and QCV, the performance of the proposed algorithm
was still in the leading position among all metrics.
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Table 2. Average experimental results of different MFIF methods on the Lytro dataset.

Method
Lytro Dataset

QMI QNICE QG QM QP AG QCB QCV

NSCT-RR [12] 1.1558(3) 0.8433(3) 0.7233(2) 2.9745(2) 0.8537(2) 6.9235 0.8077(2) 16.5356(3)
MWGF [22] 1.0800 0.8388 0.6962 2.9657 0.8299 6.8161 0.7883 19.0492
HMD [26] 1.1617(2) 0.8436(2) 0.7229(3) 2.9749 0.8517(4) 6.9344(4) 0.8070(3) 16.0576(2)
GFDF [24] 1.1433(4) 0.8424(4) 0.7169 2.9723(4) 0.8540 6.9003 0.8055(4) 15.8881
YMY [16] 0.9575 0.8308 0.6841 2.9450 0.8420 6.3056 0.7548 24.9025
CSR [17] 0.9271 0.8293 0.6267 2.9477 0.8317 6.2769 0.703 23.3846

ECNN [6] 1.1091 0.8403 0.7052 2.9698 0.831 6.9172 0.7981 16.5572(4)
MFF-SSIM [5] 1.1056 0.8402 0.7202(4) 2.9722 0.8509 6.9664 0.7994 17.1171
MFF-GAN [4] 0.8549 0.8258 0.5934 2.9133 0.7698 6.9411(3) 0.6526 67.8443
U2Fusion [31] 0.7777 0.8224 0.5612 2.8988 0.7112 6.5318 0.6456 40.3313

IFCNN [32] 0.9336 0.8296 0.6673 2.9538 0.8273 6.8747 0.7296 19.956
Proposed 1.1675 0.8443 0.7261 2.9743(3) 0.8526(3) 6.9556(2) 0.8088 17.3249

Table 3. Average experimental results of different MFIF methods on the Grayscale dataset.

Methods
Grayscale Dataset

QMI QNICE QG QM QP AG QCB QCV

NSCT-RR [12] 1.2438(3) 0.8488(2) 0.7395(4) 2.9666(2) 0.8967(2) 8.0313 0.8188(3) 38.02
MWGF [22] 1.156 0.8433 0.7228 2.9511 0.8928 7.7235 0.8048 52.1807
HMD [26] 1.2497(2) 0.8487(3) 0.7423(2) 2.967 0.8958(3) 8.0079 0.8245(2) 37.2895(4)
GFDF [24] 1.2166(4) 0.8472(4) 0.7401(3) 2.9661(3) 0.8983 7.9566 0.8245(2) 35.7523
YMY [16] 1.0062 0.8336 0.6841 2.9494 0.8867 7.4494 0.774 37.4149
CSR [17] 1.0222 0.8347 0.6343 2.9581 0.8871 7.6903 0.7654 35.9312(2)

ECNN [6] 0.8323 0.8259 0.5408 2.9266 0.7732 8.1873(3) 0.7494 37.4752
MFF-SSIM [5] 0.995 0.8337 0.6633 2.9552 0.8787 8.087(4) 0.7934 37.2547(3)
MFF-GAN [4] 0.843 0.8264 0.5769 2.9055 0.8132 8.7637 0.7015 62.7001
U2Fusion [31] 0.7634 0.8232 0.5525 2.8793 0.7735 7.4846 0.614 115.0738

IFCNN [32] 0.9349 0.8305 0.6586 2.9408 0.8608 8.3031(2) 0.7341 40.6426
Proposed 1.2559 0.8500 0.7444 2.9653(4) 0.8939(4) 8.001 0.8263 38.9546

Notably, although the GFDF method scored the best in terms of QP and QCV, it
exhibited mediocre performance in the other metrics. In addition, YMY, CSR, MFF-
GAN, and U2Fusion performed relatively poorly. The quantitative evaluations of
NSCT-RR, HMD, GFDF, and IFCNN algorithms placed them in the intermediate- to
high-performance categories, and the scores of several indicators were among the top
four scores. To summarize, the proposed algorithm outperformed the 11 methods in
the quantitative evaluation. This conclusion is consistent with the subjective visual
analysis in Section 4.2, which demonstrated the advantages of the proposed method in
both subjective and objective evaluations compared with the state-of-the-art methods.

4.4. Robustness Test to Defocus Spread Effect (DSE)

DSE is very important for MFIF, and many current state-of-the-art multi-focus
image fusion algorithms ignore the existence of DSE in multi-focus images. Some
objects that are not in focus are significantly enlarged in images that suffer from DSE,
and they can cause the focus decision map to have pixel focus attributes misjudged
to the extent that incorrect pixel information is introduced into the fusion results. We
introduced the MFFW [41] dataset to verify the robustness of the proposed algorithm to
DSE. The scenes inside this dataset are much more complex compared to the previous
two datasets, and there is obvious DSE. It is a major challenge to achieve good fusion
performance in MFFW dataset (Figure 11).
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We performed a quantitative comparison between the proposed algorithm and the
comparison method using test data from the MFFW dataset to demonstrate the robustness
of the proposed algorithm to DSE. In addition, we changed the parameter µ in Equation
(16) to 0.4 and the definition of the small area in Equation (17) to S/30. The parameters can
be better adapted to the MFFW dataset by changing them to obtain good fusion results
even in datasets that suffer from DSE.

For the quantitative comparison, we used eight evaluation metrics to score the different
fusion results, and Table 4 lists the average of the scores of the various methods in the
MFFW dataset.

Table 4. Average experimental results of different MFIF methods on the MFFW dataset.

Methods
MFFW Dataset

QMI QNICE QG QM QP AG QCB QCV

NSCT-RR [12] 1.0951(3) 0.8363(3) 0.6723 2.9606(2) 0.7580 7.7225(4) 0.7335(4) 109.7688(4)
MWGF [22] 1.0355 0.8329 0.6855(4) 2.9433 0.7848 7.5424 0.7464(2) 404.5932
HMD [26] 1.1189(2) 0.8392(2) 0.6936(2) 2.9520(3) 0.7602(4) 7.7240(3) 0.7395 402.4889
GFDF [24] 1.0511(4) 0.8341(4) 0.6873(3) 2.9621 0.7778(2) 7.6493 0.7426(3) 104.9676(2)
YMY [16] 0.8589 0.8238 0.6168 2.9346 0.7110 7.0522 0.6704 123.4168
CSR [17] 0.7110 0.8181 0.5052 2.9142 0.6152 7.0623 0.5539 180.1241

ECNN [6] 0.7441 0.8192 0.4697 2.9198 0.5585 7.6325 0.6758 107.0475(3)
MFF-SSIM [5] 0.8266 0.8225 0.5688 2.9441 0.6868 7.8036(2) 0.7099 104.8533
MFF-GAN [4] 0.7043 0.8174 0.3973 2.8535 0.4950 9.0122 0.5616 239.3639
U2Fusion [31] 0.7258 0.8183 0.4754 2.8684 0.5743 7.1704 0.5764 192.0370

IFCNN [32] 0.7811 0.8204 0.5170 2.9179 0.6292 7.7187 0.6362 123.2416
Proposed 1.1316 0.8405 0.6990 2.9485(4) 0.7620(3) 7.7067 0.7481 417.1856

Table 4 illustrates that the proposed algorithm achieved the best scores for four eval-
uation metrics and also achieved, QM and QP. It is worth noting that NSCT-RR, MWGF,
HMD, and GFDF also performed very well, achieving the top four scores in several metrics.
Combining all the metrics, we can conclude that the proposed algorithm is robust to DSE
and can still effectively retain the details and gradient information on the source images in
the dataset suffering from DSE; further, the fusion performance is better than that of some
state-of-the-art algorithms.

5. Conclusions

In this study, a multi-focus image fusion algorithm based on Hessian matrix decompo-
sition and salient-difference focus detection is proposed. The method uses the multiscale
Hessian matrix to extract the feature regions of the image to more comprehensively derive
the salient information of the source image for FM. To accurately determine the focus
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characteristics of each pixel, a focal difference analysis scheme was proposed based on SML,
which effectively improved the accuracy of judgment of the focusing characteristics of the
pixels. Furthermore, considering that images of different sizes have different degrees of
adaptability to the algorithm, an adaptive multiscale consistency verification algorithm that
leverages the correlation between each pixel and its surrounding pixels was proposed to
optimize the decision map. The method was compared with 11 state-of-the-art methods in
an experiment, and all methods were tested on three multi-focus public datasets using eight
popular metrics for quantitative analysis. The results showed that the proposed algorithm
efficiently transferred the focusing information of the source images to the fusion results
and outperformed some state-of-the-art algorithms in both subjective vision and objective
evaluations. Further research should focus on thoroughly uncovering the impact of DSE
on multi-focus image fusion and finding more efficient ways to solve the DSE problem.
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