
Multi-Guarded Safe Zone: An Effective Technique
to Monitor Moving Circular Range Queries
Muhammad Aamir Cheema†, Ljiljana Brankovic�, Xuemin Lin†, Wenjie Zhang†, Wei Wang†

†The University of New South Wales, Australia �The University of Newcastle, Australia
{macheema,lxue,zhangw,weiw}@cse.unsw.edu.au ljiljana.brankovic@newcastle.edu.au

Abstract— Given a positive value r, a circular range query
returns the objects that lie within the distance r of the query
location. In this paper, we study the circular range queries that
continuously change their locations. We present an efficient and
effective technique to monitor such moving range queries by
utilising the concept of a safe zone. The safe zone of a query
is the area with a property that while the query remains inside
it, the results of the query remain unchanged. Hence, the query
does not need to be re-evaluated unless it leaves the safe zone.
The shape of the safe zone is defined by the so-called guard
objects. The cost of checking whether a query lies in the safe
zone takes k distance computations, where k is the number of the
guard objects. Our contributions are as follows. 1) We propose a
technique based on powerful pruning rules and a unique access
order which efficiently computes the safe zone and minimizes
the I/O cost. 2) To show the effectiveness of the safe zone, we
theoretically evaluate the probability that a query leaves the safe
zone within one time unit and the expected distance a query
moves before it leaves the safe zone. Additionally, for the queries
that have diameter of the safe zone less than its expected value
multiplied by a constant, we also give an upper bound on the
expected number of guard objects. This upper bound turns out
to be a constant, that is, it does not depend either on the radius
r of the query or the density of the objects. The theoretical
analysis is verified by extensive experiments. 3) Our thorough
experimental study demonstrates that our proposed approach is
close to optimal and is an order of magnitude faster than a naı̈ve
algorithm.

I. INTRODUCTION

We consider a set O of objects, a query point q and a
positive value r. We use dist(o, q) to denote the Euclidean
distance between an object o ∈ O and the query q. A circular
range query returns every object o ∈ O that lies within
distance r of the query location q, i.e., every object such that
dist(o, q) ≤ r. We call such query a “circular range query”
since the search space is a circle around the query. Another
variation of the range query, which we term “rectangular range
query” (also called window query), returns the objects that
lie within a rectangle around the query location. Circular and
rectangular range queries are inherently different and have
different applications. When clear by context, we use the term
range query to refer to the circular range queries.

Due to availability of inexpensive position locators, cheap
network bandwidth and mobile devices with computation
and storage capabilities, location based services are gaining
increasing popularity. Consequently, continuous monitoring of
spatial queries has received significant research attention in
past few years [1], [2], [3], [4], [5], [6], [7].

In this paper, we study the continuous monitoring of moving
range queries over static data objects, i.e., a scenario where

the queries are constantly moving whereas the data objects do
not change their locations. Such scenario has many interesting
applications. Consider the example of a family travelling by
car. Suppose they need to reach their final destination by
certain time and only have up to 90min available for lunch.
They may want to continuously monitor restaurants within
10km of their current location so that they can choose a
restaurant that serves their favorite meals, and will not take
more than 15 min to reach. As another example, a ship sailing
through an ocean might need to continuously monitor the
icebergs around it to avoid accidents.

We next discuss two models to monitor spatial queries.
Client-server model. In this model, the clients issue queries
and the central server is responsible for the computation
of these queries. For example, a person walking down the
street may issue a query to his mobile service provider to
continuously report the coffee shops within 1km of the issuer’s
location. It may be assumed that the server processes the query
in the main-memory, i.e., the data objects are stored in the
main-memory along with other relevant information needed to
efficiently update the results. However, such systems require
that the server continuously maintains this information in the
main-memory in order to provide the service.

We neither require that the data objects are stored in the
main-memory nor we maintain any query information in the
main-memory. One advantage of this is that the service can be
run on-demand. Since the objects are stored in the secondary
memory and no main-memory information is maintained, the
server can go to sleep mode if there is no query. When a
query arrives, the server computes the results and the safe
zone, which are then sent to the client. The safe zone is an
area such that the reported results are valid as long as the client
(i.e., query) remains within the safe zone. A query that leaves
its safe zone sends an update request. The server updates the
safe zone and the results, and sends them back to the client.
Local computation model. In the first application mentioned
above, the car may have a GPS navigation system with
points of interest (e.g., restaurants) stored in its memory card.
Since the navigation systems have limited main-memory and
computational capacity, it may be challenging to compute
the results of the range query whenever the query changes
its location (the car is continuously moving). Our proposed
approach returns a safe zone which guarantees that the results
of the query do not change as long as the query remains
within the safe zone. The safe zone is updated efficiently
when the query leaves the safe zone. Our experimental results
demonstrate that the overhead to compute the safe zone is

small compared to the cost of the range query. This enables
our framework to work effectively on the devices with limited
main-memory and computation power. We next highlight some
advantages of our proposed approach.
a. The computation of the safe zone reduces the overall
computation time because the query needs to be re-evaluated
only when it leaves the safe zone. Our experiments indicate
that the cost of computing the safe zone is small compared to
the cost of the range query.
b. Although the shape of the safe zone may be arbitrarily
complex, we can still efficiently check whether the query
lies within it, as we utilize the fact that the safe zone only
depends on the so-called guard objects. This checking only
takes k distance computations, where k is the number of
guard objects. Our experimental results demonstrate that the
average number of guard objects is around 5. This makes our
proposed approach applicable for the clients that have limited
computational power. We also present a theoretical analysis
and give an upper bound on the expected number of guard
objects for the queries with the diameter of the safe zone no
more than a constant times its expected value.
c. We do not require the data objects to be stored in the main-
memory, which allows our approach to work on the systems
with limited main-memory (e.g., GPS navigation systems).
d. When an update request is received, the server computes the
new safe zone and the results. After updating the results, the
server only sends new information to the clients. For example,
if the client was informed that an object oi is within its range,
the object oi is not sent again in updated results if it still
lies within the range. If in the future such object oi ceases
to be within the range, the client is informed that oi is out
of the range. Our experimental results demonstrate that this
significantly reduces the amount of data transmitted from the
server to the clients.
e. In client-server paradigm, our proposed approach does not
require server to maintain or record any information related
to the queries, yet it efficiently updates the safe zones. This
enables the server to run this service on-demand.

Note that some computation models require queries to get
registered at the server and report their locations after every
t time units. Our approach can be readily applied to such
systems. In the rest of the paper, we assume a model where a
query contacts the server only if it leaves the safe zone.

Although there exists a safe zone based solution for moving
window queries [5], this technique is not applicable to the
moving circular range queries. In Section II we show that it is
not possible to extend this technique to the case of the circular
range queries as the problems of monitoring moving window
queries and circular queries are inherently different. We apply
an aggressive approach to prune the objects/entries that cannot
affect the results and/or the safe zone. Our pruning rules are
tight and the performance of our solution is close to optimal.

We next summarize our contributions in this paper.
• We present an efficient and effective technique to monitor

the moving circular range queries by adopting the concept
of safe zones. In Section VI, we show that our proposed
approach can handle object updates (i.e., the insertion and
deletion of the objects from the underlying dataset).

• We present a rigorous theoretical analysis to verify the
effectiveness of our safe zone based approach. More
specifically, we evaluate the probability that a query
moves out of the safe zone within one time unit, the
expected distance it travels before it leaves the safe
zone, and an upper bound (which is a constant) on the
expected number of guard objects for the queries with the
diameter of the safe zone no more than a constant times
its expected value. Our experimental results confirm the
accuracy of the presented theoretical analysis.

• We conduct extensive experiments to show the effective-
ness of our approach. We compare our algorithm with an
optimal solution and a naı̈ve solution. The experimental
results indicate that our proposed approach is close to the
optimal solution and an order of magnitude faster than the
naı̈ve algorithm.

The remainder of the paper is organized as follows. In
Section II, we give an overview of the related work. We
introduce our framework and pruning rules in Section III,
while in Section IV we present our safe zone based solution
to the moving circular range queries. Theoretical analysis is
presented in Section V, and we extend our approach to handle
the object updates in Section VI. The experimental results are
reported in Section VII. Section VIII concludes the paper.

II. RELATED WORK

Continuous monitoring of spatial queries has been exten-
sively studied in recent past [8], [9], [2], [10], [3], [11],
[12], [5]. Prabhakar et al. [13] proposed velocity constrained
indexing and query indexing for continuous evaluation of static
queries over moving objects. Mokbel et al. [14] introduced an
algorithm (SINA) for evaluating a set of concurrent spatial
queries, which reduces the overall cost by shared execution
and incremental evaluation.

Several distributed processing techniques to continuously
monitor range queries have also been proposed [6], [1], [15],
[16]. Gedik et al. [6] introduce a technique called MobiEyes,
which reduces the computation load on the server and commu-
nication costs between the clients and the server by delegating
some computation load to the client objects (e.g., mobile
devices). In [17], the authors propose motion adaptive indexing
scheme that uses the concept of motion sensitive bounding
boxes to model moving objects and queries. Hu et al. [2]
propose a generic framework to monitor continuous range
queries and kNN queries over moving objects. They define the
safe zones for each object such that the query results remain
unchanged if the object does not leave the region. However,
their approach is not designed for moving queries. Wu et
al. [18] use a new query indexing method called CES-based
indexing to minimize the total query evaluation time.

We now present the related techniques that are specifi-
cally designed for moving spatial queries. Several techniques
have been proposed to construct safe zones for moving
kNN queries [19], [20], [5], [21], [22] and moving window
queries [5]. However, to the best of our knowledge, there
does not exist any safe zone based technique to continuously
monitor moving circular range queries. We next show that the

existing work cannot be extended to monitor moving circular
range queries continuously.

Tao et al. [7] introduce Time-Parameterized queries (TP
queries). A TP query assumes that the motion pattern (e.g.,
path and speed) of the query is known and retrieves the current
results along with a future time at which the current results
will become invalid. A TP query also reports the object that
invalidates the results. In [7], the techniques to answer TP kNN
queries, TP window queries and TP join queries are presented.

q

o2
o1 q'

Fig. 1. A time-parameterized win-
dow query

q

o2

AB
q'

Fig. 2. TP circular queries cannot
be used to construct safe zone

Fig. 1 shows an example of a window query where the
current location of the query is q and its window is shown
with a solid line (the search space is shown in a dark shade).
The current result of the window query q is the object o1. A TP
window query is issued to find the object that invalidates the
current result when the query is moving in the direction shown
by the arrow. The query returns the object o2 as it invalidates
the current result when the query reaches the location q′. In
other words, when the query reaches q′, it has objects o1
and o2 within its window and not only o1. The minimal area
searched by the TP query is shown shaded in Fig. 1.

Based on TP queries, Zhang et al. [5] present a solution to
continuously monitor kNN queries and the window queries.
They use TP queries to identify the safe zones for moving
queries. The algorithm starts by assuming that the whole space
is the safe zone. TP queries are then issued towards the corners
of the current safe zone. If a TP query retrieves an object that
has not already been considered, the safe zone is trimmed
using that object (for details, see [5]); otherwise, the corner is
marked as confirmed. The algorithm terminates when all the
corners are confirmed.

We note that there does not exist any reported work on
TP circular range queries and the technique presented in [5]
cannot be applied to such queries. Even if the technique to
answer TP window queries are extended to answer the TP
circular range queries, the TP circular range queries cannot
be used to construct the safe zone. The reason is as follows.
The key observation used in the technique presented in [5]
is that if none of the TP queries issued towards corners of
a region returns a new object, the region is guaranteed to be
the safe zone. This observation does not hold for the moving
circular range queries. Consider the example in Fig. 2 where
the current region is shown dark shaded. The TP range queries
are issued towards each of the two corners A and B and they
search the space shown shaded in the figure. No object is
returned by either of the TP range queries. However, the region

cannot be guaranteed to be the safe zone. Consider that the
query moves to the location q′. Then the object o2 lies within
its range, which invalidates the results.

III. FRAMEWORK

In this section, we first give a solution overview and
introduce the terms and notation used in this paper. We then
present a set of pruning rules used to efficiently construct the
safe zone.

A. Solution Overview

Consider the example in Fig. 3 where a range query q is
shown. Its range is r and the area within its range is shown
shaded. Some objects around it are also shown. The objects
that lie within the range form the result set and are called
internal objects (e.g., the objects o1 and o2). The objects that
do not lie within the range are called external objects (e.g.,
the object o3). Let Ci be a circle of radius r with centre at
the location of the object oi. Fig. 3 shows the circles for the
objects o1, o2 and o3.

o1

o2

o3 q
r
v1

v2

v3

Fig. 3. A range query and its safe
zone

q
o1

o2

o3
o4

o5

Fig. 4. Some objects do not affect
the safe zone

Note that all the internal objects contain q in their circles
whereas the external objects do not. An internal object oi

ceases to be within the range only when the query q leaves
its circle Ci. Similarly, an external object becomes included
in the result only if the query enters its circle. In other words,
the result of the query q does not change as long as q does
not leave or enter any circle. Hence, the safe zone of a query
q is defined by the boundaries of the circles around it. In
the example in Fig. 3, the dark shaded area is the safe zone
because q does not enter or leave any circle as long as it
remains in this area. Formally, safe zone S can be defined
as the intersection of the circles of internal objects minus the
circles of external objects. That is, S = ∩iCi−∪jCj for every
internal object oi and every external object oj .

Please note that as we consider new objects in order to
calculate the safe zone, we may find that some objects may
not affect the shape of the safe zone. Consider the example
in Fig. 4 where the objects o4 and o5 are shown. The circle
of the internal object o4 completely contains the current safe
zone1 of q. Hence, it does not change the shape of the current
safe zone and will not define the final safe zone. Similarly, the
circle of the external object o5 does not intersect the current

1We use the term current safe zone because the the safe zone is being
constructed and is not the final safe zone. From now on, the current safe zone
is called safe zone and the current guard objects are called guard objects when
there is no ambiguity.

safe zone and consequently does not affect its shape. For this
reason, the final safe zone can be defined without using the
circles of o4 and o5. In this paper, the objects that contribute to
the shape of the final safe zone are called guard objects (e.g.,
o1, o2 and o3). An internal (external) object that contributes
to the final safe zone is called an internal (external) guard.
Internal guards in this example are o1 and o2 whereas o3 is
an external guard. For the sake of simplicity, in what follows
we refer to both “current safe zone” and “final safe zone”
simple as “safe zone”.

1) Data structure at a glance: All objects are indexed by a
disk-resident R-Tree [23]. For each query, the server keeps the
following information in its memory during the computation
of the safe zone: 1) its location; 2) the list of internal objects
called answer list; 3) the list of guard objects. For each guard
object, the server stores its arcs that contribute to the safe
zone. In the example in Fig. 3, the object o1 has an arc with
two end vertices v1 and v3. We use this arc (or vertices) for
effective pruning. Note that the server stores this information
in its memory only during the construction of the safe zone,
and discards this information after the safe zone has been
computed and sent to the client.

2) Checking whether q lies in the safe zone: Since the
clients that issue queries (e.g., mobile devices) have limited
computational power, it is desirable that checking whether the
client is inside the safe zone is not computationally expensive.
Although the shape of a safe zone may be complex, the cost of
checking whether q lies in the safe zone takes only k distance
computations where k is the number of guard objects. More
specifically, the query q computes its distance from each of the
guard object. If it lies within the circle of every internal guard
and lies outside the circle of every external guard then it lies
within the safe zone. Our experimental results show that the
average number of guard objects is around 5. We also present
a theoretical analysis to give an upper bound on the expected
number of guard objects for the queries that satisfy certain
constraints.

A simple approach to compute the safe zone is to consider
all objects and find the objects that actually contribute to the
safe zone. However, the number of objects that are considered
must be reduced in order to reduce the I/O cost and to improve
the CPU time. We next present five effective pruning rules that
significantly reduce the number of considered objects.

B. Pruning Rules

As shown in the example in Fig. 4, some objects do not
affect the safe zone. More specifically, if the circle of an object
contains the safe zone (such as o4 in Fig. 4) or lies completely
outside the safe zone (such as (o5 in Fig. 4), that object does
not affect the shape of the safe zone. In this section, we present
some effective pruning rules to prune such objects. Note that
only the circles of internal objects may contain the safe zone
and only the circles of external objects may completely lie
outside the safe zone. Hence, some pruning rules are specific
to the internal objects and some are to be applied only on
external objects.

First, we present pruning rules based on the approximation
of the safe zone by a rectangle. Let a and b be two rectangles or

points; we use mindist(a, b) and maxdist(a, b) to denote the
minimum and maximum distances between them, respectively.

1) Using approximation of the safe zone: Let RS be the
minimum bounding rectangle of the current safe zone as
shown in Fig 5. Let Rcnd be a rectangle that contains some
candidate objects.

PRUNING RULE 1 : If maxdist(Rcnd, RS) < r then no
object in Rcnd can affect the safe zone.

PRUNING RULE 2 : If mindist(Rcnd, RS) > r then no
object in Rcnd can affect the safe zone.

q

mindist(R1,RS) maxdist(R2,RS)
R2

RS

R1

Fig. 5. Pruning using the approximation of safe zone

The proofs are straightforward and we omit them. In the
example in Fig. 5, where maxdist(R2, RS) < r, it can be
immediately verified that any object in R2 contains the safe
zone in its circle. Similarly, mindist(R1, RS) > r and every
object in R1 can also be pruned. Pruning rule 1 prunes the
rectangles that contain internal objects and the pruning rule 2
prunes the rectangles containing external objects.

2) Using the guard objects: Although the rectangle based
pruning is inexpensive, it is unfortunately not very tight. We
present tighter pruning rules below, based on the positions of
the guard objects.

o1

o2

o3 q
r

o4

Fig. 6. Pruning rule 3

o1

o2
o3 q

r

2r

2r

Fig. 7. Area pruned by the rule 3

PRUNING RULE 3 : If mindist(Rcnd, oi) > 2r for any in-
ternal guard object oi then no object in Rcnd can affect the
safe zone.

Proof: An object can only affect the safe zone if its circle
intersects the safe zone. Safe zone is the area defined by the
intersection of the circles of the internal guard objects minus
the circles of the external guard objects. Hence, the circle of
any internal guard object contains the whole safe zone, Thus a
circle can only intersect the safe zone if it intersects the circles
of all internal guard objects. Consequently, if an object oj lies
at a distance greater than 2r from any internal guard oi, it
cannot intersect the safe zone.

In Fig. 6, the object o4 cannot affect the safe zone because
it lies at a distance greater than 2r from o2. To show the
area that is pruned by this pruning rule, we zoom out Fig. 6
and show the pruned area in Fig. 7. The shaded area can be
pruned because every point in it lies at a distance greater than
2r from at least one of o1 and o2. This pruning rule prunes
the rectangles that contain external objects.

Before we present tighter pruning rules, we provide few
auxiliary observations and lemmas.

Consider a circle C with centre at M and radius r, and any
point E in the plane (inside or outside the circle) (see Fig. 8).
The line that passes through E and M intersects the circle at
two points, A and B. Without loss of generality, we assume
that dist(A,E) < dist(B,E), as shown in Fig. 8. We make
the following observation.

OBSERVATION 1 : Let C be a circle of radius r, and M , E, A
and B be the points as described above. The distance between
E and any point D on the circle monotonically increases as
D moves along the circle from point A to B, either clockwise
or counter-clockwise. In other words, any point D′ that lies
before D while travelling on the circle from A to B satisfies
dist(E,D′) < dist(E,D).

The above observation can be easily verified from the
triangle �EMD. If we denote MD by r and the length
of EM by x, then the length of DE is given by the law
of cosine as dist(D,E) =

√
r2 + x2 − 2rx · cos(∠EMD).

Note that as D travels along the circle from A to B, the
angle ∠EMD increases from 0◦ to 180◦ and its cosine
monotonically decreases from 1 to -1. As both r and x remain
unchanged, the distance dist(D,E) monotonically increases.
Note that we do not require x to be smaller than r, so the
observation also holds for the case when E lies outside the
circle.

E

M
r

B

A

D
D’

Fig. 8. Observation 1

E
D

A

M
rr Bθ

F

Fig. 9. Lemma 1

Based on Observation 1, we present the following lemma
that is used in our next pruning rule.

LEMMA 1 : Let
�

AB be an arc of radius r with subtending
angle θ < 180◦ where A and B are the end points of the arc
and M is the centre (as shown in Fig. 9). Let CA and CB

be two circles of radius r centred at A and B, respectively.
Every point E that lies inside both the circle CA and circle
CB satisfies the following: The circle of radius r with centre
at E (the dotted circle in Fig. 9) contains every point of the

arc
�

AB.

Proof: In order to prove the lemma, we need to show
that the distance of E from any point D that lies on the arc
�

AB is smaller than r. If we extend the line joining M and
E, it cuts the arc at point F which is the minimum distance

from E to the circle. We prove the lemma for the arc
�

AF

and the proof for the arc
�

FB is similar. By Observation 1,

we know that any point D that lies on the arc
�

AF satisfies
dist(E,D) ≤ dist(E,A). As the point E lies inside the circle
CA, dist(E,A) < r. Hence, dist(E,D) < r for any point D.

Please note that the lemma does not hold if the subtending
angle θ ≥ 180◦ as the line joining M and E intersects the arc
�

AB at point F which is the maximum distance from E to the
circle and is greater than r (Fig. 10).

EA
M rr

B

θ

F

Fig. 10. When θ > 180◦

o1

o2

o3 qv2

v3

v1

Fig. 11. Pruning rule 4

Based on Lemma 1, we present a pruning rule to prune the
rectangles that contain internal objects.

PRUNING RULE 4 : Let S be a safe zone such that every
arc that defines it has subtending angle smaller than 180◦. If
maxdist(Rcnd, vi) ≤ r for every vertex vi of the safe zone S,
then no object in Rcnd can affect the shape of the safe zone.

Proof: Let E be a point that lies within all the circles of
radius r centred at vertices of the safe zone. From Lemma 1,
we know that the circle centred at E contains every arc of the
safe zone. Hence, it contains the whole safe zone and cannot
affect its shape.

Fig. 11 shows three circles of radius r with centres at the
vertices v1, v2 and v3. Any object or rectangle that lies in the
shaded area can be pruned because its distance to any vertex
cannot be greater than r.

For our final pruning rule, we need the following lemma.

LEMMA 2 : Let
�

AB be an arc with centre at M , radius r
and subtending angle 0 < θ < 360◦ as shown in Fig. 12. The

distance of E from every point of the arc
�

AB is greater than
r, if E satisfies either of the following conditions:
1) E lies within the angle range θ and dist(E,M) > 2r;
2) E lies outside the angle range θ, dist(E,A) > r and
dist(E,B) > r.

Less formally, if E lies within the shaded area in Fig. 12,

its distance to any point on the arc
�

AB is greater than r.

Proof: We first consider a point E1 that lies within the
angle range θ (see Fig. 12). We draw a line through points E1

and M and we denote the intersection of the line and the arc

by G. By Observation 1 dist(E1, G) is the minimum distance

from the point E to the arc
�

AB. Since dist(E1,M) > 2r, it
follows that dist(E1, G) > r and thus dist(E1,D) > r for

any point D on the arc
�

AB.
We now consider a point E2 that lies outside the angle

range θ (see Fig. 12). Again, by Observation 1, the minimum
distance from E2 to the circle is dist(E2, F) (see Fig. 12),
and the distance between E2 and the points on the circle
increases monotonically as we move along the circle away

from the point F . Thus for every point D on the arc
�

AB we
have either dist(E2,D) ≥ dist(E2, A) > r or dist(E2,D) ≥
dist(E2, B) > r.

A

M
rr Bθ

E1

E2

F

D

Fig. 12. Lemma 2

q
o1

o2

o3

Arc of o2 with radius 2r

Arc of o1 with radius 2r

Fig. 13. Pruning by rules 4 and 5

Based on Lemma 2, we present our final pruning rule that
prunes external objects.

PRUNING RULE 5 : No object in a rectangle Rcnd can affect
the safe zone if Rcnd satisfies Lemma 2 (i.e., Rcnd lies
completely in the shaded area of Fig. 12) for every arc of
the safe zone.

The proof immediately follows from Lemma 2 as any point in
Rcnd has minimum distance to the boundary of the safe zone
greater than r. Hence, its circle cannot intersect the safe zone.
In order to apply this pruning rule, we check the minimum
distance of the rectangle Rcnd from M , A and B. If the
rectangle completely lies outside the angle range θ, it can be
pruned if its minimum distance from both A and B is greater
than r. Otherwise, it can be pruned if its minimum distance
from M is greater than 2r.

Fig. 13 shows the area pruned by the rules 4 and 5, where
the outer shaded area is pruned by the pruning rule 5 and we
call it external pruned area. The inner shaded area is pruned
by the rule 4 and we call it internal pruned area.

The arguments similar to those used in proofs of Lemma 1
and 2 can be used to show that the pruning rules are tight.
In other words, any object that lies in the unpruned area (the
white area in Fig. 13) affects the shape of the current safe
zone. Note that although the rectangle based pruning rules
have less pruning power, they are important because they are
computationally less expensive. We first apply the rectangle
based pruning rules and if an object is not pruned, we apply
the guard objects based pruning rules.

IV. TECHNIQUE

Initially, the whole space is assumed to be the safe zone.
We then access each object that cannot be pruned, and use

its circle to trim the safe zone. The algorithm stops when all
the objects that cannot be pruned are accessed. The order in
which the objects are accessed is important as better access
order retrieves fewer objects that affect the safe zone. We first
present our proposed access order. Secondly, we present our
query processing algorithm followed by the algorithm to trim
the safe zone. Finally, we present an efficient technique to
update the safe zone when the query leaves it.

A. Access order

After applying the pruning rules presented above, there may
be several objects left in the unpruned area. The order in which
these objects are accessed is important. Intuitively, the objects
that lie closer to the boundary of the range query have a more
significant effect on the shape of the safe zone and should be
accessed first.

Consider the example in Fig. 14, where the boundary of q
is shown in thick broken line. The objects o1, o2 and o3 are
accessed first and are the current guard objects. The object
o4 that lies closer to the boundary than all of the existing
guard objects is guaranteed to affect the shape of the safe
zone. In Fig. 15, the object o4 is accessed and the safe zone is
shown after trimming with respect to its circle. We present a
lemma that shows the importance of the objects located near
the boundary for constructing the safe zone.

q
o1

o2
o3

o4

F

Fig. 14. Importance of the order in
which objects are accessed

q
o1

o2
o3

o4

F G

Fig. 15. o1 is not a guard object
anymore

LEMMA 3 : Let oi be an object that is closer to the boundary
of the range query than all current guard objects. The object
oi is guaranteed to affect the shape of the current safe zone.

Proof: Without loss of generality, consider the example
in Fig. 14 where the current safe zone is shown shaded. The
closest guard object to the boundary of the range query is
o3. Thus the minimum distance from the query to the current
safe zone is | dist(o3, q) − r |. Any object o4 that lies closer
to the boundary than o3 has a point G on its circle with
distance | dist(o4, q) − r | from the query, which is less than
| dist(o3, q) − r | (see Fig. 15). Hence, the circle of o4 has
at least one point inside the current safe zone so it affects the
safe zone.

In fact, in this particular example, the object o4 is not
only a guard object but it also removes the object o1 from
the list of the guard objects. Consider Fig. 15, where the
object o4 has been considered for trimming and the new
safe zone is shown shaded after. Clearly, the circle of the
object o1 does not contribute to the safe zone anymore, and

consequently o1 is removed from the list of the guard objects.
This example supports the intuition that the objects that lie
closer to the boundary of the query should be accessed first.
Our experimental results demonstrate the effectiveness of this
proposed access order (Fig. 29 in Section VII). Next, we
present an efficient algorithm that accesses the objects in the
proposed order.

B. Algorithm

We use R-Tree [23] to index the objects. Each leaf and
index node of an R-tree contains pointers to its entries and a
minimum bounding rectangle that contains all its objects. For
details, please see [23].

Algorithm 1 outlines the solution. A min-heap is initialized
with the root entry of the R-tree. The entries are de-heaped
iteratively until the heap becomes empty. If a de-heaped entry
e has maxdist(e, q) < r, then all the objects in it are internal
and we apply pruning rules 1 and 4. If the entry is pruned, we
do not need to check any objects within it for the construction
of the safe zone. However, as these objects are internal, they
contribute to the answer to be sent to the query. Therefore, we
insert all the objects that are within this entry to the answer
list (lines 4 - 7).

Algorithm 1 Range Query (q, r)
Input: q: the query point; r: range of the query;
Description:

1: initialize a min-heap H with root of the R-Tree
2: while H is not empty do
3: deheap an entry e
4: if maxdist(e, q) < r then
5: if pruned using rules 1 and 4 then
6: insert all objects of e in the answer list
7: continue
8: else if mindist(e, q) > r) then
9: If pruned using rules 2, 3 and 5, continue;

10: if e is an object then
11: TrimSafeZone(e,q,S) /* Algorithm 2 */
12: if e is an internal object, insert in the answer list
13: if e is a leaf or index node then
14: for each entry c in e do
15: insert c into H with key set to its minimum distance

from boundary
16: send guard objects and answer list to the query q

If the de-heaped entry e has mindist(e, q) > r, then all
the objects in it are external objects and we apply pruning
rules 2, 3 and 5 (lines 8 and 9). If the entry is pruned, we
continue the algorithm by de-heaping the next entry. Note that
an entry e for which mindist(e, q) ≤ r ≤ maxdist(e, q)
cannot be pruned by any of the pruning rules. This is because
such entries may contain both internal and external objects,
while all the proposed pruning rules are applicable either to
internal objects or to external objects. For this reason, we do
not consider such entries for pruning.

If e is an object and cannot be pruned, we use it to trim the
safe zone; if it is an internal object, we also insert it into the
answer list (lines 10 - 12). Otherwise, if e is a leaf or index
node, we insert its entries into the heap with key of each entry

set to minimum distance of the entry from the boundary of the
range query (lines 13 - 15). The algorithm stops when the heap
becomes empty.

The minimum distance of an entry e from the boundary of
the range query is computed as follows: If mindist(e, q) ≤ r
and maxdist(e, q) ≥ r, then the minimum distance of this
entry from the boundary is zero because the entry e overlaps
the boundary (see R1 in Fig. 16). If mindist(e, q) > r, then
the minimum distance of this entry is mindist(e, q) − r (see
R2 in Fig. 16). Finally, if the maxdist(e, q) < r then the
minimum distance is r − maxdist(e, q) (see R3 in Fig. 16).

q

R1

r

R2

R3

Mindist(R2,q)

Maxdist(R3,q)

Fig. 16. Minimum distance from the
boundary

o1

o2
o3

o4
v1

v2

v3

v5

v4

v6

q

Fig. 17. Illustration of the trimming
(Algorithm 2)

In a special case when there is no object within the range,
the whole space minus the circles of all the external objects
will be the safe zone. However, the number of guard objects
may be arbitrarily large. For such cases, in order to restrict
the space, we treat query location as a virtual internal object.
Then only the objects within distance 2r of the query may be
the guard objects.

C. Trimming the safe zone

Algorithm 2 shows the procedure to trim the safe zone with
respect to an object o. Note that to trim the safe zone, we only
need to update the guard objects and the vertices of the safe
zone and we do it as follows. For each guard object oi, the
intersection points of the circles of o and oi are computed. If
the intersection point lies on the boundary of the safe zone,
the point is added as the vertex of the safe zone (lines 1 to 3).
Then, the object o is added as the guard object.

Algorithm 2 TrimSafeZone (o, q, S)
Input: o: an object o to be used for updating the safe zone;

q: the query point; S: the list of current guard objects;
Description:

1: for each guard object oi in S do
2: for each intersection point vi of circles of o and oi do
3: add vi to vertices list if vi lies on the boundary of

the safe zone
4: add o to the list of guard objects S
5: if o is an internal object then
6: remove every vertex v if dist(o, v) > r
7: else if o is an external object then
8: remove every vertex v if dist(o, v) < r
9: remove every guard object o from S if all its related

vertices have been removed

Finally, the existing vertices that are no longer in the safe

zone are removed and the objects that no longer have any
associated vertices are removed from the list of guard objects
(lines 5 to 9).

Fig. 17 illustrates the Algorithm 2 and shows the safe zone
(shaded), together with its current guard objects o1, o2 and o3.
The safe zone is to be trimmed by a new object o4. For the
sake of clarity, the circles of o1 and o3 are not shown. The
circle C4 of the object o4 intersects the circle C2 of the object
o2 at two points, v4 and v5. The intersection point v4 lies on
the boundary of safe zone, so it is added to the list of vertices
of the current safe zone. The intersection point v5 lies outside
the safe zone so it is deleted. Similarly, the intersection points
of the circle C4 with the circles of o1 and o3 are considered
and v6 is added to the list of vertices. All other intersection
points lie outside the safe zone and are deleted.

Now the vertices of the safe zone that are not valid anymore
are to be deleted. Since o4 is an internal object (it contains q
in its circle), all vertices that lie outside its circle are deleted.
For this reason, the vertices v1 and v2 are deleted. The related
object o1 is also deleted as it no longer has any associated
vertex. After trimming of the safe zone, its vertices are v3, v4

and v6 and the guard objects are o2, o3 and o4.

D. Updating the safe zone when query leaves it

When the query leaves its safe zone, it sends its current
location and current guard objects to the server. The server
updates the answer list (the list of internal objects), computes
the new safe zone and sends it to the query. A straightforward
approach is to compute the safe zone and answer list from
scratch. However, this is not only expensive but can also cause
a large amount of data to be transmitted from the server to the
query if the answer list contains a large number of objects.

In this section, we propose an effective approach to update
the safe zone and the answer list, called smart-update. The
smart-update utilizes the previous safe zone of the query and
avoids searching the area that was visited before. Furthermore,
instead of computing and sending all the objects lying within
the range, the smart-update sends a list of objects called delta
list that contains two types of objects. An object o+

i indicates
that the object oi that was previously external is now internal.
So, the client must add it in its answer list. An object o−i
indicates that the object oi that was previously internal is now
external. Hence, the client must remove it from its answer list.

q'

o1

o2

o3
q

Fig. 18. q leaves the safe zone

q
o1

o2

o3
o4 o5

Fig. 19. Smart-update in action

Fig. 18 shows that a query q leaves the safe zone and moves
to q′. The shaded area corresponds to the area that was pruned
with respect to its previous safe zone. The smart-updates first

considers the existing guard objects and constructs an initial
safe zone (as shown in Fig. 19). Then, the smart-update uses
two observations to reduce the search area. 1) The white
area of the Fig. 18 cannot contain any object. The proof is
straightforward because if there were any object in the white
area, it would have affected the previous safe zone. Hence, the
smart-update does not search this area. 2) The query q contains
in its answer list all the objects that are in the internal pruned
area (the internal shaded area of Fig. 18). Hence, the objects
that lie within distance r from q′ and lie in the internal pruned
area are not required to be sent to the client.

In the example in Fig. 19, the object o4 is not sent to the
query because it lies in the previous internal pruned area and
the query already contains it. However, the object o5 must be
sent so that the query removes it from its answer list.

V. THEORETICAL ANALYSIS

In this section we present theoretical analysis to evaluate
the effectiveness of the safe zone. In what follows we assume
that there are N objects in total and that they are uniformly
distributed in a square unit universe.

A. Escape Probability (Pesc)

We first analyse escape probability Pesc, which we define
as the probability that a query q leaves its safe zone within one
time unit. Escape probability is important because a smaller
escape probability indicates that on average the results of the
query will remain unchanged for longer.

q

o1

q'o2

o3

x

(a) For x < 2r

q

q'

x

(b) For x ≥ 2r
Fig. 20. Sweeping region

Consider the example in Fig. 20(a) with a range query q
and the guard objects o1, o2 and o3. The safe zone is shown
with bold boundary. Suppose that the query q travels along a
straight line in an arbitrary direction and crosses the boundary
of the safe zone at point q′. Zhang et al. [5] presented an
interesting observation for window queries which we here
apply to the circular range queries. When a query q moves,
its circle sweeps some area, which is called sweeping region.
Fig. 20(a) shows the sweeping region of the query which
moved from q to q′. It is important to note that as long as the
query remains in the safe zone, that is, while x ≤ dist(q, q′),
the corresponding sweeping region contains no objects.

The area A of the sweeping region when the query moves
distance x < 2r (as shown in Fig. 20(a)) and x ≥ 2r (as

shown in Fig. 20(b)) is

A(x) =πr2+2rx −
⎧⎨
⎩2r2arccos(

x

2r
) − x

√
r2 − x2

4
, if x < 2r

0 , otherwise
(1)

Since we assume uniform distribution of the objects in a
unit universe, the probability pi that an object oi lies within
the sweeping region is A(x). The probability p′i that the object
oi does not lie within the sweeping region is (1 − A(x)).
The probability that none of the N objects lies within the
sweeping region is (1 − A(x))N . Hence, the probability that
x < dist(q, q′) is (1 − A(x))N . Finally, the probability that
at least one of the N objects lies within the sweeping region,
that is, the probability that x ≥ dist(q, q′) is:

P{x ≥ dist(q, q′)} = 1 − (1 − A(x))N (2)

Let the query speed v be such that the query travels distance
d in one time unit. The probability of escape Pesc can be
computed as P{d ≥ dist(q, q′)} = 1 − (1 − A(d))N .

B. Expected distance (m)

In this section, we analyse the expected distance m that a
query travels before it leaves its safe zone. The probability
density function pdf(x) is given by the derivative of P (x)
presented in Equation (2) as follows:

pdf(x) = 2rN(1 − A(x))N−1

⎧⎨
⎩

(1 +
√

1 − (
x

2r
)2) , if x < 2r

1 , otherwise
(3)

Integrating x · pdf(x)dx for x from 0 to 1 gives us the
expected distance.

Unfortunately, it is difficult to integrate x·pdf(x)dx because
the area A is represented by trigonometric functions and it
makes the expression difficult to solve when x < 2r. We
address this problem by approximating the area A(x) when
x < 2r. It can be shown that when 0 ≤ x ≤ 2r, then 1.1πrx ≤
A(x) ≤ 1.3πrx. We thus define the lower bound on the area
as Alow = 1.1πrx and the upper bound as Aup = 1.3πrx.
We can then show that for x < 2r, 2rNx(1 − Aup)N−1 ≤
x · pdf(x)dx ≤ 4RNx(1 − Alow)N−1. Thus we define the
lower and upper bound on the expected distance as follows:

mup =
∫ 2r

0

4rNx(1−Alow)N−1dx+
∫ 1

2r

2rNx(1−A(x))N−1dx

(4)

mlow =
∫ 2r

0

2rNx(1−Aup)N−1dx+
∫ 1

2r

2rNx(1−A(x))N−1dx

(5)
Exact values of mlow and mup can be found by solving the

integrals. For large values of N we have

mup ≈ 0.33
rN

and mlow ≈ 0.12
rN

(6)

The equations for the expected distance bounds describe
relation between the expected distances, radius and the total

number of objects. More specifically, the expected distance
is inversely proportional to the radius r and the number of
objects N .

C. Expected number of guard objects

We now evaluate the expected number G of guard objects.
Let d(θ) be the distance a query moves in direction θ before it
leaves the safe zone. Let dmax be the maximum of d(θ) over
all θ such that 0 ≤ θ ≤ 2π. Let P (x) be the probability that a
query has dmax ≤ x. We know from the theory of conditional
expectation that the expected number of guard objects is given
by

E(G) =
∫ 1

o

E(G|dmax = x)P ′(x)dx (7)

where E(G|dmax = x) is the expected number of guard
objects for a query that has dmax = x and P ′(x) is the
derivative of P (x) with respect to x. First, we show that
E(G|dmax = x) ≤ 4πrxN .

Consider the example of Fig. 21 where the maximum
distance from q to the boundary of the safe zone is x (x
corresponds to the circle shown in thick line). The circles of
radii r, r + x and r − x are also shown. Any object oi that
lies in the circle of radius r − x cannot be the guard object
because the circle Ci of the object oi fully contains the safe
zone. This is the case because maximum distance of oi to the
safe zone maxdist(oi, S) ≤ dist(q, oi) + x ≤ r. Hence, the
object oi cannot affect the shape of the safe zone.

o1 q

o2

r

x

x

r+x

r-x

Fig. 21. Proving that E(G|dmax =
x) < 4πrxN

q
o1

o2

o3 o3

o4

o5

Fig. 22. Impact region shown
shaded

Similarly, any object oj that lies outside the circle of radius
r+x cannot affect the shape of the safe zone as the minimum
distance of oj to the safe zone mindist(oj , S) ≥ dist(q, oj)−
x ≥ r. Fig. 21 shows two objects o1 and o2 and both cannot
be the guard objects2.

As discussed above, only those objects that have distance
from the query no less than r − x and no greater than r + x
can be the guard objects (i.e., only the objects in the area
shown shaded in Fig. 21 can be the guard objects). Thus the
number G of guard objects of any query with dmax ≤ x
is less than or equal to the total number of objects in the
shaded area and consequently the expected number of G is

2This observation can be used as a pruning rule. We observed that the area
pruned by this pruning rule is less than the rectangle based pruning in most
of the cases. On the other hand, the cost of rectangle based pruning is similar
to this pruning rule. Hence, we do not present this as a pruning rule.

less than or equal to the expected number of objects in the
shaded area which is (π(r + x)2 − π(r − x)2)N = 4πrxN .
Hence E(G|dmax = x) ≤ 4πrxN .

For queries q for which dmax ≤ C ·m, where C is a constant
and m is the expected distance, Equation (8) shows the upper
bound of expected number of guard objects. In other words,
if we consider only queries for which maximum distance to
the boundary of safe zone dmax is not greater than C ·m, the
upper bound on the expected number of guard objects is given
by

∫ C·m

0

E(G|dmax = x)P ′(x)dx ≤ 4πrNCm

∫ C·m

o

P ′(x)dx

= C · 4πrmN
(8)

Hence, the queries that have dmax ≤ C · mup have the
expected number of guard objects at most:

4πrNC × 0.33
rN

= 4.14C (9)

In our experiments, we found that 30% to 50% of the
queries have dmax less than 2mup. Hence, upper bound on
expected number of guard objects for such queries is 8.28.

VI. EXTENSION TO HANDLE OBJECT UPDATES

Consider the example of a person driving a car who is
interested in available parking spaces within 1Km. When a
parking space is occupied, the parking meter notifies the
server that the space has been occupied and the server treats
this object (the parking space) as if it has disappeared (this
object will not be considered for any query). Similarly, when
a parking space becomes available, the server marks it as
appeared and this should be reported to every query that
contains it in its range.

For such datasets where the objects may appear or disap-
pear, the server needs to store the query information in order to
notify it if an object update affects its results or its safe zone.
Below, we present an efficient approach that checks the effect
of object update only for some selected queries and guarantees
that the results of all other queries are unaffected.

First, we define impact region. The impact region of a query
is the area such that any object update inside it affects the
query results (and/or its safe zone) and any object outside this
region does not affect the query results or the safe zone. The
impact region for a query q is the area shown shaded (dark
and light shaded area) in Fig. 22. This is because from pruning
rule 5 we know that any object that lies outside this area cannot
affect the safe zone.

We handle the object updates as follows.
Case 1. An object oi (o3 in Fig. 22) appears/disappears in the
internal pruned area (the dark shaded area). Note that such
update does not affect the safe zone. However, such object lies
within the range of the query and the query must be notified.
Hence, the server notifies the query that the object oi has
appeared/disappeared.
Case 2. An object oi (o4 in Fig. 22) appears/disappears in the
light shaded area. Such object affects the safe zone. Hence,

the server computes the new safe zone, updates the results and
notifies the changes to the query.

All other object updates do not affect the query and can be
ignored. In Fig. 22, the object o5 does not affect the query
results or its safe zone and is ignored.

To efficiently determine the queries that contain an object
update in their impact regions, we use a grid structure. More
specifically, each cell of the grid contains a query list which
contains the query ids for every query that has its impact region
overlapping the cell. When an object appears/disappears, we
locate the cell ci,j relevant to its location. Only the queries
that are in the query list of the cell ci,j might be affected.
Note that the objects are not stored in the grid (we use grid
only to map the location of an object to the queries it may
affect).

To efficiently mark or unmark the cells that overlap with
the impact region of a query, we use grid-tree [24] that is a
conceptual visualization of the grid as a tree. Due to space
limitations, we omit the details.

VII. EXPERIMENTS

To evaluate the performance of our proposed approach,
we compare our approach with an optimal algorithm and a
naı̈ve algorithm. We assume that the optimal algorithm already
knows the safe zone and updates the results only when the
query leaves the safe zone. To compute the initial results, the
optimal algorithm visits the objects that lie within the range.
To update the results, the algorithm searches only the area
that may contain the new answers. We only consider the I/O
cost for the optimal algorithm (the CPU time is assumed to
be zero).

The naı̈ve algorithm prunes every object oi such that its
circle does not intersect with the circle of any guard object.
That is, an object or rectangle can be pruned if its distance
from all guard objects is greater than 2r.

All the experiments were conducted on Intel Xeon 2.4 GHz
dual CPU with 4 GBytes memory. We used real dataset as
well as synthetic dataset. The real dataset3 contains 175, 813
points of interests in North America that corresponds to a
data universe of 5000Km×5000Km. To verify the theoretical
analysis, we created synthetic datasets consisting 50, 000 to
150, 000 points following uniform distribution within the same
data universe size. The objects are indexed by R-tree with node
size set to 2K.

Parameter Range
Number of objects (×1000) 50, 75, 100, 125, 150
Range (in Km) 50, 100, 150, 200, 250
Average speed (in Km/hr) 40, 60, 80, 100, 120

We simulated moving queries (moving cars) by using the
spatio-temporal data generator [25]. The average speed of
moving queries varies from 40 Km/hr to 120 Km/hr. All
queries are continuously monitored for 5 minutes and the
results shown correspond to the average monitoring cost for
a single query for the 5 minutes duration. All the experiment
results shown correspond to the real dataset except the results
where we show the effect of number of objects. The table
above shows the default parameters.

3http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

A. Cost comparison

The cost of each algorithm consists of I/O cost (by charging
2ms for each node access) and CPU cost (assumed zero for
the optimal algorithm). The naı̈ve algorithm was at least 20
times slower4 than our algorithm for all settings so we exclude
it from figures to better illustrate the comparison of our
algorithm with the optimal algorithm. In Fig. 23 and Fig. 24,
we compare the cost of our algorithm with the cost of optimal
algorithm for different ranges, different number of objects and
varying speed. The performance of our algorithm is close to
the optimal algorithm. Main cost for our proposed approach is
the I/O cost which is very close to the I/O cost of the optimal
solution. This shows that the overhead of computing the safe
zone is very small compared to the cost of the range query.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250

T
im

e
(in

 s
ec

)

Range (in Km)

Our CPU Time
Our I/O Time

Optimal I/O Time

(a) Radius

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

50 75 100 125 150

T
im

e
(in

 s
ec

)

Number of objects (in thousands)

Our CPU Time
Our I/O Time

Optimal I/O Time

(b) Number of objects
Fig. 23. Efficiency

B. Effectiveness of safe zone and verification of the theoretical
analysis

First, we study the probability of escape and verify the
theoretical results obtained. In our experiments, the escape
probability of a query is computed by dividing the number of
times it leaves the safe zone by the total number of movements
recorded. We record the movement every second and check
whether the query lies within the safe zone or not. Fig. 25 and
Fig. 26 compare the escape probabilities with the theoretical
results for different values of different parameters. Please note
that Fig. 26 corresponds to the experiments run on the real data
and it is evident that the theoretical results are accurate even
on the real data.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 40 60 80 100 120

T
im

e
(in

 s
ec

)

Speed (in Km/hr)

Our CPU Time
Our I/O Time

Optimal I/O Time

Fig. 24. Efficiency (effect of
speed)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

50 75 100 125 150

E
sc

ap
e

P
ro

ba
bi

lit
y

Number of objects (in thousands)

Practical
Theoretical

Fig. 25. Escape Probability (effec
of data cardinality)

As expected, the escape probability increases with the
number of objects. The range and the speed have a similar
effect on the escape probability. The results demonstrate that
the escape probability is small, which shows the effectiveness
of our proposed approach in real world settings.

In Fig. 27, we show the expected distance for queries run
on the synthetic dataset with increasing number of objects
and increasing range of the query. It shows that the actual
expected distance is close to the expected bounds we obtained
in Section V. Moreover, the actual expected distance is from
300 meters to 1200 meters.

4We also compared our algorithm with naı̈ve algorithm for in-memory data
and observed 30-70 times better performance. This shows that our proposed
approach performs good even for in-memory computation models.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 50 100 150 200 250

E
sc

ap
e

P
ro

ba
bi

lit
y

Range (in Km)

Practical
Theoretical

(a) Effect of range

 0

 0.02

 0.04

 0.06

 0.08

 40 60 80 100 120

E
sc

ap
e

P
ro

ba
bi

lit
y

Speed (in Km/hr)

Practical
Theoretical

(b) Effect of speed
Fig. 26. Escape Probability

 0

 200

 400

 600

 800

 1000

 1200

50 75 100 125 150

D
is

ta
nc

e
(in

 m
et

er
s)

Number of Objects (in thousands)

Expected Lower Bound
Experimental

Expected Upper Bound

(a) Effect of data cardinality

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 50 100 150 200 250

D
is

ta
nc

e
(in

 m
et

er
s)

Range (in Km)

Expected Lower bound
Experimental

Expected Lower Bound

(b) Effect of range
Fig. 27. Expected Distance

Fig. 28 shows the average number of guard objects for all
queries and compares the theoretical bound with the actual
number of guard objects. As stated in Section V, our theoret-
ical upper bound is valid for the queries for which maximum
distance to the safe zone is smaller than C · mup where C
is a constant. We observed that when C is set to 2, 30% to
50% queries satisfy the constraint. We call such queries the
nominated queries.

 0

 5

 10

 15

 20

50 75 100 125 150

of

 g
ua

rd
s

ob
je

ct
s

Number of Objects (in thousands)

Avg for all queries
Avg for nominated queries

upper bound for nominated queries

(a) Effect of data cardinality

 0

 5

 10

 15

 20

 50 100 150 200 250

of

 g
ua

rd
 o

bj
ec

ts

Range (in Km)

Avg for all queries
Avg for nominated queries

upper bound for nominated queries

(b) Effect of range
Fig. 28. Number of guard objects

In Fig. 28, we show the average number of guard objects for
all queries as well as the average number of guard objects for
the nominated queries. It is interesting to note that the average
number of guard objects for all queries is around 5 regardless
of the experiment settings.

C. Effectiveness of the proposed access order

In Fig. 29, we show the effectiveness of our proposed
access order. We tried two other access orders namely MinFirst
and RandomAccess. In MinFirst access order, the objects
are accessed in increasing order of their distances from the
query. In RandomAccess, the objects are accessed randomly.
However, to improve the performance of RandomAccess, we
give priority to the objects that lie within the range over the
objects that lie too far from the query.

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250

of

 o
bj

ec
ts

 a
cc

es
se

d

Range (in Km)

Our Access Order
Random Access

Fig. 29. Effectiveness of access
order

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250

of

 u
np

ru
ne

d
ob

je
ct

s

Range (in Km)

All Pruning Rules
Rectangle based pruning

Fig. 30. Effectiveness of Pruning
rules

For each access order, we record the number of objects
considered for updating the safe zone. MinFirst considers from

100 to 1300 objects when the range is increased from 50 Km
to 250 Km. We exclude it from Fig. 29 to better illustrate
the comparison of the other two access orders. Our proposed
algorithm accesses around 6 objects when the range becomes
larger. Note that an optimal access order will access only the
guard objects (the number of guard objects is around 5). This
shows that our proposed access order is close to the optimal
access order.

D. Effectiveness of the pruning rules

In Fig. 30, we show the effectiveness of the rectangle based
pruning rules and the guard objects based pruning rules. As
expected, although the rectangle based pruning rule is cheap,
it is unable to prune many objects. On the other hand, the
guard objects based pruning rules are more effective.

E. Effectiveness of Smart-Update

Fig. 31 shows the effectiveness of our proposed smart-
update. In Fig. 31(a), we show the cost of our algorithm
with and without using the smart-update. We also show the
performance of the optimal algorithm if the smart-update is
not applied, i.e., every time a query leaves the safe zone,
the optimal approach without the smart-update accesses all
the objects within the range and sends to the client. The
effectiveness of our proposed smart-update is evident from
Fig. 31(a). As the range increases, the performance gain by
the smart-update increases because it avoids to visit a larger
area.

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250

T
im

e
(in

 s
ec

)

Average speed (in Km/hr)

Our (with smart-update)
Our (without smart-update)

Optimal (without smart-update)

(a) Effect on Cost

 5

 95

 1350

 50 100 150 200 250

of

 o
bj

ec
ts

Range (in Km)

Transmitted
Answer Size

(b) Effect on data transmission
Fig. 31. Effectiveness of the Smart-Update

Fig. 31(b) shows the average number of objects transmitted
to the query whenever the server receives an update request.
It also shows the total number of objects that lie within the
range (shown as answer size). Please note that a log scale is
used to better illustrate the trend. If the results are updated
without using the smart-update, all the objects that lie within
the range are to be sent again. Using our proposed smart-
update approach, the number of objects that are sent to client
are around 5. Note that this number includes the number of
guard objects that are sent to the client.

VIII. CONCLUSION

In this paper, we present a safe zone based approach to
efficiently monitor moving circular range queries. We conduct
rigorous theoretical analysis to study the effectiveness of our
safe zone based approach. Theoretical results are verified by
the extensive experimental study. The experiment results also
demonstrate that the proposed approach is close to optimal
and is an order of magnitude faster than a naı̈ve approach.

Acknowledgments: This research was conducted during the
second author’s sabbatical at the UNSW. The third author
was supported by the ARC Discovery Grants (DP0987557,

DP0881035, DP0987273 and DP0666428), Google Research
Award and NICTA. The fourth author was partially supported
by NICTA. The fifth author’s research was supported by the
ARC Discovery Grants DP0987273 and DP0881779.

REFERENCES

[1] Y. Cai, K. A. Hua, and G. Cao, “Processing range-monitoring queries
on heterogeneous mobile objects,” in Mobile Data Management, 2004.

[2] H. Hu, J. Xu, and D. L. Lee, “A generic framework for monitoring con-
tinuous spatial queries over moving objects,” in SIGMOD Conference,
2005, pp. 479–490.

[3] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
partitioning: An efficient method for continuous nearest neighbor mon-
itoring,” in SIGMOD, 2005.

[4] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
neighbor and reverse nearest neighbor queries for moving objects,” in
IDEAS, 2002, pp. 44–53.

[5] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee, “Location-based
spatial queries,” in SIGMOD Conference, 2003, pp. 443–454.

[6] B. Gedik and L. Liu, “Mobieyes: Distributed processing of continuously
moving queries on moving objects in a mobile system,” in EDBT, 2004,
pp. 67–87.

[7] Y. Tao and D. Papadias, “Time-parameterized queries in spatio-temporal
databases,” in SIGMOD Conference, 2002, pp. 334–345.

[8] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao, “A threshold-based
algorithm for continuous monitoring of k nearest neighbors,” TKDE, pp.
1451–1464, 2005.

[9] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor search,”
in VLDB, 2002, pp. 287–298.

[10] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal databases,”
in ICDE, 2005, pp. 643–654.

[11] G. S. Iwerks, H. Samet, and K. P. Smith, “Continuous k-nearest neighbor
queries for continuously moving points with updates,” in VLDB, 2003,
pp. 512–523.

[12] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries
over moving objects,” in ICDE, 2005.

[13] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Ham-
brusch, “Query indexing and velocity constrained indexing: Scalable
techniques for continuous queries on moving objects,” IEEE Trans.
Computers, vol. 51, no. 10, pp. 1124–1140, 2002.

[14] M. F. Mokbel, X. Xiong, and W. G. Aref, “Sina: Scalable incremen-
tal processing of continuous queries in spatio-temporal databases,” in
SIGMOD Conference, 2004, pp. 623–634.

[15] X. Wang and W. Wang, “Continuous expansion: Efficient processing
of continuous range monitoring in mobile environments,” in DASFAA,
2006, pp. 890–899.

[16] H. Wang, R. Zimmermann, and W.-S. Ku, “Distributed continuous range
query processing on moving objects,” in DEXA, 2006, pp. 655–665.

[17] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu, “Motion adaptive indexing
for moving continual queries over moving objects,” in CIKM, 2004.

[18] K.-L. Wu, S.-K. Chen, and P. S. Yu, “Incremental processing of continual
range queries over moving objects,” IEEE Trans. Knowl. Data Eng.,
vol. 18, no. 11, pp. 1560–1575, 2006.

[19] B. Zheng and D. L. Lee, “Semantic caching in location-dependent query
processing,” in SSTD, 2001, pp. 97–116.

[20] Z. Song and N. Roussopoulos, “K-nearest neighbor search for moving
query point,” in SSTD, 2001, pp. 79–96.

[21] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “The v*-diagram: a
query-dependent approach to moving knn queries,” PVLDB, vol. 1, no. 1,
pp. 1095–1106, 2008.

[22] M. Hasan, M. A. Cheema, X. Lin, and Y. Zhang, “Efficient construction
of safe regions for moving knn queries over dynamic datasets,” in SSTD,
2009, pp. 373–379.

[23] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD Conference, 1984, pp. 47–57.

[24] M. A. Cheema, X. Lin, Y. Zhang, W. Wang, and W. Zhang, “Lazy
updates: An efficient technique to continuously monitoring reverse knn,”
PVLDB, 2009.

[25] T. Brinkhoff, “A framework for generating network-based moving ob-
jects,” GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.

