# Multi-generational long-distance migration of the painted lady butterfly between Africa and Europe 

Constantí Stefanescu, ${ }^{1,2}$ Ferran Páramo, ${ }^{1}$ Susanne Åkesson, ${ }^{3}$ Marta Alarcón, ${ }^{4}$ Anna Ávila, ${ }^{5}$ Tom Brereton, ${ }^{6}$ Jofre Carnicer, ${ }^{2,7}$ Louis F. Cassar, ${ }^{8}$ Richard Fox, ${ }^{6}$ Janne Heliölä, ${ }^{9}$ Jane K. Hill, ${ }^{10}$ Norbert Hirneisen, ${ }^{11}$ Nils Kjellén, ${ }^{3}$ Elisabeth Kühn, ${ }^{12}$ Mikko Kuussaari, ${ }^{9}$ Matti Leskinen, ${ }^{13}$ Felix Liechti, ${ }^{14}$ Martin Musche, ${ }^{12}$ Eugenie C. Regan, ${ }^{15,16}$ Don R. Reynolds,,${ }^{17,18}$ David B. Roy, ${ }^{19}$ Nils Ryrholm, ${ }^{20}$ Heiko Schmaljohann, ${ }^{21}$ Josef Settele, ${ }^{12,22}$ Chris D. Thomas, ${ }^{10}$ Chris van Swaay, ${ }^{22,23}$ and Jason W. Chapman ${ }^{17}$<br>${ }^{1}$ Butterfly Monitoring Scheme, Museu de Granollers de Ciències Naturals, Francesc Macià, 51, E-08402 Granollers, Spain<br>${ }^{2}$ Global Ecology Unit, CREAF-CEAB-CSIC, Edifici C, Campus de Bellaterra, E-08193 Bellaterra, Spain

${ }^{3}$ Department of Animal Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
${ }^{4}$ Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, c/Urgell 187, E-08036 Barcelona, Spain
${ }^{5}$ Center for Ecological Research and Forestry Applications, Edifici C, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
${ }^{6}$ Butterfly Conservation, Manor Yard, East Lulworth, Wareham, Dorset BH20 5QP, UK
${ }^{7}$ Community and Conservation Ecology Group, Centre for Life Sciences, Nijenborgh 7,
Groningen 9747, The Netherlands

| ${ }^{8}$ Institute of Earth Systems (IES), Division of Environmental Management and Planning, |
| :---: |
| University of Malta, MSD 2080, Malta |
| ${ }^{9}$ Finnish Environment Institute, Natural Environment Centre, Ecosystem Change Unit, P.O. |
| Box 140, FI-00251 Helsinki, Finland |
| ${ }^{10}$ Department of Biology, Wentworth Way, University of York, York, YO10 5DD, UK |
| ${ }^{11}$ science4you, von-Müllenark-Str. 19, 53179 Bonn, Germany |
| ${ }^{12}$ Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, |
| Theodor-Lieser Str. 4, 06120 Halle, Germany |
| ${ }^{13}$ Department of Physics, Division of Atmospheric Sciences, University of Helsinki, P.O. Box |
| 64, FI-00014 University of Helsinki, Finland |
| ${ }^{14}$ Swiss Ornithological Institute, Luzernerstrasse 6, Sempach 6204, Switzerland |
| ${ }^{15}$ National Biodiversity Data Centre, WIT West Campus, Carriganore, Waterford, Ireland |
|  |  |
|  |
| Hertfordshire AL5 2JQ, UK |
| ${ }^{18}$ Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK |
| ${ }^{19}$ NERC Centre for Ecology \& Hydrology, Maclean Building, Benson Lane, Crowmarsh |
| Gifford, Oxfordshire OX19 8BB, UK |
| ${ }^{20}$ Department of Electronics, Mathematics and Natural Sciences, Faculty of Engineering and |
| Sustainable Development, University of Gävle, S-801 76 Gävle, Sweden |
| ${ }^{21}$ Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, |
| Wilhelmshaven 26386, Germany |
| ${ }^{22}$ BCE, Butterfly Conservation Europe, clo Vlinderstichting, P.O. Box 506, Wageningen |
| 6700, The Netherlands |

${ }^{23}$ De Vlinderstichting, Dutch Butterfly Conservation, P.O. Box 506, Wageningen 6700, The Netherlands

Word count (excluding acknowledgements and references): 6086. Abstract 298, Introduction 843, Material and methods 1445, Results 2396, Discussion 1193, Acknowledgements 209; 54 references, 2 table and 6 figures (plus Supplementary material, 6 appendixes)

Abstract. Long-range, seasonal migration is a widespread phenomenon among insects, allowing them to track and exploit abundant but ephemeral resources over vast geographical areas. However, the basic patterns of how species shift across multiple locations and seasons are unknown in most cases, even though migrant species comprise an important component of the temperate-zone biota. The painted lady butterfly, Vanessa cardui, is such an example; a cosmopolitan continuously-brooded species which migrates each year between Africa and Europe, sometimes in enormous numbers. The migration of 2009 was one of the most impressive recorded, and thousands of records were collected through citizen science programmes and systematic entomological surveys, such as insect-monitoring radar and butterfly monitoring schemes. In this pan-European collaborative study, we use these various and complementary data sources to investigate the migration system of $V$. cardui in the western Palaearctic. We found an annual poleward advance of the populations followed by an equatorward return movement, encompassing a latitudinal shift of thousands of kilometres. This migratory cycle involves six generations, some of which move seasonally from an area of emergence to a breeding area located at a distance of hundreds of kilometers. We show, for the first time, that summer and autumn European generations engage in return flights, with returning individuals potentially moving thousands of kilometres. We also provide conclusive evidence that many long-distance migrants take advantage of favourable winds, moving downwind at high elevation (from some tens of metres from the ground to altitudes over $1,000 \mathrm{~m}$ ), pointing at strong similarities in the strategies used by $V$. cardui and other migrant Lepidoptera. Vanessa cardui undertakes a round-trip migration with major population movement taking place over 5,000 to $15,000 \mathrm{~km}$ (up to 60 degrees of latitude and back) from tropical Africa to northern Europe, maintaining direction and "population integrity" across multiple generations.

## Introduction

Large parts of the world are characterised by the seasonal abundance of resources, interspersed by periods when resources are unavailable or when the physical environment is inhospitable for survival. Most species exploit such resources in situ by means of diapausing stages, including seed and egg banks, hibernation and aestivation (Tauber et al. 1986). However, the evolution of hypometabolic or dormant states has only been achieved by a relatively small subset of the world's species, the majority remaining at least partially active throughout the year in relatively aseasonal regions (e.g. the moist tropics).

The alternative potential strategy to exploit temporary resources is by some form of migration, breeding when temporary resources become available, and then retreating to locations where survival is possible at other times of the year (Dingle 1996, Dingle and Drake 2007). This phenomenon is best studied in vertebrates and other long-lived animals (e.g. Newton 2008), which have generation times comparable to or longer than the annual seasonal cycle. Individuals of these species either migrate with conspecifics (often family groups) and learn traditional routes, or immatures migrate in genetically-determined seasonal directions, and then retrace their steps back to the breeding grounds in the following season or year. Thus, individuals track suitable environments during their lifetimes.

Investigation of migration in species with generation times much shorter than the seasonal cycle or year is generally more difficult, and this is the case for the majority of migratory insects (Drake and Gatehouse 1995, Holland et al. 2006). Insects that track suitable environments (arising from responses to spatially and temporaly variable conditions) must exhibit patterns of movement that encompass multiple generations. Inhabitants of arid/semiarid regions, such as desert locusts and African armyworm moths allow themselves to be carried towards large-scale convergence zones where seasonal rains are likely to occur, and
hence survive by exploiting successive areas where the vegetation is temporally lush and suitable for reproduction (Pedgley 1981, Pedgley et al. 1995). However, the precise means by which the very large number of migratory insect individuals and species that occur in the temperate zone survive throughout the course of the year is largely unknown. Most of these species are in the northern hemisphere, given the distribution of land in the two hemispheres. The only well-documented species is the monarch butterfly, Danaus plexippus, which is highly atypical because it migrates southwards in the North American autumn and then enters physiological diapause at specific sites, notably in Mexico. This species thus combines migration and diapause (cf. Reppert et al. 2010). This leaves open the question of whether other species also use (unknown) over-wintering sites, or whether they breed continuously throughout the year, in a succession of migratory steps from south to north and back again.

In this study, we document the migration of the highly migratory painted lady butterfly, Vanessa cardui, in Europe, concentrating on the exceptional events recorded in 2009. Each year, this butterfly species colonizes the European continent from its African overwintering quarters (Pollard et al. 1998, Stefanescu et al. 2011). However, the pattern and timing of the whole migration system is poorly understood, and return migration back to Africa during autumn remains largely hypothetical. The scarcity of records of southward return migrations has even led to the suggestion that this species may regularly disperse beyond areas that are favourable for long-term survival and reproduction, without any chance of a return movement (i.e. the evolutionary paradox known as the 'Pied-Piper phenomenon'; see discussion in Nesbit et al. 2009).

In 2009, numbers of $V$. cardui migrating across Europe were so high that they raised awareness among the general public, with the result that a large number of people contributed to online surveys and made it possible to investigate with unprecedented detail the migration system in this part of the range. Additional data were obtained through more systematic
surveys based on established protocols, such as the extensive network of butterfly recording schemes operating in many European countries (van Swaay et al. 2008), and the continuous monitoring of high-altitude insect migrations by radars operating in southern England and Finland (e.g. Chapman et al. 2003, Leskinen et al. 2011).

Here we bring together a combination of ground and aerial (radar) observations to evaluate te following hypotheses:
a) Does this species exhibit a succession of population shifts throughout the year, representing a succession of breeding generations?
b) In Central and Northern Europe (for which the best data are available), does the species show a clear reversal of migratory direction from early season (spring) to late season (autumn) generations?
c) Is migration wind-assisted and at least partly at high altitude (as suggested by Stefanescu et al. 2007), or, in common with other migratory butterflies, largely restricted to within their Flight Boundary Layer (i.e. the layer of the atmosphere close to the ground where the wind is light enough for the insect to make progress in any direction; Srygley and Oliveira 2001)?

Given the results, we quantify the pattern and timing of one of the longest insect migrations on Earth, and discuss the mechanisms by which multi-generational long-distance migration could be achieved.

## Material and methods

## Study species

Vanessa cardui is widely distributed across the world and migrates over vast distances (Shields 1992). It is an extremely polyphagous species, using larval hostplants from a number of different plant families (Ackery 1988). However, in the western Palaearctic and northwestern Africa, oviposition occurs mostly on thistles (species in the tribe Cardueae, family Asteraceae) and common mallow, Malva sylvestris (family Malvaceae), growing in disturbed habitats (e.g. Stefanescu 1997, Asher et al. 2001, Stefanescu et al. 2011). Eggs are laid singly on the upper side of the leaves, each female potentially laying about 500 eggs (Hammad and Raafat 1972). On hatching, larvae make a characteristic silken tent on the foodplant leaf and, when fully developed, they leave the plant in search of suitable pupation sites. Developmental time is highly dependent on temperature, the completion of the whole lifecycle ranging between 33 and 44 days in hot weather (Boorman and Taylor 1977, Hammad and Raafat 1972) and $\geq 60$ days under cool conditions (C. Stefanescu pers. obs.). It is continuously-brooded and, under favourable laboratory-conditions, may complete as many as eight generations in a year (Hammad and Raafat 1972).

## Study regions

The present analysis covers the western Palaearctic region (i.e. the biogeographical region that includes the western part of the Eurasian landmass and northernmost Africa) and West

Africa (i.e. the region of western Africa between the Sahara Desert and the Gulf of Guinea). We divided this geographical area into the following five subregions, which coincide with broadly recognized biogeographic regions:
(1) Western Africa $\left(5-25^{\circ} \mathrm{N}, 26^{\circ} \mathrm{W}-0^{\circ} \mathrm{W}\right)$,
(2) Northwestern Africa $\left(26-35^{\circ} \mathrm{N}, 19^{\circ} \mathrm{W}-15^{\circ} \mathrm{E}\right)$,
(3) Western and Central Mediterranean $\left(36-45^{\circ} \mathrm{N}, 10^{\circ} \mathrm{W}-15^{\circ} \mathrm{E}\right)$,
(4) Western and Central Europe ( $46-55^{\circ} \mathrm{N}, 11^{\circ} \mathrm{W}-25^{\circ} \mathrm{E}$ ), and
(5) Northern Europe (56-71 $\left.{ }^{\circ} \mathrm{N}, 25^{\circ} \mathrm{W}-31^{\circ} \mathrm{E}\right)$ (Fig. 1).

For simplicity, subregions (3) and (4) are referred to as Mediterranean and Central Europe, respectively. In order to document the European migration pattern in more detail, the last three subregions have been further divided into a western and an eastern part along the $5^{\circ} \mathrm{E}$ meridian (for the Mediterranean) or the $2^{\circ} \mathrm{E}$ meridian (for Central and Northern Europe) in some analyses.

## Datasets

We used three independent datasets:
(1) Ad-hoc distribution records. 30,002 observations of adults or immatures encompassing the latitudinal range $5^{\circ}-71^{\circ} \mathrm{N}$ and 67 countries/regions, obtained from a diversity of sources. Data were gathered during 2009, except for a subset of 1,337 records (including some published data) from earlier years. Records prior to 2009 have mainly been used to improve knowledge of the timing and location of the species' breeding quarters in Africa. Each record contained at least information on location and date of the observation. In many cases there was also
information on relative abundance, adult behaviour (e.g. reproductive and migratory behaviours) and condition of butterflies (i.e. fresh, worn). We classified butterflies as migrating within the Flight Boundary Layer (FBL) whenever they showed sustained and undistracted low altitude flights (i.e. up to 20 m from the surface, generally within the 2 m ) (Dingle and Drake 2007). The main heading direction was classified into eight compass directions (north, northeast, east, etc.).
(2) Butterfly Monitoring Scheme (BMS) records. 30,358 weekly estimates of adult densities (butterflies seen on 100 m of line transect) were extracted from standardized transect counts carried out between March and September 2009 in eight European countries/regions: Andorra, Balearic Islands, Catalonia (NE Spain), Finland, Germany, Ireland, The Netherlands and the UK. Data were pooled into three different latitudinal bands (Northern Europe, Central Europe and Mediterranean), matching the geographical subregions defined above. For Central Europe we distinguished two subsets of the data: that covering Britain and Ireland and the Dutch-German data, respectively, as we had good evidence that migratory waves arriving into these areas frequently had different origins and followed different routes.
(3) Radar observations of insect migrations. Data were obtained from radars located in England and Finland (for 2009) and in Mauritania (for 2003 and 2004). Radar provided information on migratory intensity (i.e. number of butterflies involved in migratory flights), the altitude of flights, ground speed and direction of movements. English data were obtained from a vertical-looking entomological radar (VLR) situated in Chilbolton, Hampshire $\left(51^{\circ} 8^{\prime} 40^{\prime \prime} \mathrm{N}, 1^{\circ} 26^{\prime} 13^{\prime \prime} \mathrm{W}\right)$. Finnish data were obtained from three weather radars situated in southern Finland: Helsinki-Kumpula ( $60^{\circ} 12^{\prime} 16^{\prime \prime} \mathrm{N}, 24^{\circ} 57^{\prime} 477^{\prime \prime}$ E), Järvenpää ( $60^{\circ} 29^{\prime} 4^{\prime \prime} \mathrm{N}$, $25^{\circ} 4^{\prime} 55^{\prime \prime} \mathrm{E}$ ), and Kerava ( $60^{\circ} 23^{\prime} 17^{\prime \prime} \mathrm{N}, 25^{\circ} 6^{\prime} 50^{\prime \prime} \mathrm{E}$ ). Mauritanian data were collected by two
ornithological radars, running in either a fixed-beam mode or tracking mode, operated by the Swiss Ornithological Institute in 24 August-25 October 2003 and 15 March-10 May 2004 in central Mauritania, near the oasis of Ouadâne ( $20^{\circ} 56^{\prime} \mathrm{N}, 11^{\circ} 35^{\prime} \mathrm{W}$ ), and on the Mauritanian coast, near Nouakchott $\left(18^{\circ} 6^{\prime} \mathrm{N}, 15^{\circ} 57^{\prime} \mathrm{W}\right)$.

For further details on these datasets see Supplementary material Appendix 1.

## Data analysis

## Phenology and frequency of migrations

To study the seasonal shift of $V$. cardui, distribution records were divided into the five geographical subregions described previously, and then plotted as abundance through the season. To allow for a direct comparison with BMS data, observation dates were transformed into BMS weeks, according to the calendar of the Catalan BMS: week 1 corresponds to 1-7 March, week 2 to 8-14 March, and so on.

Phenological curves showing different generations and waves of migration were fitted using the cubic spline method, using the JMP package (SAS Institute 1989-2002). This method uses a set of third-degree polynomials spliced together such that the resulting curve is continuous and smooth at the splices (knot points). The estimation is done by minimizing an objective function composed by a combination of the sum of squares error and a penalty for curvature integrated over the curve extent.

We used direct observations of migration within the FBL to calculate the frequency of migratory events in different regions and to identify those days when peaks of ground-level migration occurred across Europe.

## Migration directions

Standard circular statistical methods (Fisher 1993) were used to calculate and compare the mean migration directions of butterflies flying at low altitude, and during different periods and subregions. To estimate the relative number of butterflies migrating within their FBL on a given date in each of the geographical subregions, each observation reporting more than 100 individuals was equated to 10 observations reporting 11-100 individuals and 100 observations reporting 1-10 individuals.

For ground-based $a d$-hoc data (type 1 data, above), we aggregated data by date: all migrations recorded on the same day in a given subregion were used to calculate the mean track direction on that date (alleviating potential pseudoreplication issues caused by individuals being recorded when they were experiencing the same local conditions; Alerstam et al. 2011), and the Rayleigh test of uniformity for circular data was applied. We also only used data from days with more than 20 individuals to reduce the likelihood of individual recorder measurement error. The same procedure was used for the many thousands of butterfly-like targets detected by the ornithological tracking radars deployed in Mauritania in 2003.

In the case of VLR radar data at Chilbolton, we analysed individual high-flying targets attributable to $V$. cardui, rather than daily means, because they are not subject to human measurement error. The number of individuals detected on most days were small (<20 per day), and butterflies were flying over a long period (8 hours) and wide altitude range (150$1,200 \mathrm{~m}$ ), such that very few individuals will have been flying under the same wind conditions; thus the potential for pseudoreplication to skew the results is also very low in these data. We therefore carried out circular statistics on all individual radar-detected butterflies to find the mean seasonal migration directions, in addition to calculating the mean
daily direction for the two principal spring migration dates (25 and 29 May 2009), which together accounted for $43 \%$ of all spring radar-detected butterflies at Chilbolton during 2009.

## Comparison of high-altitude and ground-level migrations

Radar observations from the UK, Finland and Mauritania were used to seek evidence of highaltitude migration and, in combination with ground-level observations, the progression of migratory waves and the existence of return migrations. Migration intensities detected by the UK entomological radar were used to estimate the total number of $V$. cardui that migrated in seasonally-appropriate directions (i.e. towards the north in spring and towards the south in summer/autumn) at high altitudes over a 300-km long stretch of the southern British mainland (Chapman et al. 2010).

Estimates of migratory intensity from the VLR at Chilbolton were correlated with daily frequency of ground-level flights in different regions using ordinary least squares regression models (OLS). However, because the variance greatly exceeded the mean in all datasets, we also applied generalized linear regression models (GLM), in particular quasi-Poisson and negative binomial regression models (Ver Hoef and Boveng 2007). Analyses were conducted with the R statistics package ( R Development Core Team 2009).

## Results

## Seasonal distribution of populations

During 2009, V. cardui occupied an area of the western Palaearctic-West African regions ranging from latitude $10^{\circ} \mathrm{N}$ (Ghana) to $71^{\circ} \mathrm{N}$ (northern Norway), and covering a distance of over $6,500 \mathrm{~km}$ south to north (Fig. 1). The extent of the butterfly's occurrence shifted through the seasons as populations migrated northwards and then southwards.

From December 2008 to February 2009, moderate numbers of adults and larvae were recorded in Morocco, the Canary Islands and, more rarely, in several Mediterranean Islands and coastal areas in southern Spain (Fig. 2). Populations built up in Northwestern Africa in March and early April, with large numbers of both immature stages and fresh adults migrating northward being recorded in central-western Morocco (Figs 2, 3). Butterflies also started to appear all over the western Mediterranean and on transects in north Spain and the Balearic Islands in a succession of distinct migratory waves (Fig. 3, Supplementary material Appendix 2). Although sightings also occurred further north in Central Europe at this time (Supplementary material Appendix 3), they mostly consisted of single butterflies and contributed very little to the general pattern of abundance in the region (Fig. 2).

Mating behaviour and egg-laying were observed as soon as migrants arrived in the Mediterranean, while larvae were recorded in large numbers soon after, giving rise to the emergence of a local adult generation from mid May to the beginning of June. The appearance of this new generation coincided with the second critical period of the expansion of $V$. cardui in Europe (Fig. 2, Supplementary material Appendix 3). The eastern part of Central Europe was colonized in a continuous succession of migratory waves between 10-25 May, while the western part had two distinct peaks of immigration, the first on 24-25 May and the second between 28 May and 1 June (Fig. 3). Butterflies from the first peak probably belonged to the same migrants colonising eastern Central Europe from the southern Mediterranean coast, part of which eventually progressed in a north-westward direction. On the other hand, migrants from the second peak originated in the Iberian Peninsula and further
south (e.g. northern Morocco and north-western Algeria), as deduced from a mixture of worn and fresh butterflies in northward flights in coastal areas of Portugal, southern Spain and the Balearic Islands. In Northern Europe, migrants were not recorded in abundance until the third week of May, and secondary peaks of migration occurred during the second half of June (Fig. 3).

Massive breeding in Central and Northern Europe started immediately after the arrival of migrants (Fig. 2). In Central Europe, the local generation emerged from mid July to mid August. In accordance with the timing of earlier migrations, local emergence occurred somewhat earlier in the eastern part than in the western part. A further delay was noted in Northern Europe, where the local generation peaked by mid August (Fig. 2, Supplementary material Appendix 2). Coupled with radar observations of southward flights (see below), the rapid disappearance of European summer-emerging generations indicates the start of a return migration to lower latitudes. Part of the migrant population stopped to breed in Central Europe and, to a lesser extent, the Mediterranean in the second half of the summer, eventually producing new generations in late September and October (Fig. 2). Moreover, coinciding with the disappearance of this second local Central European generation by the end of October, a small additional generation started to develop in the Mediterranean (e.g. in southern Spain). Although breeding was recorded there in November, fresh adults in December and early January were exceedingly rare, suggesting very low reproductive success (Fig. 2).

Data from 2009 and previous years show an increase in the number of records in the African continent in August and subsequent months, coincident with the disappearance of European populations (Fig. 2). The few systematic counts that have been carried out in the Sahel and further south in Western Africa confirm the sudden arrival of $V$. cardui from the end of August to early October (e.g. data from Mauritania, The Gambia and Sierra Leone). However, this population is apparently soon gone again, given its complete absence from
extensive areas in the Sahel from December to March (e.g. comprehensive surveys in Senegal and Mali in 2009 and 2010). Immigrations into Northwestern Africa occurs mainly in October and early November (more rarely in late September), with the species being recorded at relatively low densities all through the winter months (Fig. 2).

## Frequency and direction of migratory flights near the ground

We compiled a total of 3,174 observations of ground-level migratory flights, of which 2,894 were from Europe in 2009 (Supplementary material Appendix 1). Notably, ground-level spring migration was observed much more commonly than summer/autumn migration in Europe (Fig. 4). Migrations showed a very clear seasonal pattern for direction, with spring flights being essentially northward and summer/autumn flights being southward (Table 1, Supplementary material Appendix 4). The change in the direction of migrations occurred by mid July: the few flights recorded in the Mediterranean in the first fortnight of July ( $1.4 \%$ of the flights in the region; Fig. 4) still showed northward direction, while those recorded in Central and Northern Europe during the second fortnight of July ( $3.5 \%$ of the flights in both regions) were predominantly southward. Overall mean directions in spring were very similar across subregions, although in the western part of Central Europe there was a distinct westward tendency which contrasted with a slight eastward tendency in the eastern part (Table 1). The two distributions were found to be significantly different (mean directions of $329^{\circ}$ and $18^{\circ}$ respectively; test for a common mean direction: $\mathrm{Yr}=24.5, \mathrm{p}<0.0001$ ).

Data from ground-level migratory flights in Africa were too scarce to draw any firm conclusion. In Northwestern Africa, northward flights precipitating the colonization of the Mediterranean region clearly predominate in the spring but the situation becomes more
complex in the autumn, when southward and northward flights were equally recorded, which may genuinely represent immigration from both the south (Sahel) and north (Central Europe and Mediterranean). In Western Africa there were a few reports of southward and westward flights from August to November, while a single massive northward flight of several thousands of butterflies was observed in Mali in early November 2009.

## Frequency and direction of high-altitude migratory flights

High-altitude migration of $V$. cardui was recorded by the Swiss Ornithological Institute's radar group in Mauritania between 25 August and 25 October 2003: large numbers of highflying, radar-detected insects were present at the radar site on the coast moving generally towards the south (mean migration direction: $188^{\circ}, \mathrm{n}=20$ days, $\mathrm{r}=0.33, \mathrm{p}=0.107$ ), on northerly winds (wind from: $35^{\circ}, \mathrm{n}=1,250, \mathrm{r}=0.48, \mathrm{p}<0.001$ ). Although other insects were also present, V. cardui was the most abundant insect at ground-level, as indicated by periodic transect counts (Swiss Ornithological Institute unpubl. data). A similar abundance of groundlevel V. cardui was recorded 500 km inland, at Ouadâne, although there the high-flying insects were displaced westward (mean migration direction: $283^{\circ}, \mathrm{n}=49$ days, $\mathrm{r}=0.61, \mathrm{p}<$ 0.001 ), on easterly winds (wind from: $85^{\circ}, \mathrm{n}=2,680, \mathrm{r}=0.43, \mathrm{p}<0.001$ ). On 18 October it was possible to demonstrate unequivocally that most insects detected by the radar from ground level up to $2,000 \mathrm{~m}$ were $V$. cardui. Observations at high altitude were confirmed by using telescopes trained on the radar 'sensed-volume'. A ground speed of $25.1 \pm 3.8 \mathrm{~km} / \mathrm{h}$ (mean $\pm \mathrm{sd}$ ) was estimated for a subset of 7 individuals flying at $241 \pm 62 \mathrm{~m}$, but speeds at higher altitude were not recorded.

Further records of high-altitude migration were obtained by European radars in 2009. At Chilbolton in England, the VLR detected large numbers of V. cardui-like targets moving mostly in a northward direction between $\sim 150-1,200 \mathrm{~m}$ above ground level (a.g.l.) from April to June, with two major influxes occurring on 25 and 29 May (Fig. 5). Extrapolating from the radar sensed volume, it was estimated that $\sim 2.3$ million and $\sim 1.7$ million high-flying butterflies would have crossed a $300-\mathrm{km}$ stretch of the English coast on those two days respectively (mean migration direction on 25 May: $76^{\circ}, \mathrm{n}=64$ individuals, $\mathrm{r}=0.70, \mathrm{p}<$ 0.001; mean migration direction on 29 May: $0^{\circ}, \mathrm{n}=37$ individuals, $\mathrm{r}=0.77, \mathrm{p}<0.001$, Supplementary material Appendix 4). During the whole of May and June, we estimate that ~11.1 million high-flying $V$. cardui passed through southern UK, and of these 65\% ( $\sim 7.2$ million) moved generally towards the north, i.e. between $270^{\circ}$ and $90^{\circ}$ (mean migration direction: $52^{\circ}, \mathrm{n}=202$ individuals, $\mathrm{r}=0.33, \mathrm{p}<0.001$ ). The mean ground speed of the windborne high-flying $V$. cardui in the spring migrations was $13.3 \mathrm{~m} / \mathrm{s}(\sim 50 \mathrm{~km} / \mathrm{h})$.

Migratory activity remained rather low through June and July, but increased again from the beginning of August to mid October, when it peaked on certain days, e.g. 7 August with $\sim 1.2$ million, 5 September with $\sim 1.0$ million, and 19 September with $\sim 1.6$ million high-flying butterflies passing southward (Fig. 5).

Over the whole late-summer/autumn period (August-October), we estimate that $\sim 25.9$ million $V$. cardui engaged in high-altitude flights, but of these only $55 \%$ ( $\sim 14.1$ million) were transported in a generally southwards direction, i.e. between $90^{\circ}$ and $270^{\circ}$. However, the overall mean direction of all butterflies was in a south-westward direction (mean migration direction: $236^{\circ}, \mathrm{n}=446$ individuals, $\mathrm{r}=0.16, \mathrm{p}<0.001$ ) and there was a distinct absence of flights close $\left( \pm 20^{\circ}\right)$ to north (Supplementary material Appendix 4). The mean migration direction was thus almost $180^{\circ}$ opposite to the mean spring direction, albeit with a greater dispersion of individual tracks. The mean migration direction (towards the south-west)
contrasts with the patterns of high-altitude winds (measured at 300 m ) during the autumn migration period, which had a significant mean direction blowing from the WSW towards the ENE (wind from: $251^{\circ}, \mathrm{n}=63$ days, $\mathrm{r}=0.22, \mathrm{p}=0.048$ ), and a comparative shortage of northerly winds favourable for autumn return migration. Thus there is some evidence that butterflies preferentially migrated on winds with a northerly component (resulting in a significant tendency for southward displacement), even though many of the individuals were displaced in unfavourable directions (towards the north-west or north-east) due to the shortage of suitable tailwinds. The mean displacement speed during summer/autumn migrations was $12.7 \mathrm{~m} / \mathrm{s}(\sim 45 \mathrm{~km} / \mathrm{h})$.
V. cardui-like targets migrated at hundreds of metres above the ground in both spring and summer/autumn, but declined towards the greatest heights (at $\sim 1,200 \mathrm{~m}$, where very few butterfly-type targets were recorded) (Supplementary material Appendix 5). In spring, the highest densities were recorded in the lowest elevation band, implying that many additional migrants are likely to be closer to the ground (when many were observed by ground-based recorders). In autumn, the peak density was above 300 m , when fewer individuals were observed by ground-based observers.

Southward migration across the Gulf of Finland was also recorded by radars at Kerava and Kumpula between 3-6 August 2009. Coinciding with a sudden change in the wind direction, which started to blow from the north, and the emergence of the local generation of V. cardui in Finland in early August, a strong migration of large day-flying insects moving southward was apparent from 3 to 5 August (Fig. 6a-b). On 5 August, the Kumpula radar vertical sections over the land and over the sea showed that these insects were flying mostly in the layer 500-700 m a.g.l., where air temperature (as recorded in atmospheric soundings at Jokioinen and Visby meteorological stations) was above $15^{\circ} \mathrm{C}$. During the morning hours of 6 August, however, the wind direction changed from northerly to south-easterly and the insects
drifted towards west and north-west to end up back on the Finnish coast and several nearby southern islands (Fig. 6c-d). Direct observations of this event were made in the island of Örö, in the western tip of the Gulf of Finland, when thousands of V. cardui arrived from the south while flying north-westward on tailwinds and landed on the island (J. Kullberg pers. obs.). Extremely high numbers of $V$. cardui were recorded on the southern Finnish coast and other islands as well during the same period, pointing towards a massive southward windborne flight that was interrupted by a sudden change in the formerly favourable weather conditions for migration. High-altitude southward migrations of large-sized insects across the Gulf of Finland were recorded again by Finnish radars throughout August (see details in www.helsinki.fi/~mleskine/vaellus/Vcar2009.html), suggesting the existence of regular return flights of V. cardui out of sight from ground-level observers.

## Relationship between ground-level migrations and vertical looking radar data

A comparison between the temporal distribution of daily high-altitude and ground-level migratory flights in 2009 is provided in Table 2. In the spring, high-altitude flights in south England were positively correlated with ground-level flights across all western Europe (p < $0.001,1,398$ flights). The correlation was significant for the Central Europe subregion (p < $0.001,1,213$ flights), but not for the Mediterranean (148 flights) and Northern Europe (37 flights) subregions. High-altitude flights were also correlated with ground-level flights across all of eastern Europe ( $\mathrm{p}<0.001,1,020$ flights), as well as with particular subregions (Mediterranean: 46 flights; Central Europe: 910 flights; Northern Europe: 64 flights). Interestingly, the correlations were stronger if it was assumed that the peak of windborne flight would occur one day earlier in the Mediterranean than in southern England, which in
turn would be one day behind the flight peak in Northern Europe (Table 2). In the summer/autumn, high altitude flights were only correlated with ground-level flights across all eastern Europe (p < 0.01, 557 flights) and the eastern Central Europe subregion (p<0.01, 534 flights), probably because of the very low number of records of ground-level migrations in this part of the season (Fig. 4).

These results strongly suggest a high synchrony in the spring migrations across Europe (Fig. 3), mediated by windborne migration occurring well above the species' FBL. The lack of correlation between high-altitude flights in south England and western Mediterranean ground-level flights is explained by the high number of migrations that were recorded in the latter subregion in April, which did not progress further north (Supplementary material Appendix 3). On the other hand, the lack of a significant correlation with western Northern Europe is probably the consequence of the very low number of records.

## Discussion

The results of this study show a succession of generations of V. cardui populations, exhibiting a northwards spread out of Africa into a warming European continent, as spring develops, followed by a southwards reversal in late summer and autumn. Like in some migrant moths (Chapman et al. 2008a,b, 2010), the reversal of direction appears to involve complex behaviour, including both the adoption of seasonally-favourable headings (see also Nesbit et al. 2009) and the selection of favourable tailwinds when available. Exodus from each region takes place before the environment becomes directly inhospitable, in anticipation of the arrival of conditions unsuitable for continued breeding in the location of adult emergence.

Adverse seasonal conditions not only include extreme temperatures and the decreasing availability of ephemeral resources for larvae and adults, but also increasing levels of natural enemies such as specialist parasitoids (Stefanescu et al. 2012).

Although further details of the African legs of the migration are still needed, the basic pattern appears to be that of the successive displacement and reproduction of a population that in years of high abundance may attain a size of thousands of millions of individuals, through ca. six generations (see Supplementary material Appendix 6 for a full description of the migratory model). The extremities of the migration go from the Sahel region of Western Africa (at least for a large portion of the population) through North Africa, the Mediterranean, Central and Northern Europe, before retreating back to Africa in one or two steps. In addition, the predominant population movement described here meets additional populations in Eastern Europe and into Asia, and other populations apparently circulate within central and southern Africa (e.g. Williams 1930, Larsen 1976, John 2001). The extent to which there is gene flow between these different populations is unknown, although the low levels of genetic substructuring across continents (Wahlberg and Rubinoff 2011) suggests that it might be high.

Although the precise mechanisms are not known, it is likely that a combination of temperature and photoperiod and, perhaps, hostplant cues (e.g. related to senescence) experienced by developing larvae trigger directional movement in northern or southern directions in emerged butterflies. All these factors induce diapause in D. plexippus undergoing long-distance migration in autumn (Goehring and Oberhauser 2002) and have been shown to have similar effects in V. cardui (Herman and Dallmann 1981). Current research aimed at identifying which genes are involved in migration and which ones are involved in diapause of D. plexippus (Zhu et al. 2008, 2009) will greatly contribute to the understanding of the environmental stimuli triggering migration not only in this species but probably also in $V$. cardui.

We believe that a key aspect for the whole migratory system to be maintained is the ability of $V$. cardui to use favourable high altitude winds to move rapidly in appropiate seasonal directions. This would seem to be necessary particularly in the autumn given the distances that must be covered during this part of the annual cycle. Indeed, our results strongly suggest that butterflies leaving the European continent on their return flight travel far above the ground and mostly remain unnoticed by observers (Fig. 4). The radar data from southern England in autumn 2009 would seem to indicate that migrating V. cardui were not very successful at selecting suitable winds, given that only $55 \%$ of the radar-detected highflying butterflies were displaced in a southwards direction. However, analysis of wind directions during this period indicated that there was a preponderance of winds blowing from the south-west and WSW, and relatively few days when winds blew from the north, and so presumably the shortage of suitable transport opportunities resulted in butterflies being forced to move on less than ideal winds. Radar observations from previous V. cardui invasions of the UK have shown much clearer southward return migrations (Chapman et al. 2010), and the Finnish radar data in the present study also demonstrate the ability of high-flying V. cardui to preferentially select suitable winds. We thus conclude that transport on fast-moving highaltitude winds is an essential part of the annual cycle, particularly during the autumn. Although windborne migration above the FBL has been widely described in insects showing long-range seasonal movements, particularly pest species (Chapman et al. 2011), its presence had been questioned in some large day-flying insects such as butterflies and dragonflies (e.g. Baker 1978, Walker 1980, Walker and Riordan 1981). However, strong similarities in the strategies used by V. cardui and other migrant Lepidoptera, such as noctuids and hawk-moths (Chapman et al. 2010), raises the possibility that high-altitude windborne flights may be, in fact, much more widespread among migrant butterflies than has been assumed. The scarcity of records could be simply due to the difficulty of collecting data from the ground (see also

Gibo 1981, Mikkola 2003). In this respect, radar technology is a useful complementary tool, as has been shown in our study.

However important high-altitude migration is, ground-level observations of flight displacements on fixed compass bearings are very commonly reported in the spring, indicating that migration at surface level is still one of the main features in the ecology of $V$. cardui. The high synchrony that we found between high-altitude and ground-level migration shows that the two are linked. Whether higher and lower altitude flights represent distinct behaviours or phases of migration, as first suggested by Mikkola (1986), requires further work. This might be affected by both the prevailing weather conditions and individual physiological and reproductive characteristics (cf. Johnson 1969, McNeil et al. 1995).

The predominant pattern of movement and responses is somewhat "noisy" in that there may be stragglers left behind when the majority of the population emigrates, and some portions of the population are not found in the locations where the majority of the population is present, at a given time (Supplementary material Appendix 6). Further work is needed to assess whether the noise and stragglers represent individuals obeying different geneticallybased behavioural rules (e.g. Hill and Gatehouse 1993), or whether they are simply individuals that, after experiencing particular conditions (e.g. late emerging individuals that experienced unfavourable winds), failed to migrate with the majority. It is also interesting to speculate whether this noise is in fact important to the persistence of the migratory system, in the event that unusual winds in some years deposit a high proportion of the population in unfavourable locations (e.g. in the middle of the Atlantic ocean: Williams 1958, Bowden and Johnson 1976). Indeed, migrant insects (apart from D. plexippus) do not head for very specific destination areas, so the risks associated with windborne displacement in terms of direction of travel will be offset by the benefits of very rapid transport (Alerstam et al. 2011).

In summary, we have documented a continuously-breeding migration path, in which a species undertakes a round-trip migration of up to $15,000 \mathrm{~km}$ (up to 60 degrees of latitude and back) from tropical Africa to northern Europe. This is close to double the latitudinal migration distance of the famed monarch butterfly (Solensky 2004), and potentially exceeds the distance achieved by the globe-skimmer dragonfly Pantala flavescens (Anderson 2009). The capacity of the species to exploit winds and maintain migratory direction enables it to maintain this exceptionally long inter-generation migration route.

Acknowledgements - We thank the many thousands of butterfly recorders and members of the public who contributed the sightings of $V$. cardui that we have analysed in this study. A special mention is due to Mauri Leivo and Jaakko Kullberg for his painted lady observations and a valuable newspaper article on the southward migration of the painted lady in the south coast of Finland, and to Gerard Troost and Trektellen for allowing us to use their counting records. Jon Baker, Torben Larsen, Theunis Piersma, and Martin Wiemers kindly provided useful information of the painted lady in Western Africa and the Canary Islands. CS, DBR, EK, MM, and JS were partly supported by the project CLIMIT (Climate Change Impacts on Insects and their Mitigation; Settele and Kühn 2009) funded by DLR-BMBF (Germany), NERC and DEFRA (UK), ANR (France), Formas and Swedish EPA (Sweden), through the FP6 BiodivERsA Eranet. CS was also supported by grant CSD2008-00040 (Consolider Ingenio MONTES). The UKBMS is operated by the Centre for Ecology \& Hydrology and Butterfly Conservation and funded by a consortium of government agencies. The CBMS is funded by the Department de Territori i Sostenibilitat de la Generalitat de Catalunya.

Rothamsted Research receives grant-aided support from the UK Biotechnology and Biological Sciences Research Council.

## References

Ackery, P. R. 1988. Hostplants and classification: a review of nymphalid butterflies. Biological Journal of the Linnean Society 33:95-203.

Alerstam, T., J. W. Chapman, J. Bäckman, A. D. Smith, H. Karlsson, C. Nilsson, D. R. Reynolds, R. H. G. Klaassen, and J. K. Hill. 2011. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proceedings of the Royal Society B doi:10.1098/rspb.2011.0058.

Anderson, R.C. 2009. Do dragonflies migrate across the western Indian Ocean? Journal of Tropical Ecology 25: 347-358.

Asher, J., M. Warren, R. Fox, P. Harding, G. Jeffcoate, and S. Jeffcoate. 2001. The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, Oxford, UK.

Baker, R. R. 1978. The evolutionary ecology of animal migration. Holmes and Meier, New York, USA.

Boorman, J., and W. P. Taylor. 1977. The breeding of the Painted Lady butterfly, Vanessa cardui, in Nigeria. The Nigerian Field 42:84-87.

Bowden, J., and C. G. Johnson. 1976. Migrating and other terrestrial insects at sea. Pages 97117 in L. Cheng, L., editor, Marine insects. North Holland, Amsterdam, The Netherlands.

Chapman, J. W., V. A. Drake, and D. R. Reynolds. 2011. Recent insights from radar studies of insect flight. Annual Review of Entomology 56:337-356.

Chapman, J. W., R. L. Nesbit, L. E. Burgin, D. R. Reynolds, A. D. Smith, D. R. Middleton, and J. K. Hill. 2010. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327:682-685.

Chapman, J. W., D.R. Reynolds, J. K. Hill, D. Sivell, D., A. D. Smith, and I. P. Woiwod. 2008b. A seasonal switch in compass orientation in a high-flying migrant moth. Current Biology 18:R908-R909

Chapman, J. W., D. R. Reynolds, H. Mouritsen, J. K. Hill, J. R. Riley, D. Sivell, A. D. Smith, and I. P. Woiwod. 2008a. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Current Biology 18:514-518.

Chapman, J. W., D. R. Reynolds, and A. D. Smith. 2003. Vertical-looking radar: a new tool for monitoring high-altitude insect migration. BioScience 53:503-511.

Dingle, H. 1996. Migration: the biology of life on the move. Oxford Univ. Press, Oxford.

Dingle, H., and V. A. Drake. 2007. What is migration? BioScience 57:113-121.

Drake, V. A., and A.G. Gatehouse. 1995. Insect migration: tracking resources through space and time. Cambridge University Press, Cambridge, UK.

Fisher, N. I. 1993. Statistical analysis of circular data. Cambridge University Press, Cambridge, UK.

Gibo, D.L. 1981. Altitudes attained by migrating monarch butterflies, Danaus plexippus (Lepidoptera: Danaidae), as reported by glider pilots. Canadian Journal of Zoology 59: 571572.

Goehring, L., and K. S. Oberhauser. 2002. Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecological Entomology 27: 674-685.

Hammad, S. M., and A. M. Raafat. 1972. The biology of the painted lady butterfly, Vanessa (Pyrameis) cardui L. (Lepidoptera: Nymphalidae). Bulletin de la Société Entomologique d'Égypte 56:15-20.

Herman, W. S., and S. H. Dallmann. 1981. Endocrine biology of the Painted Lady butterfly Vanessa cardui. Journal of Insect Physiology 27:163-168.

Hill, J. K., and A.G. Gatehouse. 1993. Phenotypic plasticity and geographic variation in the pre-reproductive period of Autographa gamma (Lepidoptera: Noctuidae) and its implications for migration in this species. Ecological Entomology 18:39-46.

Holland, R. A., M. Wikelski, and D.S. Wilcove. 2006. How and why do insects migrate? Science 313:794-796.

John, E. 2001. Migration of Vanessa cardui (L.) (Lep.: Nymphalidae) through Cyprus, March 2001. Entomologist's Record and Journal of Variation 113:269-281.

Johnson, C. G. 1969. Migration and dispersal of insects by flight. Methuen, London, UK.

Larsen, T. 1976. The importance of migration to the butterfly faunas of Lebanon, East Jordan, and Egypt (Lepidoptera, Rhopalocera). Notulae Entomologicae 56:73-83.

Leskinen, M., I. Markkula, J. Koistinen, P. Pylkkö, S. Ooperi, P. Siljamo, H. Ojanen, S. Raiskio, and K. Tiilikkala. 2011. Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. Journal of Applied Entomology 135:55-67.

McNeil, J. N., M. Cusson, J. Delisle, I. Orchard, and S. S. Tobe. 1995. Physiological integration of migration in Lepidoptera. Pages 279-302 in V. A. Drake and A.G. Gatehouse, editors. Insect migration: tracking resources through space and time. Cambridge University Press, Cambridge, UK.

Mikkola, K. 1986. Direction of insect migrations in relation to the wind. Pages 152-171 in W. Danthanarayana, editor. Insect flight: dispersal and migration. Springer-Verlag, Berlin, Germany.

Mikkola, K. 2003. Red Admirals Vanessa atalanta (Lepidoptera: Nymphalidae) select northern winds on southward migration. Entomologica Fennica 14: 15-24.

Nesbit, R. L., J. K. Hill, I. P. Woiwod, D. Sivell, K. J. Bensusan, and J. W. Chapman. 2009. Seasonally-adaptive migratory headings mediated by a sun compass in the painted lady butterfly (Vanessa cardui). Animal Behaviour 78:1119-1125.

Newton, I. 2008. The migration ecology of birds. Elsevier Ltd., London.
Pedgley, D. E. 1981 (editor). Desert Locust forecasting manual. Volumes 1 and 2. Centre for Overseas Pest Research, London.

Pedgley, D. E., D. R. Reynolds, and G. M. Tatchell. 1995. Long-range insect migration in relation to climate and weather: Africa and Europe. Pages 3-29 in V. A. Drake and A.G. Gatehouse, editors. Insect migration: tracking resources through space and time. Cambridge University Press, Cambridge, UK.

Pollard, E., C. A. M. van Swaay, C. Stefanescu, K. E. Lundsten, and D. Maes. 1998. Migration of the painted lady butterfly Cynthia cardui in Europe: evidence from monitoring. Diversity and Distributions 4:243-253.

R Development Core Team. 2009. R: A language and environment for statistical computing (ed. Computing RFfS). Vienna, Austria. ISBN 3-900051-07-0. Available at: www.Rproject.org.

Reppert, S.M., Gegear, R.J. \& Merlin, C. 2010. Navigational mechanisms of migrating monarch butterflies. Trends in Neurosciences 33: 399-406.

SAS Institute.1989-2002. JMP. Version 70. - SAS Institute.

Settele, J., and E. Kühn. 2009. Insect conservation. Science 325:41-42.

Shields, O. 1992. World distribution of the Vanessa cardui group (Nymphalidae). Journal of the Lepidopterists' Society 46:235-238.

Solensky, M. J. 2004. Overview of Monarch migration. Pages 79-83 in K. S. Oberhauser, and M. J. Solensky, editors. The Monarch butterfly. Biology and conservation. Cornell University Press, Ithaca, USA.

Srygley, R. B., and E. G. Oliveira. 2001. Orientation mechanisms and migration strategies within the flight boundary layer. Pages 183-206 in I. P. Woiwod, D. R. Reynolds, and C. D. Thomas, editors. Insect movement: Mechanisms and consequences. CABI, Wallingford, UK.

Stefanescu, C. 1997. Migration patterns and feeding resources of the Painted Lady butterfly, Cynthia cardui (L.) (Lepidoptera, Nymphalidae) in the northeast of the Iberian peninsula. Miscel•lània Zoològica 20:31-48.

Stefanescu, C., M. Alarcón, and A. Àvila. 2007. Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents. Journal of Animal Ecology 76:888-898.

Stefanescu, C., M. Alarcón, R. Izquierdo, F. Páramo, and A. Àvila. 2011. Moroccan source areas of the painted lady butterfly Vanessa cardui (Nymphalidae: Nymphalinae) migrating into Europe in spring. Journal of the Lepidopterists' Society 65:15-26.

Stefanescu, C., R. R. Askew, J. Corbera, and M. R. Shaw. 2012. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). European Journal of Entomology 109: 85-94.

Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal adaptations of insects. Oxford University Press, New York.

Van Swaay, C. A. M., P. Nowicki, J. Settele, and A. J. van Strien. 2008. Butterfly monitoring in Europe: methods, applications and perspectives. Biodiversity and Conservation 17:34553469.

Ver Hoef, J. M., and P. L. Boveng. 2007. Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88:2766-2772.

Wahlberg, N., and D. Rubinoff. 2011. Vagility across Vanessa (Lepidoptera: Nymphalidae): mobility in butterfly species does not inhibit the formation and persistence of isolated taxa. Systematic Entomology 36:362-370.

Walker, T. J. 1980. Migrating Lepidoptera: are butterflies better than moths? Florida Entomologist 63:79-98.

Walker, T. J., and A. J. Riordan. 1981. Butterfly migration: are synoptic-scale winds systems important? Ecological Entomology 6:433-440.

Williams, C. B. 1930. The migration of butterflies. Oliver \& Boyd, Edinburgh, Scotland. Williams, C. B. 1958. Insect migration. Collins, London, UK.

Zhu, H., A. Casselman, and S. M. Reppert. 2008. Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus). PLoS ONE, 3(1): e1345.

Zhu, H., R. J. Gegear, A. Casselman, S. Kanginakudru, and S. M. Reppert. 2009. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biology 7: 14.

Table 1. Directional data for spring (March-June) and summer/autumn (July-November) ground-level migrations in different subregions of Europe and Africa in 2009 (see Material and methods and Fig. 1, for definition of subregions). Overall mean directions have been calculated from daily means ( N ) using a second-order Rayleigh test for non-uniformity in a circular distribution. $P$ values indicate the probability of a uniform distribution. The mean vector length $r$ is a measure of the clustering of the angular distribution, ranging from 0 to 1 . The mean displacement direction is not available for all combinations of subregions $\times$ season because of insufficient number of daily observations of migrations (especially in the summer/autumn period and in both of the African subregions, which have been pooled into a single region to increase sample size).

| Subregion | Direction ( ${ }^{\circ}$ ) | $r$ | $\mathbf{N}$ | Rayleigh $P$-value |
| :--- | :--- | :--- | :--- | :--- |


| Spring |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Africa | 10.8 | 0.797 | 37 | $<0.001$ |
| western Mediterranean | 0.2 | 0.922 | 26 | $<0.001$ |
| eastern Mediterranean | 2.3 | 0.986 | 20 | $<0.001$ |
| Mediterranean | 1.2 | 0.95 | 46 | $<0.001$ |
| western Central Europe | 328.7 | 0.874 | 15 | $<0.001$ |
| eastern Central Europe | 18.2 | 0.811 | 31 | $<0.001$ |
| Central Europe | 1.7 | 0.764 | 46 | $<0.001$ |


| Summer/Fall |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Africa | --- | 0.364 | 14 | 0.157 |
| Mediterranean | -- | 0.223 | 8 | 0.686 |
| eastern Central Europe | 181.1 | 0.855 | 43 | $<0.001$ |
| Central Europe | 180.4 | 0.805 | 47 | $<0.001$ |

Table 2. Correlations between daily migration flux at high-altitude (150-1,188 m) in Chilbolton, southern England (as revealed by the vertical looking radar), and the daily frequency of ground-level migratory flights in different subregions of Europe in spring (April-June) and summer/fall Europe, NEur: Northern Europe, All: all subregions pooled. Correlations were calculated with lags of one day for LagMed and LagNEur, under

|  |  |  | Western Europe |  |  |  |  |  | Eastern Europe |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Med | LagMed | CEur | NEur | LagNeur | All | Med | LagMed | CEur | NEur | LagNeur | All |
| Spring | OLS | $\mathrm{R}^{2}$ | 0 | 0 | $34.45 * * *$ | 0 | 0 | 33.64*** | 0 | 15.41*** | 8.7** | 11.57*** | 25.81*** | 11.63*** |
|  | GLM | \% | 0 | 0 | 33.59*** | 0 | 0 | $32.55 * * *$ | 0 | 20.59*** | 13.51** | 15.10*** | 29.12*** | 17.98*** |
|  |  | Deviance |  |  |  |  |  |  |  |  |  |  |  |  |
| Fall | OLS | $\mathrm{R}^{2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.68** | 0 | 0 | 6.03** |
|  | GLM | \% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.91** | 0 | 0 | 7.45** |
|  |  | Deviance |  |  |  |  |  |  |  |  |  |  |  |  | the hypothesis that windborne migrants passing over the Mediterranean would arrive one day later in southern England, and migrants passing over southern England would arrive one day later in Northern Europe. Significance levels: $* * P<0.01, * * * P<0.001$.

Fig. 1. Geographical extent of the ad-hoc distribution records used for the analysis of migrations of Vanessa cardui in the western Palaearctic-West African regions (see Supplementary material Appendix 1 for details on country records). For analytical purposes, the area has been divided into five different subregions: Western Africa, Northwestern Africa, Mediterranean, Central Europe, and Northern Europe. Another 30,000 records (not shown) from BMS networks in European countries were also used to better define phenological patterns between March-September 2009. Additional information was provided by radar sites in Mauritania, southern England and southern Finland.

Fig. 2. Phenology of the ad-hoc distribution records in the five geographical subregions considered in the analysis. Records unequivocally showing reproductive behaviour (courtship by males and egg-laying females) have been distinguished from the rest of the adult data. Records from immatures (i.e. larvae and pupae) are also presented separately from the rest. Red line: adult records; blue line: records of adults showing reproductive behaviour; green line: records of immatures.

Fig. 3. Phenology of records of ground-level migrations in Northern Europe (a-b), Central Europe (c-d), Mediterranean (e-f) and Northwestern Africa (g-h) in 2009. Each subregion has been further divided into a western and an eastern subregion (see text for definitions) to reveal differences in the timing of migratory events.

Fig. 4. Temporal distribution of 2,894 records of ground-level migrations in Europe in 2009, classified according to three categories of relative abundance: low abundance (110 individuals recorded), medium abundance (11-100 individuals recorded), high abundance (more than 100 individuals recorded).

Fig. 5. Migration intensity for Vanessa cardui-like targets detected by the Chilbolton (England) vertical looking radar in 2009 between 150-1,188 m a.g.l. Intensity is expressed as the number of butterflies estimated daily across a 300 km line running west-east (i.e. perpendicular to the migration direction). Spring data (1 April-30 June) is only for those radar-detected butterflies that were moving in a northward direction (i.e. seasonal migrants that were moving between 270 degrees through to 90 degrees). Summer data (July) is for all butterflies (irrespective of movement direction). Autumn data ( 1 Aug - 30 Nov) is only for southward moving butterflies (from 90 degrees through to 270 degrees).

Fig. 6. Southern migration of Vanessa cardui recorded in the Gulf of Finland on 5 and 6 August 2009. a-d, Kerava radar images. Kerava is about 25 km north of the coastline (NNE from the Helsinki city centre), and the map overlay shows the coastline of the Gulf of Finland that lies between Finland (north) and Estonia (south). (a) 5 August, 05:00 UTC. Insects get airborne at the Finnish coastline, but not farther inland - cooler air after the night before accompanied by low level clouds or fog over the land areas delayed take-off. A few rain showers are seen over the Estonian coast (the strongest
reflectivity corresponds to these rain cells, and to birds near the radar in Finland). (b) 09:03 UTC. Insects flying over the land area causing most of the widespread echoes. The intensity is lower over the sea because no take-off occurs there, and because shortrange migrants rarely fly over the water from land. However, long-range migration continues over the sea, especially in the SW and SE, where many insects are seen flying over the Gulf of Finland southward. Rain showers have developed over Estonia, south of the coastline, and over Finland ( 125 km to the WNW, and 110-120 km to the NNE). M. Leivo observed V. cardui on the outer islands 70-80 km ESE of the radar, with some flying southward higher up in the air. (c) 6 August, 09:45 UTC. Strong and wide spread echoes are caused by insects, and especially over the land areas both in Finland and in Estonia. Line convection causes bands (called convective rolls) of stronger reflectivity oriented along the air flow from NE-ENE over the land, because the low level convergence in the air is gathering insects together and lifting them higher up in these bands. Many insects are flying over the sea towards SW, especially in the SW sector. (d) 12:46 UTC. Only a few insects are now flying over the sea, after a sea-breeze has started to blow from SE in the coastal region. The sea-breeze front convergence is gathering a maximum of insects to form a stronger echo band over the land following the Finnish coastline. Insects flying below about 500 m are carried back to the land by the sea-breeze. J. Kullberg observed hundreds of V. cardui coming from SE on the island of Öro, about 150 km WSW from the radar.

Fig. 1.


Fig. 2

Number of immature (green) and mating/egg laying (blue) records

Fig. 3


Fig. 4


Fig. 5


Fig. 6


