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ABSTRACT 

A probabilistic framework is developed to assess the structural reliability of offshore 

wind turbines. Probabilistic models are developed to predict the deformation, shear force 

and bending moment demands on the support structure of wind turbines. The proposed 

probabilistic models are developed starting from a commonly accepted deterministic 

model and by adding correction terms and model errors to capture respectively, the 

inherent bias and the uncertainty in developed models. A Bayesian approach is then used 

to assess the model parameters incorporating the information from virtual experiment 

data. The database of virtual experiments is generated using detailed three-dimensional 

finite element analyses of a suite of typical offshore wind turbines. The finite element 

analyses properly account for the nonlinear soil-structure interaction. Separate 

probabilistic demand models are developed for three operational/load conditions 

including: (1) operating under day-to-day wind and wave loading; (2) operating 

throughout earthquake in presence of day-to-day loads; and (3) parked under extreme 

wind speeds and earthquake ground motions. The proposed approach gives special 

attention to the treatment of both aleatory and epistemic uncertainties in predicting the 

demands on the support structure of wind turbines. The developed demand models are 

then used to assess the reliability of the support structure of wind turbines based on the 

proposed damage states for typical wind turbines and their corresponding performance 

levels. A multi-hazard fragility surface of a given wind turbine support structure as well 

as the seismic and wind hazards at a specific site location are incorporated into a 

probabilistic framework to estimate the annual probability of failure of the support 
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structure. Finally, a framework is proposed to investigate the performance of offshore 

wind turbines operating under day-to-day loads based on their availability for power 

production. To this end, probabilistic models are proposed to predict the mean and 

standard deviation of drift response of the tower. The results are used in a random 

vibration based framework to assess the fragility as the probability of exceeding certain 

drift thresholds given specific levels of wind speed. 
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1. INTRODUCTION 

 

1.1 Problem Statement 

Wind energy has been used for more than 2,500 years. The first windmills, built in 644 

A.D. in the Persian-Afghan border region of Sistan, were used for milling grains (Hau, 

2006.) Over the past decades, continually growing energy demands as well as climate 

change and other pollution problems have resulted in a considerable anticipation about 

wind energy seen as one of the most attractive and promising renewable sources of 

energy. According to the annual reports by the Global Wind Energy Council (Sawyer 

and Rave, 2012), the global cumulative installed wind capacity has been doubling every 

three years and it is projected to continue to grow at a similar rate.  

Wind turbines are separated into two types based on the axis about which the 

turbine rotates: horizontal axis wind turbines (HAWT) and vertical axis wind turbines 

(VAWT.) The main advantage of VAWTs is that the operation is independent of the 

wind direction. Also the machinery is usually located at the tower base and is easily 

accessible for maintenance. But, large VAWTs are usually associated with stability and 

dynamic problems, and also most VAWTs produce energy with less efficiency than 

HAWTs because of the additional drag that they have as their blades rotate into the wind 

(Fink, 2005.) Therefore the horizontal axis turbines are more commonly used as large 

electricity generator wind turbines. 

Wind turbines may be installed onshore or offshore. Onshore and offshore wind 

turbines differ in design and construction because of the differences in the environmental 
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conditions and loadings. They also differ in the support structure and foundation type. 

Gravity-based foundations, rock anchors, prestressed concrete cylinders and pile groups 

are the most common foundation types for onshore wind turbines. For offshore wind 

turbines gravity-based foundations, steel pipe mono-piles and tripods are commonly 

used, depending on the sea depth (Bonnett, 2005.) Moreover, floating foundation 

systems are the typical choice for offshore wind turbines installed in deep waters beyond 

50 m (Musial and Butterfield 2004.) 

The focus of this study is on the reliability assessment of modern horizontal axis 

offshore wind turbines installed in water depths less than 30 meters, supported by mono-

pile foundations. 

Furthermore, offshore wind turbines installed extensively around the world are 

subject to different hazards (e.g., earthquake, hurricane, and typhoon) raising concerns 

about the reliability of the wind turbine support structure. For instance, Japan is the 

world’s 13
th

 largest producer of wind power according to the World Wind Energy 

Association (Gsänger and Pitteloud, 2012), despite having a considerably high 

occurrence rate of earthquakes and typhoons. Likewise, according to the National 

Renewable Energy Laboratory (Flowers, 2012), California, a highly seismic region, is 

the third largest wind power producer in the nation. Moreover, the wind industry is 

recently considering installing offshore wind farms in the south coast of the United 

States, and in particular in the Gulf of Mexico, because of the superior wind resources 

available in this region (Schwartz et al. 2010.) However, a considerably high hurricane 

occurrence rate in the Gulf of Mexico raises a new concern about the safety of wind 
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turbine support structures subject to hurricane. To investigate the reliability of a wind 

turbine support structure, all possible hazards that can occur during the wind turbine’s 

life have to be considered. To this end, a probabilistic framework is needed to evaluate 

the safety of the support structure under multiple hazards and predict its annual 

probability of failure. The results can assist the wind industry decision makers in 

choosing optimum design and location for future wind energy projects. 

Moreover, the cost of energy is a key to evaluate the success of an energy 

project. The cost of energy in a wind energy project is the total cost of the wind farm 

including the cost of manufacturing and installation, and also operation and maintenance 

costs. Reliability analysis can help ensure the success of an energy project. Providing 

adequate reliability can help reduce the need for costly repairs and downtime. At the 

same time, knowledge of the reliability level of a design can be used to avoid wastefully 

overdesigning a wind turbine. In general, a reliability-based design of wind turbines 

would allow for the optimal allocation of resources for energy production. To this end, it 

is of interest to forecast the performance of wind turbines in terms of their unavailability 

for power production. As part of this study, wind turbines unavailability is investigated 

based on exceeding certain drift thresholds.  

 

1.2 Background and Technical Needs 

Several probabilistic studies have been conducted on wind turbines. Walford (2006) and 

Tavner et al. (2007) investigated the reliability of operation and power production of 

wind turbines based on historical data of failures and their associated costs. Walford 
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(2006) also discussed the means for reducing operation and maintenance costs. 

However, a methodology that relies on the structural response of wind turbines will 

provide a more accurate estimation of their reliability. Madsen et al. (1999), Agarwal 

and Manuel (2008), and Manuel et al. (2001) employed probabilistic frameworks to 

predict the extreme and fatigue loads for the design of onshore and offshore wind 

turbines based on the dynamic response of the support structures. Although the 

aeroelastic interaction is successfully considered in the analyses, these studies fail to 

incorporate the foundation stiffness in the dynamic response of wind turbines.  

Offshore wind turbines installed in water depths less than 30 meters are typically 

supported by mono-pile foundations. Bush and Manuel (2009) investigated the effect 

that the use of alternative models for mono-pile foundation of shallow-water offshore 

wind turbines has on the design extreme loads. Their results showed the importance of 

incorporating foundation stiffness in the simulations. 

Aeroelastic simulators such as FAST (Jonkman and Buhl Jr. 2005), ADAMS 

(Laino and Hansen 2001), and GH Bladed (Bossanyi 2000) successfully include the 

aeroelastic interactions in the analysis of dynamic response of the support structure. 

However, an important limitation of these simulators is that they are not capable of 

continuous modeling of the nonlinear foundation system and the dynamic soil-structure 

interaction. A finite element (FE) analysis of the support structure and the foundation 

can be done to account for the nonlinear foundation behavior and the dynamic soil-

structure interaction. However, a detailed nonlinear FE analysis can be quite expensive 

and time consuming both in developing and running it. In addition, assessing the 
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reliability of a wind turbine requires accounting for the uncertainties inherent in the 

structural material, soil and geometrical properties. To account for such uncertainties, a 

high number of FE analyses would need to be carried out making this approach too time 

consuming. 

To address the concern related to the installation of wind farms in moderate and 

high seismic regions, a number of researchers conducted studies on the seismic response 

of wind turbines. Early publications on the analysis of dynamic response of wind 

turbines during earthquake (Bazeos et al. 2002, Lavassas et al. 2003) were based on the 

simplified models that lumped the nacelle and rotor as a point mass at the top of the 

tower. As a result the aeroelastic interaction was not accounted for. More recently, 

Witcher (2005) and Prowell et al. (2009) developed more refined models that considered 

the aeroelastic interaction. Specifically, Witcher (2005) studied the seismic response of 

support structures for both operating and parked wind turbines. The results showed the 

importance of accounting for aeroelastic interaction for operating wind turbines. Prowell 

et al. (2009) calibrated the aeroelastic interaction modeled in FAST using experimental 

data from a shake-table test of a small onshore 65-kW wind turbine (Prowell et al. 2008.) 

Yet, both studies fail to incorporate the dynamic soil-structure interaction.  

With the limitations in the current practice of the structural analysis of wind 

turbines, it is of interest to investigate the performance of offshore wind turbines under 

multiple hazards incorporating the uncertainties inherent in the structural material, soil 

and geometrical properties as well as the influence of soil-structure interaction on 

dynamic response of the support structure. 
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1.3 Research Objectives and Methodology 

This study addresses the following three research objectives: (1) assessment of the 

demands on the support structure of offshore wind turbines accounting for the inherent 

uncertainties as well as dynamic soil-structure interaction; (2) multi-hazard assessment 

of the structural reliability of offshore wind turbines; and (3) evaluation of the 

performance of wind turbines in terms of their availability for power production.  

To address the stated objectives, this study generates a database of virtual 

experiments by conducting detailed three-dimensional (3D) nonlinear FE analyses of the 

dynamic response of the support structures of a suite of typical offshore wind turbines 

supported by mono-piles. The FE models included a continuous modeling of the pile and 

the surrounding soil. As a result, the FE models successfully incorporated the dynamic 

soil-structure interaction into the response of the support structure. The virtual 

experiment database is then used to calibrate simplified probabilistic models for the 

deformation, shear force and bending moment demands on the support structure under 

day-to-day loading in operating conditions (i.e., day-to-day wind, wave and current 

loads.) The developed probabilistic models provide unbiased predictions for the 

deformation, shear and moment demands on the support structures, accounting for the 

inherent uncertainties, including the statistical uncertainty (associated with the finite 

sample size) and the modeling errors (associated with the selection of the variables in the 

models and the model forms.) The proposed approach gives special attention to the 

treatment of both aleatory and epistemic uncertainties in predicting the demands on the 

support structure of wind turbines. Aleatory uncertainty (or randomness) is inherent in 
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the nature and is irreducible. Epistemic uncertainty arises from our lack of knowledge, 

errors in measuring observations and finite size of observation samples, and is reducible. 

The former is present in the structural and loading variables and the latter is present in 

the model parameters. The proposed demand models are then used to assess the 

structural reliability of a typical 5-MW offshore wind turbine for different performance 

levels proposed for operating wind turbines. 

To address the concerns related to safety of wind turbines subject to earthquake, 

the next step is to use developed FE models to conduct time-history analyses of offshore 

wind turbines subject to seismic loading in addition to day-to-day operational loading 

accounting for the dynamic soil-structure interaction. Using the generated data, novel 

probabilistic models are developed for the seismic demands on the support structures. 

The developed probabilistic models were then used to assess the reliability of the support 

structures conditioning on spectral acceleration and the mean wind speed acting on the 

structure. 

Furthermore with the new concern about the safety of wind turbines in regions 

prone to hurricane, proposed seismic demand models are updated incorporating the 

information from additional virtual experiment data. Additional virtual experiment data 

are generated from the dynamic analyses of the developed 3D nonlinear FE models 

subject to extreme wind speeds during hurricane in addition to earthquake ground 

motions. Developed probabilistic models are then used to assess the conditional failure 

probability (fragility) of the support structure for an example offshore wind turbine for 

given intensity measures of the seismic and wind loading. The multi-hazard fragility 
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surface of the given wind turbine support structure as well as the seismic and wind 

hazards at a specific site location are incorporated into the probabilistic framework to 

estimate the annual probability of failure of the support structure. 

Finally, the serviceability of wind turbine support structures is explored in terms 

of wind turbines availability for power production. A framework is proposed to 

investigate the unavailability of offshore wind turbines based on exceeding certain drift 

thresholds. The probability and expected time of exceeding specific drift thresholds are 

estimated based on the mean and standard deviation of the drift response. To this end, 

probabilistic models are proposed to predict the mean and standard deviation of the drift 

response of the tower, based on the information obtained from virtual experiment 

database generated in this study. 

 

1.4 Organization of Dissertation 

This dissertation is organized using a section-subsection format. The following six 

sections discuss the details of the methodology developed in this study to address the 

stated research objectives in the previous subsection. Following is a brief overview of 

each section in this dissertation. 

 Section 1 (current section) provides an introduction about the problem, including 

problem statement, background and technical needs, research objectives and 

methodology, and organization of dissertation. 

 Section 2 investigates the behavior of a laterally loaded mono-pile foundation using 

the finite element method (FEM) to account for soil-pile interactions. Prevailing 
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simple methods for predicting the deflection of laterally loaded single piles in sand 

and clay are evaluated using linear and nonlinear finite element analyses. FE 

analyses are conducted using continuous 3D modeling of the pile and surrounding 

soil accounting for the pile-soil interaction. The results in Section 2 indicate the 

importance of continuous modeling of mono-pile foundations rather than using 

simplified methods such as p-y method and in particular, one dimensional beam-

column elements in order to account for the nonlinear soil-structure interaction, 

particularly for the pile sizes typical of foundations of offshore wind turbines. 

 Section 3 develops probabilistic models to predict the deformation, shear and 

moment demands on the support structure of wind turbines operating under day-to-

day wind, wave and current loads. An existing deterministic model is corrected by 

adding a correction term to capture the inherent bias, and model error arising from an 

inaccurate model form or missing variables. A database of structural responses is 

used to calibrate the proposed models. The database is obtained from detailed 3D 

nonlinear FE analyses of a set of typical wind turbine systems with different design 

parameters. The finite element analyses account for the nonlinear soil-structure 

interaction. The proposed probabilistic demand models provide accurate and 

unbiased estimates of the demands on the support structure properly accounting for 

the underlying uncertainties. The models are then used to estimate the fragility of the 

support structure of wind turbines which is defined as the conditional probability of 

not meeting specified capacity levels. 
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 Section 4 develops probabilistic models for seismic shear and moment demands on 

the support structure of wind turbines operating throughout earthquake in presence of 

day-to-day loading, following an approach consistent with the one used in Section 3. 

Developed seismic demand models are then used to assess the fragility of the support 

structure of a typical 5-MW wind turbine for given intensity measures of spectral 

acceleration and mean wind speed. 

 Section 5 develops a probabilistic framework to assess the structural reliability of 

offshore wind turbines under multiple hazards. A multi-hazard fragility surface of a 

given wind turbine support structure as well as the seismic and wind hazards at a 

specific site location are incorporated into the probabilistic framework to estimate 

the annual probability of failure of the support structure. The seismic demand models 

developed in Section 4 are updated incorporating the information obtained from 

additional experiment data generated for wind turbines subject to extreme wind 

speeds during hurricane and earthquake ground motions. Updated probabilistic 

demand models are then used to estimate the fragility of the support structure of a 

given wind turbine. As an example of the proposed framework, the annual 

probability of failure is calculated for two identical wind turbines, one located in the 

Gulf of Mexico of the Texas Coast (prone to hurricanes) and one off the California 

Coast (a high seismic region.) 

 Section 6 proposes a framework to explore the performance of offshore wind 

turbines based on exceeding certain drift thresholds. For this purpose, novel models 

are developed to predict the mean and standard deviation of drift response of wind 
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turbine support structures operating under day-to-day loads. The developed models 

are then used in a random vibration based framework to estimate the probability and 

expected time of exceeding drift thresholds. The virtual experiment database 

generated earlier in Section 3 is used to assess the parameters of the developed 

models. To verify the developed models, the probability of exceeding specific drift 

thresholds are estimated for a typical offshore wind turbine based on both 

simulations conducted using commonly used wind turbine simulators and proposed 

model, and the results are compared to the accurate estimations based on detailed 3D 

nonlinear FE analyses. 

 Section 7 provides the conclusion of this dissertation along with the unique 

contribution of this work as well as suggestions for the future work. 

  



 

12 

 

2. MODELING LATERALLY LOADED SINGLE PILES ACCOUNTING FOR 

NONLINEAR SOIL-PILE INTERACTION 

 

2.1 Introduction 

Pile foundations are widely used to support laterally loaded structures especially 

offshore. The extensive growth of wind farms around the world has raised new concerns 

about the accuracy of the analysis and design methods for laterally-loaded large-

diameter mono-piles (the most popular foundation structure for offshore wind turbines.)  

Common methods for the analysis of laterally loaded single piles can be 

generally classified into two categories: (1) Winkler (elastic) foundation models and (2) 

continuous models accounting for the coupling of forces and displacements in the soil 

along the pile. In each category the analysis may be static (monotonic or cyclic loading) 

or dynamic. Also the behavior of the soil, pile and soil-pile interaction may be 

considered as linear or nonlinear. 

Winkler foundation models are popular because of their simplicity and 

reasonable accuracy. When the elastic stiffness of the foundation can be considered 

constant with depth one can even obtain simple closed form solutions for the pile head 

stiffness and flexibility (Sanchez Salinero 1982.) The main difference between the 

different Winkler foundation models available is in the selection of the foundation 

stiffness coefficients. For dynamic problems Novak (1975) has proposed the use of 

Winkler foundation coefficients based on Baranov’s equations (1967) for in plane and 

out of plane vibrations of a disk. The corresponding horizontal x
k  and rotational k  
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springs per unit of length along the pile are functions of a dimensionless frequency 

0 0  /
p s

a r C  where 0   the frequency in radians/second, p
r  the radius of the pile, 

and s
C   the shear wave velocity of the soil. Unfortunately the horizontal term tends to 

zero at a zero frequency representing the static case. As a result it is common to use the 

values corresponding to a dimensionless frequency of 0.3 for smaller frequencies 

(Sanchez Salinero 1982.) In that case,  4
x soil

k G  and 
2 2.6666 soil pk G r  , where 

soil
G   the shear modulus of the soil. 

For nonlinear analyses the p-y method is the most commonly used in this 

category. It employs an elastic beam column member to model the pile and nonlinear 

horizontal springs to represent the soil reactions. The p-y curves describe the nonlinear 

behavior of the soil springs. They were developed first by Matlock (1970) for soft clays 

under the water table. Reese and Welch (1975) and Reese et al. (1975) developed p-y 

curves for hard clays subjected to monotonic and cyclic loading, above and under the 

water table respectively. Analyzing the results of the full scale tests conducted by Reese 

et al. (1975), Dewaikar et al. (2009) presented a modified approach to construct p-y 

curves in stiff clay. In another study Kim and Jeong (2011) developed a framework 

based on 3D finite element analysis for determining a p-y curve. The p-y curves for 

sands were also developed by Reese et al. (1974) for monotonic and cyclic loading. 

Briaud et al. (1985) developed an alternative method to obtain the p-y curves directly 

from pressuremeter tests. The method was reasonably accurate but complicated and time 

consuming, so Briaud (1997) developed a simpler approach called "simple approach for 
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lateral loads on piles" or SALLOP, using the pressuremeter limit pressure and the 

pressuremeter modulus.  

A number of recent studies have been conducted to predict the behavior of 

laterally loaded piles in different soil conditions. Sanjaya Kumar et al. (2007) used 

ABAQUS (2007) and the p-y method to study the behavior of laterally loaded pile 

foundations in high marine clay. Suleiman et al. (2010) conducted a test to measure the 

soil-pile interaction pressure for small diameter piles in loose sand that the results can be 

used in developing the soil force-displacement relationship (i.e. the soil reaction or the p-

y curve.) An equivalent model for a laterally loaded linear pile-soil system was presented 

by Chioui and Chenu (2007) using artificial lateral springs. 

Continuous modeling of the pile and the surrounding soil are mostly done using 

finite element or boundary element models. Both methods can provide rigorous solutions 

accounting for soil-pile interaction under static and dynamic loading. For the linear case 

an accurate solution was proposed by Blaney et al. (1976) using the consistent boundary 

matrix developed by Kausel (1974) to reproduce the soil cavity occupied by the pile and 

adding then the pile enforcing compatibility of horizontal and vertical displacements 

between pile and soil along the pile. An extensive number of studies were carried out by 

Sanchez Salinero (1982) comparing the results of this approach to those provided by a 

variety of other methods and proposing approximate formulas for the pile head stiffness. 

This approach is only valid however in the linear elastic range. The finite element 

method is particularly convenient when desiring to account for nonlinear effects 

including the nonlinear behavior of the soil and of the soil-pile interface.  
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A 3D nonlinear finite element analysis of a pile foundation in which both the soil 

and the pile are modeled with 3D finite elements can be quite expensive and time 

consuming, particularly when incorporating nonlinear behavior. As a result some 

investigators have used finite element models that represent the pile by an elastic beam-

column member without transverse dimensions (only the centroidal axis) and only the 

soil with 3D solid elements. This method takes into account the continuity of the soil 

mass and is easy to use for linear static and dynamic analysis. However, the most 

important limitation of this approach is that it does not take into account the dimension 

of the pile section. 

This section evaluates prevailing approaches for modeling linear and nonlinear 

behavior of pile foundations. As a first step the models used for the analyses of pile 

foundations are validated. Then the model selected is implemented in the computer 

program ABAQUS using 3D brick elements to discretize the soil around the pile and 

shell elements to model the hollow pile. The results obtained with this model for linear 

and nonlinear analyses are compared to those provided by a variety of other methods 

used in practice. 

In the following, four different models used for linear analysis of single pile 

foundations are examined and the influence of accounting for the pile diameter in the 

simplified linear FE analyses is evaluated. In the next subsection, the 3D finite element 

model is improved by accounting for the nonlinearity of the soil and soil-pile interaction. 

Two common simplified nonlinear models are then evaluated using this model for 

mono-piles in sand and clay.  
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Table 2-1. Properties of the pile 

Parameter Symbol Value 

Penetration depth (m) Hp 21.0 

Radius (m) rp 2.00 

Wall thickness (m) tp 0.05 

Modulus of elasticity (kPa) Ep 2.0E8 

Unit weight ( kN/m3) p 87.00 

Poisson ratio  p 0.30 

 

 

2.2   Linear Analyses 

Analyses considering linear soil behavior and perfect bonding between the pile and the 

surrounding soil are conducted first. The pile selected for the study is hollow with a 

diameter of 4m and the properties listed in Table 2-1. Four different models are studied: 

1) The first model is a 3D finite element model of both the soil around the cavity 

occupied by the pile (solid elements) and for the pile, with shell elements for hollow 

piles and brick elements for solid piles (shown in Figure 2-1) 

 

 

Figure 2-1. 3D finite element model of the pile foundation 
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2) The second simpler model reproduces the soil with solid elements filling the space 

without any cavity. The pile is represented by the centroidal axis of a one 

dimensional (1D) beam column coinciding with the central axis of the soil model, 

enforcing only compatibility of horizontal displacements between the nodes of the 

pile and those of the soil along the axis. 

3) The third model is the one proposed by Blaney et al. (1976) with the consistent 

boundary matrix with the radius of the cavity representing the soil and enforcing 

compatibility of both horizontal and vertical displacements between the soil and the 

pile along its sides. 

4) The fourth model is a beam on an elastic (Winkler) foundation with horizontal and 

rotational springs along the side of the pile. The constants selected for the foundation 

are  4x soilk G and 
2 2.6666 soil pk G r  . 

The pile is subjected at the head to a vertical load of 5,000 kN, a horizontal load 

of 2,503 kN, and a moment of 84,983 kNm. These are values obtained considering the 

extreme forces on an example offshore wind turbine. For the linear analyses the soil is 

assumed to have a Young’s modulus 50,000 soilE kPa , a Poisson’s ratio 0.3soil  , and 

a unit weight 320 /soil kN m  . 

The predicted deflections at the pile head by the four models are 20.9 mm for the 

3D FE pile model, 68.3 mm for the 1D FE pile model, 20.5 mm for the consistent 

boundary matrix and 24.3 mm for the Winkler foundation. The deformation of the soil 

with the 3D finite element model is shown in Figure 2-2 while Figure 2-3 shows the 

corresponding deformations with the 1D model of the pile. The results, obtained using 
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the 3D finite element model are in good agreement with the approach that employs 

consistent boundary matrix (less than 2% off.) The agreement with the results of the 

Winkler foundation is not quite as good but still acceptable (about 20% off.) The model 

without the cavity and with the pile as a 1D linear element yields deflections that are 

200% too large. 

 

 

Figure 2-2. Deformation of the soil with the 3D model of the pile 

 

 

 

Figure 2-3. Deformation of the soil with the 1D model of the pile 
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To understand better the reasons for this large discrepancy it was decided to 

conduct studies for other pile sizes. Clearly the results of the 1D model are only a 

function of the soil properties and of the product p p
E I  of the Young’s modulus of the 

pile by the moment of inertia of the cross section but not explicitly of the pile radius. For 

a hollow pile the moment of inertia is not uniquely related to the radius and therefore in 

this case the actual size of the cavity has no effect on the results of the model if the 

moment of inertia is kept constant. This would also be the case for a Winkler foundation 

model with only horizontal springs. 

 

Table 2-2. Variation of pile head displacement versus pile radius in different linear analysis methods with 

constant 
p pE I for the pile 

Pile radius 

(m) 

Pile head deflection (mm) 

3D pile FEM 1D pile FEM Consistent boundary matrix  Winkler foundation 

0.50 32.5 68.3 (110%) 34.0 (5%) 25.2 (23%) 

1.00 27.6 68.3 (148%)  27.5 (1%) 25.0 (10%) 

2.00 20.9 68.3 (227%) 20.5 (2%) 24.3 (17%) 

 

 

Table 2-2 shows the results of the four models for hollow piles with the same 

p p
E I  but radii of 0.5, 1 and 2 m. The agreement between the 3D finite element model 

and the boundary matrix method is good in all three cases (about 3% off in average.) As 

expected the results for the 1D pile model do not change. The results for the Winkler 

model vary slightly because of the rotational springs but the variation is still very small 

and the accuracy deteriorates as the radius of the pile decreases. To see when the results 

of the 1D model would become similar to those of the more accurate solutions the 

boundary matrix model was run for a larger number of radii going down to 0.01 m. 
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Figure 2-4 shows the variation of the head displacement with the pile radius in semi-log 

scale. The deflection predicted by the boundary matrix model for a pile with a radius of 

0.01 m is 68.5 mm now in good agreement with the prediction of the 1D model. It is 

interesting to observe that the variation of the displacement for this hollow pile is 

approximately inversely proportional to the radius to the power 0.26.  

 

 
Figure 2-4. Variation of pile head displacement versus pile radius in linear analyses with constant 

p pE I

for the pile 

 

 

 

2.3 Nonlinear Analyses 

Three different models are used to conduct nonlinear analyses: 

1) The 3D finite element model of the previous runs. In this case however the soil and 

the soil-pile interface are nonlinear. The finite element model, using ABAQUS, has 

the capability of taking into account the initial state of stresses in the soil mass. The 

initial conditions of stress are applied before the pile is installed and as a first step 

the effective body forces are calculated to account for geostatic equilibrium. The 
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extreme static loads due to the performance of the turbine and wave and wind 

loading are applied then.  

A 22 m long pile with a diameter of 4 m is modeled as a steel pipe using 4-

node quadrilateral shell elements with reduced integration. A 1 m long segment of 

the pile is considered to be above ground level to avoid the soil going over the pile. 

Linear elastic behavior is assumed for the pile. 

For an actual soil profile it would be necessary to select the most appropriate 

nonlinear constitutive model and to determine the values of the required parameters 

defining the model from laboratory tests. For the purposes of this work and 

considering two hypothetical soils, a sand and a clay, a very simple Mohr Coulomb 

model, as implemented in the program ABAQUS, is used with the properties 

presented in Table 2-3. The finite element mesh of the 40 m × 10 m × 41 m  soil 

mass is generated using isoparametric brick elements with reduced integration for 

the soil. 

 

 

Table 2-3. Elastic-plastic properties of soil 

 

 

Parameter Symbol 
Value 

Sand Clay 

Modulus of elasticity (kPa) Esoil 5.0E4 4.5E4 

Unit weight ( kN/m3) soil 20.00 20.00 

Poisson ratio soil 0.30 0.30 

Angle of internal friction ()  soil  40.0 - 

Undrained shear strength (kPa) Su - 150.0  
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The nonlinear behavior of the soil-pile contact is modeled using “contact 

pair” in ABAQUS. Tangential movement between the two parts, pile and 

surrounding soil, is allowed with a friction coefficient of 0.67. In the radial 

direction, a “no separation” contact behavior is assumed. The pile outer surface is 

chosen as the “master surface” and the surface of the soil mass which is in contact 

with the pile is considered to be the “slave surface”. The “small sliding” tracking 

approach is employed for the contact of the two bodies assuming that even if the 

two bodies undergo large motions, there is relatively little sliding of one surface 

along the other. An elastic-plastic Coulomb model is also used to describe the 

nonlinear behavior of the soil-pile contact. Figure 2-5 shows the deformation of soil 

with 3D nonlinear finite element model of pile foundation. 

 

 

 

Figure 2-5. Deformed mesh of the pile foundation in 3D nonlinear analysis 
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2) A model using the p-y curves is implemented specifically for this work. As 

indicated in the introduction section the p-y curves were originally proposed by 

Matlock (1970) for soft clays under the water table and models for hard clays and 

sands were shortly after introduced by Reese et al. (1975.) In this work the sand and 

the hard clay model are used. The clay model requires the specification of a 

parameter 50 that has to be determined from experiments. Since the soil considered 

was not a real one on which experiments could be performed, a value of 0.005, as 

recommended by Reese et al. (1975), is used. In the linear elastic range, for very 

small displacements, the initial stiffness of the springs representing the p-y curves 

normally varies with depth. In this case however, to be consistent with the finite 

element model the initial stiffness value is considered to be constant with the depth 

and equal to 4G as for the linear analyses with the Winkler foundation. Since the p-

y curves are in fact a form of the Winkler foundation model with only horizontal 

springs the solution in the elastic range would be only a function of the p p
E I  and 

independent of the radius for a given moment of inertia. The nonlinear variation of 

the stiffness is on the other hand affected by the pile diameter. It should also be 

noticed that with the p-y method there are nonlinear springs attached to the side of 

the pile but not at the bottom. One must decide therefore whether the pile tip is free, 

hinged or fixed. For long piles the difference between these three cases, when 

considering the pile head displacement, is negligible but in the present case the 

transfer length o
l  associated with the solution of the pile on a Winkler foundation is 

of the order of 10 m so the displacements for a hinged tip may be 25% smaller than 
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for a free tip. For a linear analysis the assumption of a hinged tip may be more 

realistic but for the nonlinear one it is considered that the free end would be more 

appropriate. For the sake of comparison and to see the effects of such assumption 

the results are presented for both boundary conditions. 

3)  A model implementing the simple approach for lateral loads on piles (SALLOP) 

proposed by Briaud (1997.) It is a semi-theoretical or semi-empirical method in 

which the framework is theoretical but the factors in the theoretical equations are 

adjusted by comparison to some full-scale load tests. SALLOP uses two different 

theoretical solutions for infinitely long (flexible) piles and for short rigid piles in a 

Winkler uniform soil. Defining a transfer length 
1/4(4 / )o p p s sl E I K   that is the 

typical parameter associated with the solution of a beam on elastic foundation, with 

pE  modulus of elasticity for the pile (kPa), 
pI   moment of inertia for the pile 

(m
4
), and s sK   soil-spring constant (kPa), the pile head displacement oy  for long 

flexible piles ( 3
p o

H l ) under a combined loading of a horizontal force and a 

moment at its head is (Briaud 1992)  

2

2 2
o o

o

o s s o s s

F M
y

l K l K 

                                                    (2-1) 

where oF  horizontal force applied at the pile head (kN), oM moment applied at 

the pile head (kNm.)  s sK   is defined as the ratio of the soil resistance at a specific 

depth to the horizontal pile displacement at the same depth. Briaud (1992) defined 
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s s
K   empirically by optimizing the comparison between the predicted deflection 

and the measured deflections, as  

02.3s sK E                                                                                   (2-2) 

where o
E   the preboring first load pressuremeter modulus within the zero-shear 

depth vl . It is interesting to notice that a s sK  of 4 soilG  as used in the linear analyses 

with the Winkler model and for the initial branch of the p-y curves corresponds to 

approximately 1.5
s s soil

K E  . The depth
 v
l , referred to as the zero-shear depth, is 

obtained by setting the expression for the shear force in the pile equal to zero. For 

flexible piles ( 3p oH l )  

1 1

2
1

v o

o

o o

l l tan
M

l F



 
 
 
  
 

                                                (2-3) 

 For short rigid piles (
p o

H l ) the zero-shear depth is expressed as 

2

3( 2 )

o p

v

o p o

F H
D

F H M



                                                 (2-4) 

The pile head displacement for short rigid piles (
op

H l ) is 

 
2

2 2 3o p o

o

s s p

F H M
y

K H


                                                (2-5) 

For the SALLOP calculations a linear interpolation between two values will be 

used if the pile length is between o
l  and 3

o
l . Briaud (1992) also proposed the 
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correlations between SPT
N , u

S  and o
E  when the standard penetration test (SPT) 

blow count SPTN , or the undrained shear strength uS  are available instead of oE . 

383
o SPT

E N  (2-6) 

  100o uE S                                                      (2-7) 

For the pile with a radius of 2 m, the 3D finite element model predicts a 

displacement of 40 mm in sand and 25.1 mm in clay. The corresponding results with the 

p-y curves are 38.2 mm and 37.5 mm with a free tip (28.5 mm with a hinge at the 

bottom); with the SALLOP method 36.0 and 45.0 mm. The three methods provide 

results in good agreement for the sand but there are larger differences for the clay 

particularly for the SALLOP approach and with a free tip for the p-y curves. 

The effect of the pile radius with a constant value of the p p
E I  of the pile was 

again investigated for the nonlinear case. Table 2-4 and Figure 2-6 present the results of 

the three methods for radii of 0.5, 1 and 2 m. Again since the SALLOP method is based 

purely on a Winkler foundation with horizontal springs the results are independent of the 

radius for a fixed p p
E I . The p-y curves give results that vary with the radius but less 

significantly than the 3D solution. It is interesting to notice that for the sand the best 

agreement is obtained for a radius of 2 m. For the 0.50 m radius the prediction of the 

SALLOP method would be about 40% of the FEM result; with the p-y curve it would be 

about 62%. For the clay on the other hand the best agreement between the three methods 

is obtained for the radius of 0.5 m (almost exactly the same results), whereas the 

discrepancy increases as the radius increases. The prediction with the SALLOP method 
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is about 80% too large whereas that with the p-y curves assuming a free tip is about 50% 

off for the 2 m radius. 

 

Table 2-4. Variation of pile head displacement versus pile radius in different nonlinear analysis methods 

with constant 
p pE I for the pile 

Pile 

radius 

(m) 

Pile deflection at the ground level (mm) 

Sand  Clay 

3D 

FEM 
p-y SALLOP 

 3D 

FEM 

p-y 
SALLOP 

 Free tip Hinged tip 

0.50 91.0 57.0 (35%) 36.0 (60%)  45.5 45.3 (1%) 31.2 (32%) 45.0 (1%) 

1.00 60.6 43.5 (29%) 36.0 (41%)  33.9 40.5 (20%) 30.0 (12%) 45.0 (33%) 

2.00 40.0 38.2 (5%) 36.0 (10%)  25.1 37.5 (50%) 28.5 (14%) 45.0 (80%) 

 

 

It seems also that given the lack of a spring acting on the bottom face of the pile 

in the p-y model, for the larger diameter pile the assumption of a hinged tip might be 

more realistic whereas for the smaller diameters it is better to consider a free tip. 

Considering the fact that the characteristics of the soils are not actually determined from 

laboratory tests but some of the parameters are chosen purely as logical values, and that 

a very simple nonlinear soil model was used, finding an exact agreement between the 

three methods would have been surprising. The fact that they provide results with the 

same order of magnitude for the range of pile diameters considered is encouraging. On 

the other hand it is important to notice the effect of the pile radius on the foundation 

stiffness beyond the value of the p p
E I , something that would occur irrespective of the 

constitutive model used. Obtaining a very good agreement for a given pile radius with a 

more refined selection of the nonlinear soil model and of the soil parameters will not 

guarantee similar accuracy for other values of the radius and the same soil. 
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(a) 

 

 
(b) 

 

Figure 2-6. Variation of pile head displacement versus pile radius in nonlinear analyses for (a) sand and 

(b) clay with constant
p pE I for the pile 

 

 

2.4 Conclusions 

The effect of the pile radius on its lateral behavior in the linear elastic range was studied 

using various analysis procedures assuming a constant pile stiffness ( p p
E I ) and different 

pile radii for hollow piles: a three dimensional (3D) ABAQUS finite element (FE) 

model, a model with the soil reproduced with 3D elements but the pile represented by a 

line, a model using a consistent boundary matrix and a Winkler foundation model. The 

results show that the pile head lateral deflection is not only a function of p p
E I  but also 
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of the pile radius. It decreases considerably as the pile radius increases while p p
E I  is 

maintained constant. Modeling a pile as a one dimensional (1D) line with beam-column 

elements, as done sometimes in the literature, results in a smaller contribution of the 

surrounding soil to the lateral stiffness of the pile and an increase of up to 200% in the 

maximum displacement of the pile head. 

Nonlinear analyses were next conducted using the 3D FE models of the soil and 

pile employing ABAQUS for a sand and a clay. The static (monotonic) calculations 

were conducted for an extreme lateral load and bending moment. A Mohr-Coulomb 

constitutive model was used for the generic soils. The nonlinear contact between the pile 

and the soil were accounted for using some of the tools available in ABAQUS. The 

results were compared to those provided by the use of p-y curves for sand and hard clay 

and with the SALLOP method suggested by Briaud (1997.) Both the p-y model for sand 

and the SALLOP method provide reasonable answers for the pile with a radius of 2 m 

but the accuracy deteriorates for smaller radii, particularly for the SALLOP method 

where the results are independent of the radius for a fixed value of p p
E I . For the clay the 

p-y curves assuming a free tip and the SALLOP predictions are good for the smaller 

diameter pile (radius of 0.5 m) but deteriorate for larger diameters. It appears that for 

these cases with the p-y method the assumption of a pile hinged at the bottom would 

provide better results. 

The study conducted uses the 3D nonlinear FE analysis as an accurate analysis 

for the pile sizes of interest in relation to the foundations of offshore wind turbines to 

assess other, simpler models. It indicates that when using common simple models and 
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particularly if the pile is modeled as a line, neglecting the size of the soil cavity, the 

results may be inaccurate. 
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3. PROBABILISTIC DEMAND MODELS AND FRAGILITY ESTIMATES FOR 

OFFSHORE WIND TURBINES SUBJECT TO DAY-TO-DAY LOADS 

 

3.1 Introduction 

Reliable power production of a wind turbine is one of the key factors to reduce the cost 

of energy. Walford (2006) shows how improving system reliability is critical to reduce 

the operation and maintenance cost of wind turbines. Providing adequate reliability can 

help reduce the need for costly repairs and downtime. Furthermore, an accurate 

assessment of the reliability of wind turbines can be used for a reliability-based optimal 

design that minimizes construction and maintenance costs while maintaining minimum 

reliability requirements. 

Several aeroelastic simulation codes are used in the wind energy industry to 

simulate fatigue, aerodynamics and structural dynamic response. For example, FAST 

and GH Bladed are two commonly used simulators that are found accurate in simulating 

wind turbine aerodynamics and estimating the fatigue and extreme loadings. However, 

they are not capable of continuous modeling the foundation, incorporating the dynamic 

soil-structure interaction. 

Mono-piles are common foundations for offshore wind turbine support structures 

installed in water depths less than 30 meters, which is the focus of this dissertation. 

Analysis of laterally loaded single piles is in general based on Winkler (elastic) 

foundation models, or continuous models accounting for the coupling of forces and 

displacements in the soil along the pile. Winkler foundation models are popular because 
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of their simplicity and reasonable accuracy. For nonlinear analyses the p-y method 

developed first by Matlock (1970) is the most commonly used one. Reese and Wang 

(2008) used a design method for pile foundations of wind turbine support structures 

based on p-y curves to take soil-structure interaction into account, employing equivalent 

springs. However, investigation of the behavior of laterally loaded piles using a 3D 

nonlinear FE model in the previous section showed that, depending on the pile diameter 

and soil type, using common simple models, such as p-y method and particularly 

modeling the pile using one dimensional beam-column elements may result in inaccurate 

responses. This is true in particular for the pile sizes typical of foundations of offshore 

wind turbines. On the other hand, a complete nonlinear finite element analysis of the 

support structure and the foundation can be quite expensive and time consuming. 

To address the limitations of prevailing approaches, this section develops 

simplified probabilistic models to predict the deformation, shear and moment demands 

on the support structure of offshore wind turbines subject to day-to-day wind, wave, 

current and turbine operational loadings. The probabilistic models properly account for 

the nonlinear soil-structure interaction as well as the inherent uncertainties, including the 

statistical uncertainty (associated with the finite sample size) and the modeling errors 

(associate with the selection of the variables in the models and the model forms.) Due to 

the lack of available field experiment data on offshore wind turbines, a virtual 

experiment database is generated from the results of 3D nonlinear finite element 

analyses and used to calibrate the probabilistic models.  
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The next subsection explains the generation of the virtual experiment data, which 

are later used to calibrate the probabilistic models. Third subsection discusses the 

general formulation of probabilistic demand models and then following this formulation, 

deformation, shear and moment demand models are developed. Finally, the fragility 

estimates are presented for an example offshore wind turbine support structure for given 

values of two demand parameters, namely, the mean wind speed, Ws, and significant 

wave height, Hs. Where Ws is defined as the wind speed average over a time window of 

10 minutes, and Hs is defined as the mean wave height (through to crest) of the highest 

third of the waves. 

 

3.2 Virtual Experiment Data 

A set of representative configurations is used to generate a virtual experiment database 

that is later used to calibrate the proposed probabilistic demand models. Nonlinear 

analyses are conducted for each configuration using detailed 3D finite element models of 

the support structure and the foundation with consideration of the nonlinear soil-pile 

interaction. representative configurations are selected using an experimental design to 

maximize the information content of the considered configurations and minimize the 

computation costs associated with running the detailed nonlinear finite element analyses. 

 

3.2.1 Experimental Design 

In the "classical" design of physical experiments, a random variation is accounted for by 

spreading the sample points out in the design space and by taking multiple (replicated) 
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data points (Simpson et al., 2001.) However, when it comes to deterministic computer 

experiments, there is no random error and no replication is required. According to 

Simpson et al. (2001), the design space is defined as the region bounded by the upper 

and lower limits of each design (input) variable being studied and the sample points 

should be chosen to fill the design space for computer experiments such that they spread 

as far from each other as possible. There are several "space filling" design methods in 

the literature; here the Latin hypercube sampling technique introduced by McKay et al. 

(1979) is used to select representative configurations of the support structure. Latin 

hypercube sampling technique maximizes the minimum distance between sample points, 

while the range of each variable, i
x , is divided into N strata of equal marginal 

probability 1/N, therefore, this method ensures that the sampling has a good coverage of 

the design space. A total of 100 configurations are generated. Variables considered to 

characterize each wind turbine configuration and their ranges are presented in Table 3-1. 

 

3.2.2 Analytical Modeling 

Detailed 3D nonlinear FE models developed in ABAQUS are used to simulate the 

nonlinear response of typical offshore wind turbine support structures subject to day-to-

day wind, wave, current and turbine operational loading. The finite element model of the 

support structure properly accounts for the influence of soil-structure interaction as well 

as nonlinearity of the soil behavior.  
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Table 3-1. Geometrical and mechanical properties used in experimental design 

Property Symbol Ranges Unit 

Rotor diameter RD  40 - 126 m 

Tower height H
H  40 - 90 m 

Tower top diameter t
d  1.9 - 4.0 m 

Tower diameter to wall thickness ratio t
  100 - 200 -- 

Water depth Wr
H  20 - 30 m 

Steel type ST  S235,S275,S355 -- 

Material damping ratio   0.05 -- 

Support structure vibration period 
First mode n

T  0.9 - 11.9 s 

Second mode s
T  0.5 - 3.6 s 

Pile diameter pd  3.0 - 6.0 m 

Pile penetration pH  10 - 50 m 

Pile diameter to wall thickness ratio p  50 - 100 -- 

Soil modulus of elasticity soil
E  13 - 200 MPa 

Friction between pile and soil p sfr   0.2 - 0.3 -- 

Soil type -- Clay Sand  

Soil cohesion soil
C  10 - 200 0 - 80 kPa 

Soil friction angle soil
  10 - 25 35 - 45 ̊ 

Loading Parameters 

Mean wind speed s
W  3.0 - 30 m/s 

Turbulence intensity w
IT  0 - 0.16 -- 

Significant wave height s
H  1.0 - 10 m 

Wave peak period pT  3.6
s

H  - 5.0
s

H  s 

Rated wind speed s rated
W   10.3 - 11.7 m/s 

 

Considering the symmetry of a wind turbine support structure and foundation, 

half of the support structure is modeled to reduce the analysis time. Figure 3-1 shows the 

detailed 3D FE model of a sample wind turbine support structure created in ABAQUS. 

The tubular steel tower and pile foundation are modeled using 3D shell elements. 3D 

solid elements are used to model the soil mass. Nonlinearity of the foundation is 

considered explicitly by defining the nonlinear soil behavior with a Mohr-Coulomb 

plasticity model and soil-pile interaction. 
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ABAQUS supports “contact pair” that is a formulation used to model the 

nonlinearity of the contact between the pile and surrounding soil. A tangential movement 

is allowed with a friction coefficient ranging from 0.2 to 0.3. A “no separation” contact 

behavior is assumed in the radial direction. The outer surface of the pile is chosen as the 

“master surface” and the surface of the soil mass that is in contact with the pile is 

considered to be the “slave surface”. A “small sliding” tracking approach is used for the 

contact between the two bodies assuming that there is always relatively little sliding of 

one surface along the other, even if the two parts undergo large displacements. The 

nonlinearity of the soil-pile contact behavior is modeled using an elastic-plastic 

Coulomb model. 

 

 

Figure 3-1. Finite element model of a sample wind turbine support structure in ABAQUS 
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The wind turbine simulator FAST is used to simulate the aerodynamics of the 

turbine. FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is developed at the 

National Renewable Energy Laboratory (NREL) by Jonkman and Buhl Jr. (2005.) It is a 

comprehensive simulator capable of predicting both the extreme and fatigue loads of 

two- and three-bladed horizontal-axis wind turbines (Jonkman and Buhl Jr. 2005.) 

TurbSim, a turbulence simulator developed by Jonkman (2009), is used to generate the 

time history of the wind speed later used as an input for FAST. TurbSim is a stochastic, 

full-field, turbulent-wind simulator. It uses a statistical or empirical model (as opposed 

to a physics-based model) to numerically simulate time series of three-component wind-

speed vectors (Jonkman 2009.) TurbSim supports the Kaimal spectrum proposed by 

Kaimal et al. (1972) to simulate wind turbulence. The spectrum in the normalized form 

is given as 

 
 5 32

,

4

1 6

w wi w w wi hub

w i w wi hub

f S f f L W

f L W



  (3-1) 

where wf  frequency in Hertz, wiS  single-sided velocity component spectrum, ,w i
 

standard deviation of the thi  velocity component, and 
wiL  velocity component integral 

scale parameter, and 
hubW  the wind speed at the hub height. The following exponential 

coherence model suggested by the International Electrotechnical Commission standard 

(IEC 2005) is used in conjunction with the Kaimal spectrum to account for the spatial 

correlation structure of the longitudinal velocity component:  

    0.5
2 2

Coh( , ) exp 12 0.12
w w w w hub w sc

f f W L               (3-2) 
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where w
  the magnitude of the projection of the separation vector between the two 

points on to a plane normal to the average wind direction, and scL  the coherence scale 

parameter. 

As an internal subroutine, FAST also uses another computer program AeroDyn 

(Laino and Hansen 2002) to compute the aerodynamic forces on the rotating blades. The 

results of the FAST simulation are then applied to the tower as an external loading in 

addition to the wave and current loads that are modeled separately as described next. 

A linear irregular wave model, given as the superposition of linear regular waves 

propagating at different frequencies, is used to simulate the stochastic ocean waves. This 

model is based on the solution of the Laplace equation in terms of the velocity potential, 

given by the following equation (Dean and Dalrymple 1991): 

   
1

cosh
sin

cosh

M
m wr wr

m m m wr m

m m m wr

k H zg
A t k x

k H
 




        (3-3)

 

where  the velocity potential at a point with coordinates wrx  and wrz  (see Figure 3-

2.) Note that the origin of the wrz  axis is selected at the mean sea level (MSL); also the 

centerline of the turbine mono-pile is assumed to be located at 0wrx  . m  the 

frequency of the th
m  wave component, determined by solving the dispersion equation of 

2 tanh( )m m m wrg k k H  , g  the acceleration of gravity, wrH water depth, and 

2m mk L  the wave number, where mL   the wave length. mA  the amplitude of the 

th
m  wave component, m  the associated random phase assumed uniformly distributed 

over [0, 2] and finally t  represents the time of simulation. 
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Figure 3-2. Schematic illustration of wave relative to the mean sea level (MSL) 

 

Following Det Norske Veritas guideline for design of wind turbines (DNV/Risø 

2002), the Morison's equation is used to determine the hydrodynamic forces. The 

horizontal force on a vertical element dz  of the structure at level z  is expressed as 

(Dean and Dalrymple 1991) 

21

2 4

P
D I D wr P wr wr I wr wr

d
dF dF dF C d V V C V

     

 
(3-4) 

where D
dF  and I

dF  the drag and inertia forces, respectively, D
C  drag coefficient, 

IC  inertia coefficient, Pd pile diameter, and wr density of water. The horizontal 

water particle velocity, wrV , and acceleration, 
wrV , are determined as wr wr

V x    and 

wr wrV V t   , respectively. Eq. (3-4) neglects the velocity and acceleration of the 

structure. The current load is predicted using Morison’s equation (Eq. 3-4), where, wrV , 

is taken as the resultant of the combined current and wave velocity. Figure 3-3 shows a 

schematic representation of how ABAQUS, FAST and TurbSim are combined to model 

the dynamic behavior of a wind turbine system. 

 

m
th wave component
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Figure 3-3. Typical offshore wind turbine support structure configuration 

 

3.2.3 Equality and Lower Bound Data 

Finite element analyses for large deformations are sensitive to how the solution method 

handles large displacements and second order effects. As a result, the outcomes are not 

always accurate. For this reason, a drift threshold of 5% is set for analyses to be 

considered precise. Then following Gardoni et al. (2002) and Ramamoorthy et al. 

(2006), the data from the virtual experiments are divided into equality and lower bound 

data. An equality datum is such that the value of the recorded quantity of interest 

(deformation, shear force, or bending moment) in the 3D FE analysis is believed to be 

accurate. A lower bound datum is such that an accurate record of the quantity of interest 

is not available and only a lower bound of the true value is available. 

In this section, the deformation, shear and moment data are considered as 

equality data, if the maximum drift during a time history analysis does not exceed 5%. If 
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an analysis produces a drift that exceeds 5%, then the maximum value of deformation, 

shear and moment that occurs prior to reaching the 5% drift are considered as lower 

bound data for the deformation, shear and moment, respectively. With this approach, the 

data from analyses that lead to large deformations are included without letting inaccurate 

values wrongfully influence the model parameters (Bisadi et al. 2006.) 

 

3.3 Probabilistic Demand Models 

A probabilistic demand model relates the demand on the structural component to the 

properties of the considered system and the intensity measures of demand(s) and 

hazard(s) while accounting for the uncertainties inherent in the demand model. Ideally a 

model should incorporate all the available sources of information including the rules of 

physics and mechanics, and experimental and field data when they are available. 

Following Gardoni et al. (2002 and 2003), the probabilistic demand models are 

formulated by adding a correction term to selected deterministic demand models. A 

probabilistic demand model is formulated as 

     ˆ, , , , ,
k k k k k k k

D d     x w Θ x w x w θ
           

(3-5) 

where  , , th

k k
D kx w Θ

 
probabilistic demand model, in which k  , v  or m  stands 

for deformation, shear or moment, respectively, x material properties, structural 

dimensions and boundary conditions, w  a vector of measures of the external loading, 

including wind and wave properties, ( , )k k kΘ θ , in which [ ]k ki θ vector of 

unknown model parameters and k
  standard deviation of the model error k k

  , 
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ˆ ( , )kd x w selected deterministic demand model, ( , , )k k x w θ correction term for the 

bias inherent in the deterministic model, k
  random variable with zero mean and unit 

variance. In formulating the model, a logarithmic transformation of the data is employed 

to satisfy the homoskedasticity assumption ( k  is constant), the normality assumption (

k
  has the normal distribution), and the additive form used in Eq. (3-5.)  

The correction term ( , , )k k x w θ , added to correct for the potential bias in 

deterministic model by incorporating the missing terms in ˆ ( , )kd x w , is written as 

   
1

, , ,
p

k k ki ki

i

h 


x w θ x w
                                     

(3-6) 

where ( , )kih x w normalized explanatory functions that might be significant in 

correcting ˆ ( , )kd x w , and p  the number of unknown model parameters. The model 

parameters, ( , )k k kΘ θ , are estimated by a Bayesian updating method and using the 

results from the detailed finite-element analyses. 

An offshore wind turbine support structure can fail in shear, moment or excessive 

deformations. This section develops probabilistic models for the deformation, shear and 

moment demands of offshore wind turbines with horizontal axis. More specifically, the 

wind turbines of interest in this study are rated between 0.5 and 5 megawatts, supported 

by a tubular steel tower and a steel mono-pile foundation, installed in water depths less 

than 30 meters and subject to day-to-day turbine operational loads, as well as wind, 

wave and current loading. 
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3.3.1 Deterministic Demand Model 

An ideal deterministic demand model ˆ ( , )kd x w  should be simple and yet accurate, and 

ideally commonly used in practice to account for the current knowledge and facilitate the 

acceptance of the proposed probabilistic model. For this reasons, the deterministic 

prediction from FAST is used. For this purpose, the structural model in FAST consists of 

nine rigid bodies (the earth, support platform, base plate, nacelle, armature, gear system, 

hub, tail and structure furling with the rotor) and five flexible bodies (the tower, drive 

shaft and three blades) that are related through 24 degrees of freedom.  

TurbSim simulates the wind turbulence as explained in Section 3.2.2 and 

generates the time history of the wind speed at the hub height that is applied to the 

simulated turbine in FAST. As opposed to the FAST simulations that are used for 

generating the virtual experimental data, for the purpose of modeling the deterministic 

demand, wave and current loads are calculated internally in FAST. To model linear 

irregular waves, FAST supports JONSWAP/Pierson-Moskowitz spectrum and then uses 

the Morison's equation to determine the hydrodynamic forces on the tower. 

 

3.3.2  Model Correction 

To correct for the bias inherent in the deterministic model, the additive correction term, 

( , , )
k k
 x w θ , is developed as presented in Eq. (3-6.) Ideal selection of candidate 

explanatory functions ( , )
ki

h x w  is based on the laws of mechanics to improve the model 

by incorporating missing terms in deterministic model. The term 1( , ) 1kh x w  is selected 
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to capture a potential constant bias in the model that is independent of the variables x  

and w, 2
ˆ( , ) ( , )k kh dx w x w  to capture any possible under- or over-estimation of the 

deterministic model. Table 3-2 summarizes the candidate explanatory functions selected 

for demand models. To characterize the influence of wind and wave parameters, 3kh - 6kh  

are selected as normalized functions of Ws, ITw, Hs, and Tp, respectively. The explanatory 

function 7k
h  is considered to capture the possible influence of the rotor diameter. In 

addition, 8kh - 11kh  are considered to capture the possible influence of the foundation 

stiffness, 
f

k , which is not included in the deterministic model. 

The foundation stiffness 
fk  is computed using p-y curves. The p-y method uses 

an elastic beam-column member to model the pile and nonlinear horizontal springs to 

represent the soil reactions. The p-y curves describe the nonlinear behavior of the soil 

springs. They were originally proposed by Matlock (1970) for soft clays under the water 

table and Reese et al. (1975) shortly after introduced models for hard clays and sands. 

Sand, soft clay and hard clay models are used in this study. The clay model requires the 

specification of a parameter 50  that is assumed to be 0.005, as recommended by Reese 

et al. (1975.) 

To develop parsimonious probabilistic demand models, the desire is to keep only 

the explanatory functions that are strictly needed. Therefore, a model selection process is 

used to identify the important explanatory functions among the candidates presented in 

Table 3-2. 
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Table 3-2. Explanatory functions for demand models 

 

 

 

3.3.3  Model Selection 

A stepwise deletion procedure is used for reducing the number of terms in ( , , )k k x w θ  to 

achieve a compromise between the simplicity (few correction terms) and accuracy (small 

 ) of the model. The stepwise deletion procedure used in this section follows the 

procedure developed by Gardoni et al. (2002.) For completeness, a brief summary of the 

procedure is provided here. The procedure starts with a comprehensive candidate form 

of ( , , )k k x w θ  and then is simplified by deleting unimportant terms one at the time. At 

each step, first the posterior statistics of the model parameters k
Θ  are assessed using a 

Bayesian approach. Then the term 
kjh  whose coefficient 

kj  has the largest posterior 

coefficient of variation (COV) is identified. The term 
kj

h  is the least informative among 

all the explanatory functions in the th
k  demand model and might be dropped from 

Explanatory function Formula Parameters 

hk1 1 , ork v m  

hk2 ˆ
k

d  ˆ
k

d  Deterministic deformation, shear or moment demand

hk3 ln( / )
s n H

W T H  H
H  Hub height

hk4 ln( )
w

IT   

hk5 ln( / )
s H

H H   

hk6 ln( / )p nT T   

hk7 ln( / )
H

RD H   

hk8 maxln( / )
s s

C C  
s

C  Soil shear wave velocity; 
maxs

C  194.594 m/s
 

hk9 ln( / )
soil soil

C E   

hk10 ln[tan( )]
soil
   

hk11 ln( / )t fk k  
t

k  Tower stiffness 

fk  Foundation stiffness



 

46 

 

( , , )
k k
 x w θ . In the next step, the reduced model is re-assessed by estimating its remaining 

parameters and the value of k
 , which captures the model accuracy, is checked. If the 

value of k  grows of an unacceptable amount from the value in the previous step, then 

the term 
kj

h  should not have been deleted and the most parsimonious model is the one at 

the previous step. It is noted that the stepwise deletion procedure used in this section was 

developed specifically to identify the most parsimonious model when the data include 

lower or upper bound data and traditional deletion procession cannot be used.  

 

3.3.4  Bayesian Updating 

A Bayesian approach is used to estimate the unknown model parameters kΘ  using the 

data from the virtual experiments. The updating rule can be written as (Box and Tiao 

1992) 

     k k kf L pΘ Θ Θ
                                           

(3-7) 

where ( )kp Θ the prior distribution of 
k

Θ  that reflects the state of knowledge about 
k

Θ

, ( )
k

L Θ the likelihood function that represents the objective information on 
k

Θ  

contained in the virtual experiment database,    a normalizing factor, and ( )
k

f Θ the 

posterior distribution of 
k

Θ  that represents the updated state of knowledge about 
k

Θ . 

The posterior distribution ( )
k

f Θ  incorporates both the previous information about 
k

Θ  

included in ( )
k

p Θ  and the new data included in ( )kL Θ . In this section, due to the lack 

of prior information on the unknown parameters, a non-informative prior in the form of 
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1( , )p     θ  (Box and Tiao 1992) is used in the Bayesian approach. However, any 

knowledge based on prior experience could be used to refine the model. Furthermore, 

application of the updating rule in Eq. (12) can be repeated to update our present state of 

knowledge as new information on 
k

Θ  becomes available.  

The likelihood function is proportional to the conditional probability of making 

the observations for a given value of k
Θ  and following Gardoni et al. (2002) it is written 

as  

     
equality data lower bound data

1 ki k ki k

k

k k k

r r
L 

  
            
     

 
θ θ

Θ
     

(3-8) 

where ˆ( ) ( , ) ( , , )ki k ki k i i k i i kr D d   θ x w x w θ , kiD  the th
i  observation of the th

k demand 

for a given i
x  and i

w . 

 

3.3.5  Probabilistic Demand Models 

3.3.5.1 Deformation Demand Model  

The deformation demand model is formulated in terms of the natural logarithm of the 

drift demand defined as deformation demand at the top of the tower,  , normalized by 

the hub height HH . The logarithmic transformation is used to satisfy the 

homoskedasticity, normality and additivity assumptions. The stepwise deletion 

procedure described in the Section 3.3.3 is then used to select the most parsimonious 

model. Figure 3-4 summarizes the stepwise deletion process for the deformation demand 

model. At each step, solid dots show the posterior COVs of the model parameters θ i  
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and an open circle shows the posterior mean of the model standard deviation  . At the 

first step, with the complete 11-parameter model, the posterior mean of   is 0.396 and 

the parameter with the largest COV (=2.31) is 8θ . Therefore, the term 8 8θ h   is dropped 

to simplify the model. Then the reduced model is assessed and the next unnecessary term 

is removed. After 5 steps, the largest COV (for parameter 7θ ) is found to be close in 

magnitude to   and a further reduction (from Step 5 to Step 6) deteriorates the quality 

of the model (i.e.,   increases significantly.) Stopping at this step, the model is left 

with seven terms.  

 

 
Figure 3-4. Stepwise deletion process for deformation demand model, where (×) indicates term to be 

removed 

 

Eq. (3-9) shows the proposed probabilistic model for deformation demand, 

     1 2 3 5

6 7 11

.ˆ ˆ, , , , ln ln

ln ln ln

s n s

H H

p t

n H f
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D d d
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T kRD

T H k
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    

   

    

   
       

   
    

             

x w Θ x w x w

     
(3-9) 
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Assessing all possible subsets of explanatory functions that have seven terms, 

excluding the lower bound data, the selected model shown in Eq. (3-9) satisfies the 

selection criteria of the adjusted R
2
 (Theil 1961), Mallows’ Cp (Mallows 1973) and 

Corrected Akaike’s Informatin Criterion (AICc) (Hurvich and Tsai 1989) better than 

other models. 

A non-informative prior is used in the Bayesian approach because no prior 

information is available on the unknown parameters ( , )  Θ θ  before conducting the 

virtual experiments. Following Box and Tiao (1992), 1( , )p     θ  is selected for the 

non-informative prior. Table 3-3 presents the posterior statistics of the model parameters 

in Eq. (3-9.) Figure 3-5 shows plots of predicted versus measured demands based on the 

deterministic (left) and probabilistic (right) models. For the probabilistic model the 

median predictions are shown. The equality data are shown as solid dots and the lower 

bound data are shown as open triangles. The dashed lines in the Fig. 3-5(b) delimit the 

region within one standard deviation of the model. 

 

Table 3-3. Posterior statistics of the parameters in the deformation demand model 

Standard 

Deviation 

   Correlation coefficient 

Parameter Mean 1  
2  

3  
5  

6 7  11    

1  2.28 0.709 1        

2  0.27 0.083 0.29 1       

3  0.329 0.097 0.21 0.65 1      

5  0.392 0.119 0.52 0.52 0.26 1     

6  0.77 0.188 0.44 0.58 0.21 0.82 1    

7  0.53 0.198 0.40 0.12 0.23 0.38 0.503 1   

11  0.194 0.058 0.85 0.18 0.09 0.26 0.31 0.35 1  

  0.387 0.034 0.07 0.07 0.09 0.03 0.05 0.03 0.11 1 
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In a perfect demand model, all the solid dots should be lined up along the 1:1 line 

and all the open triangles should be above the 1:1 line. However, Figure 3-5(a) clearly 

shows that the deterministic model is biased on the non-conservative side, whereas the 

proposed probabilistic demand model corrects the bias as shown in Figure 3-5(b.) 

 

 
Figure 3-5. Comparison between measured versus predicted deformation demands, (a) deterministic 

model, (b) median probabilistic model 

 

 

3.3.5.2 Shear Demand Model  

Figure 3-6 summarizes the stepwise deletion process for the shear demand model. As in 

Figure 3-4, the solid dots show the posterior COV of the model parameters θvi  
and open 

circle shows the posterior mean of the model standard deviation v  at each step. After 

eight steps, further reduction of the correction terms causes the posterior mean of v  to 

increase by an unacceptable amount. Stopping at this step, the shear demand model is 

left with the four terms shown in Eq. (3-10.)  
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     1 2 8 11

max

ˆ ˆ, , , , ln lns t
v v v v v v v v v v

s f

C k
D d d

C k
     

  
            

x w Θ x w x w

 

(3-10) 

Again, all possible subsets of explanatory functions for shear demand model 

having four terms are checked for the criteria of adjusted R
2
, Mallows’ Cp and AICc and 

the results shows that they are in agreement with the results from stepwise deletion 

method. 

 

 
Figure 3-6. Stepwise deletion process for shear demand model, where (×) indicates term to be removed 

 

 

The model is formulated as the natural logarithm of the shear demand at the base 

of the tower normalized by the mean value of the yield shear force defined as 
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y y t to ti to to ti tiA r r r r r rV f    , where ˆ

y
f   expected yield stress of steel, tA 

tower base cross section area, and tor  and tir outer and inner diameter of the tower 

section, respectively. As in developing the deformation demand model, due to the lack 

of prior information on the unknown model parameters ( , )v v vΘ θ , a non-informative 

prior is used in assessing the posterior statistics. Table 3-4 gives the posterior statistics 
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for shear demand model parameters. Figure 3-7 shows plots of predicted versus 

measured shear demands based on the deterministic (left) and probabilistic (right) 

models. Comments analogous to those made for deformation demand model can be 

made also for the shear demand model based on Figure 3-7. Whereas, the deterministic 

shear demand model is clearly biased on the non-conservative side, the proposed 

probabilistic model properly corrects for the bias and gives unbiased predictions of the 

demands. 

 

 

Table 3-4. Posterior statistics of the parameters in the shear demand model 

Standard 

Deviation 

 Correlation coefficient 

Parameter Mean 1v  
2v  

8v  
11v  v  

1v  3.65 0.693 1     

2v  0.49 0.053 0.75 1    

8v  0.73 0.180 0.67 0.32 1   

11v  0.26 0.066 0.89 0.40 0.65 1  

v  0.412 0.035 0.04 0.17 0.02 0.06 1 

 

 

 

 
Figure 3-7. Comparison between measured versus predicted shear demands, (a) deterministic model, (b) 

median probabilistic model 
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3.3.5.3 Moment Demand Model  

The probabilistic demand model for moment is formulated as the natural logarithm of 

the moment demand at the tower base normalized by ˆˆ
y y t

M f S , where t
S elastic 

section modulus at the tower base. As for the deformation and shear demand models, a 

stepwise deletion process is used to detect unnecessary explanatory functions that can be 

dropped to simplify the probabilistic model. Figure 3-8 summarizes the stepwise 

deletion process for the moment demand model, where solid dots and open circle 

representing the posterior COV of the model parameters θmi  and the posterior mean of 

the model standard deviation m  at each step, respectively. Stopping after nine steps, the 

selected model shown in Eq. (3-11) has three explanatory functions in the correction 

term. This selection is confirmed again by the values of the adjusted R
2
, Mallows’ Cp 

and AICc. The model selection results in the following form for the probabilistic 

moment demand model: 

     1 2 3

.ˆ ˆ, , , , ln s n
m m m m m m m m m

H

W T
D d d

H
    

 
     

 
x w Θ x w x w

 
(3-11) 

As in developing the deformation and shear demand model, due a lack of prior 

information on model parameters, a non-informative prior is used to estimate 

( , )m m mΘ θ . Table 3-5 gives the posterior statistics of model parameters and Figure 3-

9 shows plots of predicted versus measured moment demands based on the deterministic 

(left) and probabilistic (right) models. Similar comments to those made for Figures 3-5 

and 3-7 can be made for Figure 3-9. 



 

54 

 

 
Figure 3-8. Stepwise deletion process for moment demand model, where (×) indicates term to be removed 

 

 
Table 3-5. Posterior statistics of the parameters in the moment demand model 

    Standard 

Deviation 

Correlation coefficient 

Parameter Mean 1m  
2m  

3m  
m  

1m  0.572 0.087 1    

2m  0.19 0.048 0.87 1   

3m  0.141 0.066 0.42 0.74 1  

m  0.291 0.023 0.12 0.07 0.03 1 

 

 

 
Figure 3-9. Comparison between measured versus predicted moment demands, (a) deterministic model, 

(b) median probabilistic model 
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3.4 Fragility Estimates of an Example Offshore Wind Turbine Support Structure 

Fragility is defined as the conditional probability of not meeting specified capacity levels 

for given value of the vector w . Following Gardoni et al. (2002), a predictive estimate 

of the fragility is formulated as 

    , , 0
j kj k

k

F P g
 

  
 

w x w Θ w 
                                   

(3-12) 

where ( , , )
kj k

g x w Θ  is the th
k  limit state function defined as 

     , , , ,kj k kj k kg C D x w Θ x x w Θ
                                

(3-13) 

in which ( )kjC x  represent the capacity corresponding to ( , , )k kD x w Θ , and j s , y  or u

identifies the service, yield and ultimate capacity levels, respectively. 

In this section, the fragility estimates are developed for the performance levels 

that delimit four possible damage states of a support structure. Table 3-6 shows the 

description of the considered damage states, the limiting performance levels, and the 

corresponding capacities. 

This subsection focuses on the assessment of the fragility of a typical 5-MW 

offshore wind turbine support structure installed in a 20 m water depth and subject to 

day-to-day environmental and operational loadings. The considered wind turbine is 

assumed to be supported by a mono-pile foundation that is typical for this water depth. 

The specifications of the configuration of interest can be found in Jonkman et al. (2009.) 

Also, Table 3-7 shows a summary of the properties of considered wind turbine support 

structure. 
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Table 3-6. Proposed damage states and corresponding limit states and natural hazards 

Damage state Description Performance level Capacity

    
Insignificant 

(I) 
No structural damage. Normal 

operation of turbine continues 
  

Tower top deformation 

exceeds serviceability 

limit
sC    

Temporary 

Out-of-service 

(TO) 

No structural damage. Excessive 

vibrations lead to temporary stoppage 

of turbine operations. 

  

Tower base shear or 

moment exceeds yield 

limit

kyC ,  k v , m

  

Permanently 

Out-of-service 

(PO) 

Support structure yield. Permanent 

excessive deformations will make the 

turbine permanently out-of-service. 

Major structural repairs are necessary 

to bring the turbine back on-line. 

  

  Tower base shear or 

moment exceeds ultimate 

limit

ku
C ,  k v , m

  

Complete (C) Support structure is unable to carry 

additional loads. Damage is so 

extensive that repair of structure is not 

feasible.  

 

  

 

 

As shown in Table 3-6, three modes of failure are considered: drift, shear and 

bending. Following Lavassas et al. (2003), a drift of 0.5% is considered as deformation 

capacity, s
C , that is used to define the serviceability limit. The shear capacity is defined 

as 
2 2 2 2(3 / 4)( ) / ( )vj j t to ti to to ti tiC f A r r r r r r    , where j

f  is equal to the yield stress, y
f , 

or the ultimate stress, uf , for the yield and ultimate capacity, respectively. In developing 

the fragility estimates, y
f  and uf  are considered to be lognormal random variables, 

respectively with the means of 300 and 410 MPa (for a structural steel of Grade S235 

according to EN 10 025 standard (CEN 2004)), and a coefficient of variation of 10%. 
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The yield bending moment capacity is computed as 
my y t

C f S . Finally, the ultimate 

bending moment capacity, 
muC , is considered to be lognormal random variable with a 

mean of 390.6 MN-m and a standard deviation of 39.57 MN-m. The statistics of mu
C  is 

obtained using moment-curvature diagrams constructed for the tubular cross section of 

the tower base, considering the stress-strain curve of structural steel of Grade S235. 

 

 

Table 3-7. Properties of the NREL offshore 5-MW baseline wind turbine 

Property Value 

Rating 5 MW 

Rotor diameter 126 m 

Hub height 90 m 

Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s 

Rotor mass 110,000 kg 

Nacelle mass 240,000 kg 

Tower mass 347,460 kg 

Tower top diameter and wall thickness 3.87 m, 0.019 m 

Tower base diameter and wall thickness 6.00 m, 0.027 m 

 

  

Monte Carlo simulations are used to estimate the fragility of the support structure 

for each failure mode. All the model parameters and the error terms in demand models 

are considered as random variables with the normal distribution assumed for the model 

parameters, kθ , and the lognormal distribution assumed for k . 

Figure 3-10 shows the predictive fragility estimates for the example offshore 

wind turbine plotted as a function of Ws varying within the turbine operational range and 

for a significant wave height 1m
s

H  . The turbine operational range is defined as the 

range of the wind speed in which the turbine is operating and producing power with a 
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lower limit of cut-in wind speed and an upper limit of cut-out wind speed. The rated 

wind speed is the wind speed at which a control system is activated to limit the 

aerodynamic forces on the blades of the wind turbine and keep the power generated 

constant by changing the blade pitch angle. 

 

  

 
Figure 3-10. Fragility estimates for an offshore wind turbine as a function of mean wind speed for 

1m
s

H   

  

The three curves in the top plot in Figure 3-10 show the fragilities associated to 

the serviceability, yield and ultimate limits. The reduction in the probabilities of failure 

after the rated wind speed is due to the activation of the control system at the rated wind 

speed that changes the blade pitch angle, as shown in the bottom plot. It is also noted 
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that for the yield and the ultimate limits, the contribution to the fragility from the 

bending mode controls and the contribution from the shear mode is negligible. This is as 

expected for slender elements like the tower of wind turbines. 

To study the effect of the variability in Hs on the fragility estimates, Figure 3-11 

shows the yield bending fragility estimates plotted as a function of Hs, for different 

values of Ws. As shown in the figure, the fragility at the rated wind speed is higher than 

the fragilities at the other two wind speeds due to the higher wind speed than the cut-in 

wind speed and operational loading than at the cut-out wind speed. Figure 3-11 also 

shows that the changes in wave height do not affect noticeably the probability of failure, 

especially for large wind speeds.  

 

 
Figure 3-11. Yield bending fragility estimates for an offshore wind turbine as a function of significant 

wave height at different wind speeds 
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3.5 Conclusions 

This section developed probabilistic models for deformation, shear and moment 

demands on the support structure of offshore wind turbines. In order to promote their use 

in practice, the probabilistic models were constructed by adding a correction term to 

existing deterministic models commonly used for the design of wind turbines. The 

correction terms were assessed using data obtained from detailed 3D nonlinear FE 

analyses of wind turbine systems that accounted for the effects of the dynamics soil-

structure interaction. A stepwise selection process was used to develop parsimonious 

model forms and a Bayesian approach was used to assess unknown model parameters. 

The developed probabilistic models account for the relevant aleatory and epistemic 

uncertainties in predicting the demand quantities of interest. 

The proposed probabilistic demand models were then used to assess the fragility 

of an example off-shore wind turbine subject to day-to-day wind, wave and current 

loading. The conditional probabilities of exceeding three specified performance levels 

(serviceability, yield, and ultimate) were found to increase with the average wind speed 

up to the rated wind speed. Upon reaching the rated wind speed, a control system is 

activated to limit the aerodynamic forces on the blades of the wind turbine and keep the 

power generated constant by changing the blade pitch angle. The activation of the 

control system was found to reduce the values of the fragilities. The bending mode was 

found to control the probability of exceeding the yield and ultimate limit states, while the 

shear failure mode was found to provide negligible contributions to the fragility. Also, 
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the fragility estimates show that wave loading does not noticeably affect the probability 

of failure, especially for large wind speeds. 
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4. PROBABILISTIC SEISMIC DEMAND MODELS AND FRAGILITY ESTIMATES 

FOR OFFSHORE WIND TURBINES 

 

4.1 Introduction 

Previous section assessed the deformation, shear and moment demands on the support 

structure of offshore wind turbines subject to wind, wave, current and turbine 

operational loadings properly accounting for the nonlinear soil-structure interaction. A 

continuous modeling of the pile and the surrounding soil was developed using 3D finite 

elements that accounts for the nonlinear behavior of the soil and of the soil-pile 

interface. Because a complete nonlinear 3D finite element analysis can be quite 

expensive and time consuming, simplified probabilistic demand models were proposed 

for the deformation, shear and moment demands on the support structure of offshore 

wind turbines. The probabilistic models were calibrated using the results from the 

nonlinear 3D finite element analyses and properly accounted for the inherent 

uncertainties, including the statistical uncertainty (associated with the finite sample size) 

and the modeling errors (associate with the selection of the variables in the models and 

the model forms.) 

However, with the extensive installation of wind farms in moderate and high 

seismic regions in the United States and other countries, a new concern has raised about 

the safety of wind turbine support structures subject to seismic loads (Prowell and Veers 

2009.) Early publications on the analysis of dynamic response of wind turbines during 

earthquake (Bazeos et al. 2002, Lavassas et al. 2003) were based on the simplified 
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models that lumped the nacelle and rotor as a point mass at the top of the tower. More 

refined models developed later to incorporate the aeroelastic interaction into the 

response analysis (Witcher 2005, Ishihara and Sarwar 2008, Prowell et al. 2010.) 

Witcher (2005) studied the seismic response of wind turbine support structures using the 

seismic module within GH Bladed and indicated the importance of time domain simulations 

to account for aeroelastic interaction. Developing a nonlinear FEM code (CAsT), Ishihara 

and Sarwar (2008) carried out a time domain analysis of dynamic response of wind turbines 

to include the tower-rotor coupling. The result was used to introduce a safety factor to the 

semi-theoretical design formula (based on building design code) in order to modify it to be 

used for wind turbines. Prowell et al. (2010) calibrated the aeroelastic interaction modeled in 

FAST using experimental data from a shake-table test of a small onshore 65-kW wind 

turbine (Prowell et al. 2008.) Yet, all these studies fail to incorporate the dynamic soil-

structure interaction. 

This section develops novel shear and moment demand models for the support 

structure of offshore wind turbines subject to seismic loading in addition to wind, wave, 

current and turbine operational loadings. The approach is consistent with the one used in 

previous section for wind turbines operating under day-to-day environmental loads and 

emphasis is given to the additional seismic load. The wind turbine is considered to be 

operating throughout the earthquake and the aeroelastic interaction is included in the 

dynamic response analyses of wind turbine support structures. Regarding the generation of 

deterministic data, the open source aeroelastic simulator, FAST, is modified to 

incorporate seismic ground motions in the simulations. Finally, fragility estimates are 
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presented for an example offshore wind turbine support structure for given values of the 

intensity measure of the loading (i.e., the mean wind speed and spectral acceleration.) 

 

4.2 Probabilistic Demand Models 

Following an approach consistent with the one presented in Subsection 3.3, to 

incorporate the rules of physics and mechanics and facilitate the acceptance of the 

proposed models, probabilistic demand models are developed by adding a correction 

term to selected existing deterministic demand models as shown in Eq. (3-5.) Again, 

probabilistic shear and moment demand models are developed for horizontal axis offshore 

wind turbines rated between 0.5 and 5 megawatts (medium to large wind turbines.) The 

wind turbines of interest in this section are supported by a tubular steel tower, which is 

seated on a steel mono-pile foundation at the base and installed in water depths less than 30 

meters. This section predicts the shear and moment demands on the support structures 

subject to seismic excitation, in addition to wind, wave, current and turbine operational 

loadings. 

 

4.2.1 Deterministic Demand Model 

An ideal deterministic model ˆ ( , )kd x w  should be simple and yet accurate, and commonly 

accepted in practice. Because of these reasons and also to be consistent throughout the 

dissertation, FAST is used to compute deterministic predictions of the shear and moment 

demands on the support structure of wind turbines subject to earthquake in addition to 

wind, wave, current and turbine operational loadings. The currently in practice version 
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of FAST does not include the seismic module. However, the recent updates to FAST 

(Jonkman 2007) that allow a force and moment to be applied at the tower base platform 

with six degrees of freedom at each time step, provide the possibility to model the 

earthquake ground motions in a time marching simulation. 

Similar to the approach described in the previous section, for given values of the 

mean wind speed and turbulence intensity, a time history of wind speed is generated by 

TurbSim and used as an input for the dynamic analysis in FAST. As it is supported by 

TurbSim, IEC Kaimal model (Kaimal et al. 1972) is used in this study. Linear irregular 

waves for given significant wave height and wave peak period are modeled using the 

JONSWAP/Pierson-Moskowitz spectrum (Dean and Dalrymple 1991), also supported by 

FAST. FAST then uses the Morison's equation to determine the hydrodynamic forces on the 

tower. Current loading is also incorporated in the Morison's Equation. 

For given intensity and duration parameters of the ground motion and frequency 

content of a filter, synthetic ground motions are generated following Rezaeian and Der 

Kiureghian (2010.) The generated ground motions are then used as inputs for dynamic 

analyses also carried out using FAST. Rezaeian and Der Kiureghian (2010) formulated 

the ground motion process with a stochastic model as 

     T

1
ˆ , m my t q t t t t t 

     α Λ
 

(4-1) 

where t  stands for the time, ( , )q t α a modulating function that controls the time-

varying intensity of the process, T

1( ) [ ( ), . . . , ( )]nt t t    a unit vector of the 

deterministic basis functions that controls the evolving frequency content of the process 
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and T

1[ , . . . , ]
j

   Λ  a vector of standard normal random variable that provides the 

randomness that exists in real ground motions. Following Rezaeian and Der Kiureghian 

(2010), the gamma modulating function is selected and formulated as 

 
   2

0

1

1 0 3 0 0

, 0 if

exp if

q t t T

t T t T T t
 

 

      

α

 
(4-2) 

This model has four parameters 1 2 3 0( , , , )T  α , where 1 3, 0   , 2 1  , 

and 0T  denotes the start time of the process. The deterministic basis function is written 

as a function of the filter parameters, ( )
j

tΦ , as follows 

   
 

1
2

1

,
, ;1

,

s j j

j j n n
n

s i ii

h t t t
t t t t t j n

h t t t

 



         
  

Φ
Φ

Φ  
(4-3) 

where [ , ( )]sh t   Φ  represents the pseudo-acceleration response of a single-degree-of-

freedom linear oscillator subject to a unit impulse and is formulated as 

   
 

           2

2
, exp sin 1

1

0 otherwise

f

s f f f f

f

h t t t t
 

            
 

               



Φ

 
(4-4) 

where  the time of the pulse, ( )
f

   natural frequency and ( )
f

   damping ratio of 

the filter. 

The unknown parameters of the process 1 2 3 0( , , , )T  α  and ( ) [ ( ),
j f

t  Φ

( )]
f

   are assessed by matching the properties of generated and reference ground 

motions. The modulating function parameters 1 2 3( , , )    are related to ground motion 
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time history variables 5 95( , , )a midI D t , where 
aI  expected Arias intensity (Arias 1970) 

of the acceleration process, 5 95D   time interval between the instants at which the 5% 

and 95% of the expected Arias intensity are reached, and mid
t  time at which 45% of the 

expected Arias intensity is reached. The filter parameters [ ( ), ( )]
f f

    , which control 

the evolving predominant frequency and bandwidth of the process, are assessed based on 

their relations to the rate of zero-level up-crossings and the cumulative number of 

negative maxima and positive minima of the acceleration process. More details on the 

assessment of the unknown parameters of this process are presented in Rezaeian and Der 

Kiureghian (2010.) 

In case of a seismic event, a base acceleration time history is responsible for the 

resulting forces in the structure. FAST does not accept an acceleration time history as an 

input. Therefore a time history of force, ( )
a

F t , is applied to the platform. Using an 

artificially large mass for the support platform, the force ( ) ( )
a

F t M a t  produces the 

desirable acceleration ( )a t  at the base of the turbine support structure, where M  is the 

total mass of the support platform and the wind turbine. 

 

4.2.2 Model Correction 

Correction term, ( , , )
k k
 x w θ , is intended to adjust for the bias inherent in the 

deterministic model. A linear form presented in Eq. (3-6) is used for the correction term, 

where for each demand of interest k , [ ]k kiθ  and ( , )
ki

h x w , 1, . . . ,i p , are, 

respectively, unknown model parameters and selected explanatory functions. Also, in 
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this section, k v  or m , for the shear or moment demand, respectively. Ideally, 

explanatory functions should be selected from laws of mechanics and structural 

dynamics. The term 1( , ) 1
k

h x w  is selected to capture potential constant bias in the 

model that is independent of x  and w , and 
2

ˆ( , ) ( , )
k k

h dx w x w  to capture any possible 

under- or over-estimation of the deterministic models. To capture possible dependence 

of residuals on foundation, environment and earthquake parameters, which are not 

properly included in the deterministic model, additional explanatory functions are also 

considered. Table 4-1 shows candidate explanatory functions for the demand models. To 

characterize the influence of wind and wave parameters, 3k
h - 6k

h  are selected as 

normalized functions of the mean wind speed, turbulence intensity, significant wave 

height and wave peak period, respectively. The explanatory functions 7kh - 13kh  are 

considered to incorporate the influence of the magnitude and frequency content of the 

ground motion. In addition, 14k
h  is considered to capture the possible influence of the 

rotor diameter. Finally, 15kh - 18kh  are considered to capture the possible influence of the 

foundation stiffness, which is not included in the deterministic model. A Bayesian 

inference is then used to estimate the unknown model parameters k
θ . Due to the lack of 

available data needed to conduct the statistical analysis required to estimate the model 

parameters, a database of virtual experiments is generated using detailed nonlinear 

dynamic analyses of offshore wind turbine support structures as explained next. 
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Table 4-1. Explanatory functions for demand models 

 

 

4.2.3 Virtual Experiment Data 

Representative ground motions are assigned to the configurations generated by 

conducting an experimental design as explained in Section 3. A Latin hypercube 

sampling technique, which is a space filling technique and maximizes the minimum 

distance between the sample points, is used to ensure that the sampling has a good 

coverage of the design space. See Subsection 3.2.1 for more details on the experimental 

design and the variables and their considered ranges. 

Representative ground motions for the virtual experiments must be properly 

selected in order to assess the seismic demand variables of interest and their associated 

Explanatory function Formula Parameters 

hk1 1 k v or m  

h2 
ˆ

k
d  ˆ

k
d  Deterministic shear or moment demand

 
hk3 ln( / )

s n H
W T H   

hk4 ln( )
w

IT   

hk5 ln( / )
s H

H H   

hk6 ln( / )
p n

T T   

hk7 ln( / )
a

S g  
a

S  Spectral acceleration; g  ground acceleration

hk8 ln( / )
d H

S H
d

S  Spectral displacement

hk9 ln( / )PGA g PGA  Peak ground acceleration

hk10 ln( / )
n H

PGV T H PGV  Peak ground velocity

hk11 ln( / )
H

PGD H PGD  Peak ground displacement

hk12 ln[2 / ( )]
n

PGV PGA T    

hk13 ln[2 / ( )]
n

PGD PGV T    

hk14 ln( / )
H

RD H   

hk15 maxln( / )
s s

C C   

hk16 ln( / )
soil soil

C E   

hk17 ln[tan( )]
soil
   

hk18 ln( / )t fk k   
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uncertainties. In particular, the selected ground motion records should capture the 

characteristics of the possible seismic hazards, including their return periods, intensities, 

frequency contents, and durations (Krawinkler et al. 2003.) Ground motion records are 

selected from the PEER (Pacific Earthquake Engineering Research Center) NGA 

database (1999.) Following Shome and Cornell (1999), the selected ground motions are 

subdivided into five bins based on moment magnitude (Meq) and the closest distance 

between the record location and the rupture zone (Req.) Table 4-2 shows the bins from 

which the ground motions are selected. Each bin represents specific combinations of the 

earthquake characteristics and the collection of all bins captures all possible 

characteristics. A total of 20 representative ground motion records are selected from 

each bin. 

 

Table 4-2. Bins from which ground motions are selected 

Bin No. Bin characteristics Magnitude Distance (km) No. of Records 

1 Large magnitude, small distance Meq>6.5 13<Req<30 20 

2 Large magnitude, large distance Meq>6.5 Req>30 20 

3 Small magnitude, small distance Meq<6.5 13<Req<30 20 

4 Small magnitude, large distance Meq<6.5 Req>30 20 

5 Near fault Meq>6.5 Req<13 20 

 

 

Finite element models are developed in ABAQUS to simulate the dynamic 

response of the support structure of typical offshore wind turbines, subject to wind, 

wave, current and turbine operational loading as well as earthquake. The finite element 

model of the support structure is constructed such that it accounts for the nonlinearity of 

the soil behavior and soil-structure interaction. Again, the aerodynamics of the turbine is 
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simulated by the support of FAST. FAST produces the time history of the forces at the 

top of the tower due to the wind and the operation of the turbine. The time history of 

wind loading used as an input for FAST is generated using TurbSim. The result of this 

simulation is the operational loading on the tower, which is used in the finite element 

model of the support structure as an external loading in addition to wave and current 

loading. At the same step of analysis, earthquake ground motions are applied at the base 

of the FE model, assuming the turbine is operating throughout the earthquake. Therefore, 

a structural damping of 5% is assigned to the tower to incorporate the aerodynamic 

damping due to continuous operation of wind turbine during the earthquake (Witcher 

2005.) 

Finally following an approach consistent with the one used in the previous 

section, the data from the virtual experiments are divided into equality and lower bound 

data. A threshold of 5% is considered for drift, such that if the maximum drift during one 

time history analysis is less than 5%, then the shear and moment data are considered as 

equality data. If an analysis produces a drift that exceeds 5%, then the maximum shear and 

moment that occurred prior to reaching the 5% drift are considered as the lower bound data 

for the shear and moment, respectively. 

 

4.2.4 Model Selection 

To develop parsimonious probabilistic demand models (i.e., with only the 

explanatory functions that are strictly needed) a model selection process is used to 

identify the important explanatory functions among the candidates presented in Table 4-
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1. A stepwise deletion procedure is responsible for the model selection. As explained in 

Section 3.3.3, starting with a comprehensive candidate form of ( , , )
k k
 x w θ , unnecessary 

terms are deleted in a stepwise manner based on the posterior statistics of model 

parameters. At each step, the term 
ki

h  whose coefficient 
ki

  has the largest posterior 

coefficient of variation (COV) is deleted. Model reduction is continued until an 

unacceptable amount of growth is seen in the value of
 v
 . 

Figure 4-1 summarizes the stepwise deletion process for seismic shear demand 

model. At each step, solid dots show the posterior COVs of the model parameters θvi  

and open circle shows the posterior mean of the standard deviation of the model
 v
 . It is 

seen that after fifteen steps, further model reduction will deteriorate the accuracy of the 

model (i.e., v  increases significantly.) Stopping at this step, the model is left with four 

terms.  

 

 

Figure 4-1. Stepwise deletion process for seismic shear demand model, where (×) indicates term to be 

removed 
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Upon carrying out the model selection process, final probabilistic seismic shear 

demand model is written as: 

     1 2 9 18
ˆ ˆ, , , , ln ln t

v v v v v v v v v v

f

kPGA
D d d

g k
     

  
            

x w Θ x w x w  (4-5) 

It is noteworthy that excluding the lower bound data, the selected model in Eq. 

(4-5) also satisfies the model selection criteria of the adjusted R
2
, Mallows’ Cp and 

Corrected Akaike’s Information Criterion (AICc) better than other possible subsets of 

explanatory functions with four terms. 

Likewise, the model selection process for seismic moment model is carried out. 

The result of the stepwise deletion process is shown in Figure 4-2. As in Figure 4-1, 

solid dots show the posterior of the model parameters θmi  and open circle shows the 

posterior mean of the model standard deviation m
  at each step. 

 

 

Figure 4-2. Stepwise deletion process for seismic moment demand model, where (×) indicates term to be 

removed 
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Figure 4-2 shows that after thirteen steps of model reduction the largest COV (for 

parameter 15θ
m ) is close in magnitude to m

  and as it is seen in the figure, further 

reduction deteriorates the quality of the model. Stopping at this step, the moment 

demand model is left with six correction terms as shown in Eq. (4-6.) 

     1 2 11

13 15 18

max

ˆ ˆ, , , , ln

ln 2 ln ln
.

m m m m m m m

H

s t
m m m m m

n s f

PGD
D d d

H

C kPGD

PGV T C k

  

     

 
     

 
    

             

x w Θ x w x w

 (4-6) 

Again, checking all possible subsets of explanatory functions with six terms, the 

selected model presented in Eq. (4-6) shows the best quality in satisfying the criteria of 

adjusted R
2
, Mallows’ Cp and AICc. 

 

4.2.5 Proposed Probabilistic Seismic Shear and Moment Demand Models 

Once the probabilistic model is selected, the unknown model parameters k
Θ  are estimated 

using a Bayesian approach following Box and Tiao (1992.) The updating rule presented in 

Eq. (3-7) is used in this section. Similar to the previous section, due to lack of prior 

information on the unknown parameters, a non-informative prior in the form of 

1( , )p     θ  (Box and Tiao, 1992) is used in the Bayesian approach. The likelihood 

function is then constructed using Eq. (3-8), employing the objective information on the 

model parameters obtained from virtual experiment data. 
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4.2.5.1 Seismic Shear Demand Model  

With the selected model presented in the Eq. (4-5), the probabilistic shear demand is 

formulated as the natural logarithm of the shear demand at the base of the tower normalized 

by the mean value of the yield shear force. As described in previous section, ˆ
y

V  is defined as 

2 2 2 2ˆˆ (3 / 4)( ) / ( )
y y t to ti to to ti ti

V f A r r r r r r    . Table 4-3 gives the posterior statistics of the 

model parameters ( , )
v v v

Θ θ . Figure 4-3 shows a comparison between measured and 

predicted shear demands based on deterministic (left) and probabilistic (right) models. The 

solid dots and open triangles represent the equality and lower bound data, respectively. The 

dashed lines in Figure 4-3(b) delimit the region within one standard deviation of the model. 

The figure clearly shows an improvement in predicting the demand when using the proposed 

probabilistic demand model rather than the deterministic model. 

 

4.2.5.2 Seismic Moment Demand Model  

Likewise, for probabilistic model presented in the Eq. (4-6), the moment demand is 

formulated as the natural logarithm of the moment demand at the tower base normalized 

by ˆˆ
y y

M f S , where S  elastic section modulus at tower base. Table 4-4 gives the 

posterior statistics of model parameters, and Figure 4-4 shows a comparison between the 

predicted moment demands versus measured demand based on the deterministic and the 

probabilistic models. Comments analogous to those made based on Figure 4-3 and are 

also applicable to the results shown in Figure 4-4. 
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Table 4-3. Posterior statistics of the parameters in the shear demand model 

 

 

 

 

 
Figure 4-3. Comparison between measured and predicted seismic shear demands based on  

(a) deterministic and (b) probabilistic models  
 

 

 

Table 4-4. Posterior statistics of the parameters in the moment demand model 

Parameter Mean 

Standard 

Deviation 

Correlation coefficient  

1m 2m 11m 13m 15m  
18m  m

1m  0.32 0.640 1       

2m  0.70 0.066 0.25 1      

11m  0.20 0.044 0.35 0.36 1     

13m  0.24 0.080 0.49 0.46 0.62 1    

15m  0.38 0.181 0.61 0.37 0.14 0.07 1   

18m  0.24 0.066 0.87 0.39 0.06 0.10 0.68 1  

m  0.45 0.033 0.02 0.13 0.04 0.04 0.05 0.03 1 
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   Lower-bound data
    Equality data

Parameter Mean 

Standard 

Deviation 

Correlation coefficient 

1v 2v 9v 18v  v  

1v  3.12 0.428 1     

2v  0.76 0.061 0.74 1    

9v  0.30 0.040 0.11 0.39 1   

18v  0.24 0.041 0.71 0.12 0.09 1  

v  0.42 0.033 0.02 0.09 0.17 0.03 1
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Figure 4-4. Comparison between measured and predicted seismic moment demands based on  

(a) deterministic and (b) probabilistic models 

 

 

4.3 Seismic Fragility Estimates for an Example Offshore Wind Turbine Support 

Structure 

Using the developed demand models the fragility of an example offshore wind turbine 

support structure is assessed. For this purpose, the configuration of a typical 5-MW offshore 

wind turbine supported by a mono-pile installed in a 20 m water depth is considered. The 

structure of interest is called NREL offshore 5-MW baseline wind turbine and its 

specifications are documented by Jonkman et al. (2009.) Important properties of 

considered wind turbine are presented in Table 3-7. 

This section defines the fragility as the conditional probability of attaining or 

exceeding a specified performance level for a given vector of w . A predictive estimate of 
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the fragility as formulated in Eqs. (3-12) and (3-13) is used, where here j y  or u  stands 

for yield and ultimate performance levels, respectively. 

The proposed damage states presented in Table 3-6 are investigated in this section 

with the exception of the serviceability performance level, given that wind turbines are not 

expected to produce power while subject to earthquake ground motions. Therefore, the two 

damage states of (I) and (TO) in the Table 3-6 are combined and a new damage state of 

(ND) is proposed for not having a significant damage in the support structure. Table 4-5 

illustrates the proposed damage states for wind turbines subject to extreme loadings from 

earthquake. Similar to the previous section, the shear capacity is defined as the shear force in 

the hollow cross section of the steel tower 
2 2 2 2(3/4)( )/ ( )v j j t to ti to to ti tiC f A r r r r r r     where, 

j
f  

is equal to the steel yield stress, y
f , for the yield limit, and to the ultimate steel stress uf , for 

the ultimate limit. The yield and ultimate stresses, y
f
 
and uf  are considered to be lognormal 

random variables with a mean 300 and 410 MPa (for a structural steel of grade S235 

according to EN 10 025 (CEN 2004) standard), respectively, and a coefficient of variation of 

10%. In addition, 
my y tC f S  is used to calculate the yield bending moment capacity. Finally, 

the ultimate bending moment capacity, muC , is considered to be lognormal random variable 

with a mean of 390.6 MN-m and a standard deviation of 39.57 MN-m. The statistics of mu
C  

are obtained using moment-curvature diagrams constructed for the tubular cross section of 

the tower base, considering the stress-strain curve of structural steel of Grade S235. Monte 

Carlo simulations are used to estimate the fragility for each failure mode, where all the 

model parameters and error terms in the developed demand models are considered as 
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random variables, in addition to
 y
f
 
and u

f    as already described.updated damage states and 

the corresponding performance levels. 

 

Table 4-5. Updated damage states and the corresponding performance levels during earthquake 

Damage state Description Performance level 

No significant damage (ND) No structural damage.
Tower base shear or 
moment exceeds yield limit

Permanently out-of-service (PO) 
Support structure yields. 
Permanent excessive 
deformations.

 

Tower base shear or 
moment exceeds ultimate 
limit

Complete (C) Support structure is unable to 
carry additional loads  

 

  

Figure 4-5 shows the predictive fragility estimates for the example offshore wind 

turbine for 1msH   and plotted as a function of the spectral acceleration aS
 
in units of g, at 

the natural period of the support structure ( 2.5nT s ) within its linear elastic range, for both 

the yield and ultimate limit states. Also the damage states are illustrated in the figure. The 

dotted, solid and dashed lines in the figure show the fragilities for cut-in, rated and cut-out 

wind speeds, respectively. As shown in the figure, the fragility at the rated wind speed is 

higher than the fragilities at the other two wind speeds due to the higher wind speed than the 

cut-in wind speed and higher operational loading than at the cut-out wind speed. However, 

the contribution of the wind loading is not significant compared to the seismic excitation 

even for small earthquakes. In addition, the fragility in shear failure mode is found to be 
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negligible compared to the bending failure mode, as expected for slender elements like wind 

turbines towers. 

Predictive fragility estimates due to ultimate limit state are also plotted as a function 

of the wind speed, for different values of spectral accelerations (Figure 4-6) and 1msH  . 

The figure again shows that changes in wind speed do not affect noticeably the probability 

of failure, especially for large earthquakes. It is also found that the effect of changes in sH  

on the probability of failure is negligible. 

 

 

 
Figure 4-5. Fragility estimates for a typical 5-MW offshore wind turbine as a function of spectral 

acceleration for both the yield and ultimate limit states 
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Figure 4-6. Fragility estimates for a typical 5-MW offshore wind turbine as a function of mean wind 

speed due to ultimate limit state 

 

 

 

 

4.4 Conclusions 

This section developed probabilistic models for shear and moment demands on the 

support structure of offshore wind turbines subject to seismic, environmental and 

operational loads. Employing an experimental design, 100 wind turbine configurations 

were generated to produce a virtual experiment database used to calibrate the 

probabilistic models. Detailed finite element analyses were conducted on the generated 

configurations accounting for the nonlinearities of the soil behavior and soil-structure 

interaction. A step-wise selection process was used to develop appropriate model forms 

and a Bayesian approach was used to assess unknown model parameters. The developed 

probabilistic models account for the relevant aleatory and epistemic uncertainties in 
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show that bending failure controls the failure of the support structure, while the shear 

failure mode is negligible. Also the fragility estimates shows that wind speeds within the 

operational range do not noticeably affect the probability of failure in case of a seismic 

excitation, especially for large earthquakes. 
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5. MULTI-HAZARD RELIABILITY ASSESSMENT OF OFFSHORE WIND 

TURBINES 

 

5.1 Introduction 

Offshore wind turbines installed extensively around the world are subject to different 

hazards (e.g., earthquake, hurricane, and typhoon) raising concerns about the reliability 

of the wind turbine support structure subject to multiple hazards. For instance, Japan is 

the world’s 13
th

 largest producer of wind power according to the World Wind Energy 

Association (Gsänger and Pitteloud 2012), despite having a considerably high 

occurrence rate of earthquakes and typhoons. Likewise, according to the National 

Renewable Energy Laboratory (Flowers 2012), California, a highly seismic region, is the 

third largest wind power producer in the nation. Furthermore, the wind industry is 

recently considering installing offshore wind farms in the south coast of the United 

States, and in particular in the Gulf of Mexico, because of the superior wind resources 

available in this region (Schwartz et al. 2010.) However, a considerably high hurricane 

occurrence rate in the Gulf of Mexico raises a new concern about the safety of wind 

turbine support structures subject to hurricane. To investigate the reliability of a wind 

turbine support structure, all possible hazards that can occur during the wind turbine’s 

life have to be considered. To this end, a probabilistic framework is needed to evaluate 

the safety of the support structure under multiple hazards and predict its annual 

probability of failure. The results can assist the wind industry decision makers choosing 

optimum design and location for future wind energy projects. In addition, the assessment 
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of the annual probability of failure of the support structures can be used for an optimal 

design of wind turbines to maximize the power production and minimize manufacturing, 

operation and maintenance cost.  

This section addresses this need by proposing a probabilistic framework to assess 

the multi-hazard reliability of offshore wind turbines. As a first step, probabilistic 

seismic demand models developed in Section 4 are updated using additional virtual 

experiment data generated for support structures subject to extreme wind loads like those 

experienced during hurricanes. The virtual experimental data are obtained by developing 

detailed 3D nonlinear FE models of wind turbines accounting for the dynamic soil-

structure interaction. The probabilistic demand models are calibrated using a Bayesian 

approach. The probabilistic models are then used to develop the fragility curves of wind 

turbines for given intensity measures of the seismic and wind loading, namely, the 

spectral acceleration aS  and the mean wind speed sW . The fragility curves and site-

specific hazard functions are then used to estimate the annual probability of failure. As 

an illustration, fragility curves and the annual probability of failure are estimated for two 

identical 5-MW offshore wind turbines one located in the Gulf of Mexico of the Texas’ 

Coast (prone to hurricanes) and one off the California’s Coast (a high seismic region.) 

The next subsection introduces the probabilistic framework to assess the multi-

hazard reliability of wind turbine support structures. Third subsection discusses the 

probabilistic formulation for existing demand models. Generation of additional 

experimental data is explained and then using Bayesian updating rule the existing 

models are updated. In the fourth subsection, the fragility estimates are presented for an 
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example offshore wind turbine support structure for given values of demand parameters, 

the mean wind speed sW  and the spectral acceleration aS . This is followed by the 

analysis of importance and sensitivity measures. Finally, the annual probabilities of 

failure are estimated for two identical wind turbines located at 1) the Gulf of Mexico of 

the Texas’ Coast (prone to hurricanes) and 2) the California’s Coast (a high seismic 

region.) 

 

5.2 Multi-hazard Assessment 

According to the total probability rule (Ang and Tang 2007), the probability of failure to 

meet a specified performance level for a component or system, 
fP , can be written as 

   fP P F f d IM
IM IM IM

 
(5-1) 

where IM vector of measures of intensity for all possible hazards, ( )f IM the joint 

probability density function (PDF) of occurrence of IM , and ( | )P F IM probability of 

failure to meet a specified performance level given the occurrence of IM .  

The focus of this study is on the two most significant hazards for offshore wind 

turbines support structures: seismic and wind. Given the intensity measures 

( , )a sS WIM , in which aS  spectral acceleration at the natural period of the wind 

turbine, and sW mean wind speed, Eq. (5-1) can be written as 

   , ,f a s a s a sP P F S W f S W dS dW IM  
(5-2)
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where ( , )
a s

P F S W  probability of failure conditioned on aS  and sW , and ( , )
a s

f S W 

joint PDF of aS  and sW . Given that the occurrence, or nonoccurrence, of earthquake 

does not affect the probability of occurrence of any particular level of wind speed and 

vice versa, aS  and sW ,  can be assumed to be statistically independent. Therefore, Eq. 

(5-2) can be written as 

     ,f a s a s a sP P F S W f S f W dS dW IM
 

(5-3) 

where ( )af S  and ( )sf W  annual marginal PDF of aS  and sW ,
 
respectively. 

 

5.2.1 Seismic Contribution to Probability of Failure 

To quantify the probability of future seismic activity at a particular location, the seismic 

hazard function, ( )
a

Q S , defined as the expected annual frequency of experiencing a 

spectral acceleration equal to aS  or greater, is used. Assuming the arrival of earthquakes 

at a site is a Poisson process (Frankel at al. 2002), ( )
a

f S , can be expressed in terms of 

( )aQ S  as 

 
     

exp
a

a a

a

dQ S
f S Q S

dS

 
      

   
(5-4) 

The United States Geological Survey (USGS) provides annualized seismic 

hazard exceedance curves, containing discrete values of ( )aQ S  for locations throughout 

the United States, based on the available information about past earthquakes, 
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deformation of the earth crust, geologic site conditions and seismic attenuation 

relationships (Frankel at al. 2002.) 

 

5.2.2 Wind Contribution to Probability of Failure 

To develop the annual PDF for wind speed, the PDF for day-to-day wind speed is 

combined with the one for extreme wind speed during hurricanes. Morgan et al. (2011) 

investigated annual probability distributions for offshore wind speeds based on statistical 

analysis of day-to-day 10-min average wind speed data. Wind speed data were recorded 

at 178 ocean buoy stations around North America, by the National Data Buoy Center 

(NDBC, 2009.) Based on Morgan et al. (2011), the Bimodal Weibull mixture 

distribution (BIW) is used to model the day-to-day wind speed. The BIW is a 

combination of two Weibull (W2) distributions and has two different modes. Using the 

BIW, the conditional PDF of
s

W  given that there is no hurricane ( | )
s

f W H  is expressed 

as 

   
1 2

1 2

1 2

1 1

1 2

1 1 2 2

exp 1 exp

b b
b b

s s s s
s b b

bW W b W W
f W H

a a a a
 

       
          
           

(5-5) 

where shape b  and scale a  parameters have subscripts corresponding to the two 

different modes,   mixing parameter, and H  indicates the event of not occurrence of 

a hurricane.  

Wang (2010) characterized the hurricane event based on the statistical analysis of 

4776 hurricanes simulated to occur in 10,000 years with landfall position assumed to 
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occur with equal probability along the length of the Texas coastline. Based on Wang 

(2010), the lognormal distribution is used to model the extreme wind speed associated to 

hurricanes. The PDF of s
W  given the occurrence of a hurricane ( | )

s
f W H  is written as 

 
2

ln1 1
exp

22

s
s

s

W
f W H

W


 

   
   

     
(5-6) 

where the location parameter   and scale parameter   are the mean and standard 

deviation of the natural logarithm of s
W , respectively. The PDF of s

W  can now be 

written as follows, using the total probability rule (Ang and Tang 2007) as 

         1s s sf W f W H P H f W H P H      
(5-7) 

where  P H  annual probability of occurrence of a hurricane. With the assumption of 

arrival of hurricane being a Poisson process,   1 exp[ ]
o

P H T   , in which  annual 

occurrence rate of hurricane and 1 year
o

T  . 

 

5.3 Probabilistic Demand Models 

In this section, available seismic demand models (developed in Section 4) are updated 

using the information obtained from additional virtual experiment data. Additional data 

are generated using finite element analyses of wind turbine support structures subject to 

extreme wind speeds in addition to earthquake. 
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5.3.1 Additional Virtual Experiment Data 

Additional virtual experiment data are generated to update the model previously 

developed in Section 4. A set of representative configurations is selected to generate the 

virtual experiments using a “space filling” experimental design technique to ensure that 

the configurations have a good coverage of the design space. See Subsection 3.2.1 for 

more details on the experimental design and the variables and their considered ranges. 

The upper limit of the range for the mean wind speed s
W  is extended to 75 m/s to 

incorporate the extreme wind velocities during hurricane. All other parameters have the 

same ranges as those considered previously Table 3-1. 

Finite element models are developed in ABAQUS to simulate the dynamic 

response of the support structure of typical offshore wind turbines, subject to different 

load cases including seismic excitations in addition to day-to-day environmental loads 

on operating and parked wind turbines, and extreme wind velocities due to hurricanes on 

parked wind turbines. 

Witcher (2005) conducted time domain simulations of wind turbine support 

structures in different load cases including continuous operation throughout the 

earthquake, emergency shutdown initiated during the earthquake and parked throughout 

the earthquake. The results showed a significant difference in the response of operating 

and parked wind turbines. He concluded that this difference is due to the absence of 

aerodynamic damping in the parked condition. Comparing the peak loads resulted from 

time domain analyses with those obtained using frequency domain procedure (based on 

building design code), Witcher (2005) showed that the results of the two methods of 
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time and frequency domain are in reasonably good match during turbine operation. 

Therefore, he stated that the aerodynamic damping experienced by an operational wind 

turbine can be close to the typical 5% value used for the design spectra in building 

codes.  However, the time domain analysis indicated an almost 80% increase in peak 

loads over the calculated building code values in the parked case due to the significantly 

lower aerodynamic damping of a parked wind turbine. Prowell et al. (2008) estimated 

the structural damping of a 65MW wind turbine in idling (parked) condition through a 

full-scale test on the wind turbine mounted on the NEES shake table at the University of 

California, San Diego. They suggested a value of 0.6% for the structural damping of a 

parked wind turbine. In another study on the seismic response of wind turbines, Ishihara 

and Sarwar (2008) suggested a structural damping of 0.5% for parked wind turbines. 

This study accounts for the aerodynamic damping of an operating wind turbine 

by considering a 5% structural damping for the steel tower. The structural damping for 

parked wind turbines is considered to be 0.5%. 

Similar to the FE models developed in previous sections, foundation 

nonlinearities are considered explicitly in defining nonlinear behavior of the soil and 

soil-structure interaction. The Mohr-Coulomb plasticity model is used to define the 

nonlinear behavior of the soil. Soil-pile interaction is modeled using “contact pair”, a 

formulation in ABAQUS to define the nonlinear contact properties of two bodies. Forces 

at the top of the tower due to the wind only for parked wind turbine and the rotation of 

the rotor in addition to the wind loads for operating wind turbine is obtained using 

simulation in FAST. The resulted time history is then used in the finite element model of 
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the support structure as an external loading in addition to wave, current and earthquake. 

Ground motion records are selected from the PEER (Pacific Earthquake Engineering 

Research Center) NGA database (1999.) The ground motion records are selected based 

on the bin approach, proposed by Shome and Cornell (1999.) Five bins are used based 

on the moment magnitude (M) and the closest distance between the record location and 

the rupture zone (R) to capture all possible characteristics of the earthquake. 

 

5.3.2 Updated Model 

The most parsimonious forms of the shear and moment demand models were selected in 

Section 4, based on the posterior statistics of the unknown model parameters, and 

presented in Eqs. (4-5) and (4-6.) A Bayesian updating approach is then used to update 

the existing shear and moment demand models following Box and Tiao (1992.) The 

updating rule presented in Eq. (3-7) is used, where the prior distribution ( )
k

p Θ  reflects the 

state of knowledge about kΘ  based on our previous experiments and The posterior 

distribution ( )
k

f Θ  incorporates both the previous information about k
Θ  included in 

( )kp Θ  and the new data included in the likelihood function ( )kL Θ . The likelihood 

function is constructed using Eq. (3-8) based on the information obtained from 

additional virtual experiment data. Where similar to previous sections, the virtual 

experiment data are divided into equality and lower bound data. A threshold of 5% is 

considered for drift, such that if the maximum drift during one time history analysis is less 

than 5%, then the shear and moment data are considered as equality data. If an analysis 
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produces a drift that exceeds 5%, then the maximum shear and moment that occurred prior 

to reaching the 5% drift are considered as the lower bound data for the shear and moment, 

respectively. 

Table 5-1 gives the updated posterior statistics of the parameters 

1 2 9 18( , , , , )
v v v v v v

    Θ  for the shear demand model. The updated statistics include the 

information content of the new additional data correspond to the extreme wind loads 

during hurricane. Figure 5-1 shows a comparison between measured and predicted shear 

demands on the support structure based on the deterministic (left) and probabilistic 

(right) models. For the probabilistic model the median predictions are shown. Original 

data used in Section 4 are shown as open circles and triangles for equality and lower 

bound data, respectively. New additional data generated for wind turbine support 

structures subject to extreme wind loads due to hurricane are shown using solid dots and 

triangles for equality and lower bound data, respectively. The dashed lines in the Figure 

5-1(b) delimit the region within one standard deviation of the model. 

The deterministic model in Figure 5-1(a) is strongly biased on the non-

conservative side, because almost all equality data and most of the lower bound data lie 

below the 1:1 line. However, the proposed probabilistic demand model corrects the bias 

as shown in Figure 5-1(b.) For a perfect model, all the equality data should be lined up 

along the 1:1 line and all the lower bound data should lie above the 1:1 line. Using the 

probabilistic model, the majority of equality data points fall within 1 standard deviation 

limits and most of lower bound data points are above the 1:1 line. 
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Table 5-1. Posterior statistics of the parameters in the shear demand model 

 

 

 

  
Figure 5-1. Measured vs. predicted shear demands based on (a) deterministic and (b) probabilistic models 

 

 

Similarly, Table 5-2 lists the updated posterior statistics of the parameters 

1 2 11 13 15 18( , , , , , , )m m m m m m m m      Θ  for the moment demand model. Figure 5-2 

presents plots of predicted versus measured moment demands based on the deterministic 

(left) and probabilistic (right) models. The same comments as in Figure 5-1 apply. It is 

noted that whereas, the deterministic model is strongly biased on the non-conservative 

side, the proposed probabilistic model corrects the bias. 
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Parameter Mean 

Standard 

Deviation 

Correlation coefficient 

1v 2v 9v 18v  v  

1v  3.05 0.480 1     

2v  0.74 0.067 0.74 1    

9v  0.26 0.044 0.15 0.41 1   

18v  0.23 0.046 0.74 0.15 0.12 1  

v  0.51 0.033 0.07 0.11 0.04 0.01 1 
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Table 5-2. Posterior statistics of the parameters in the moment demand model 

Parameter Mean 

Standard 

Deviation 

Correlation coefficient  

1m 2m 11m 13m 15m  
18m  m

1m  0.57 0.694 1       

2m  0.58 0.071 0.16 1      

11m  0.13 0.047 0.40 0.48 1     

13m  0.13 0.088 0.54 0.49 0.68 1    

15m  0.39 0.192 0.62 0.40 0.11 0.05 1   

18m  0.23 0.069 0.88 0.33 0.01 0.15 0.69 1  

m  0.52 0.034 0.01 0.09 0.02 0.01 0.05 0.03 1 

 

 

 
Figure 5-2. Measured vs. predicted moment demands based on (a) deterministic and (b) probabilistic 

models 

 

 

5.4 Illustration 

As an illustration, the reliability of a typical 5-MW wind turbine with characteristics 

identical to those for the NREL offshore 5-MW baseline wind turbine, introduced by 

Jonkman et al. (2009) is explored.  The considered wind turbine is installed in a 20 meter 
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water depth and assumed to be supported by a mono-pile foundation that is typical for 

this water depth.  Table 3-7 listed a summary of the properties of the configuration of 

interest. 

 

5.4.1 Predictive Fragility 

With the updated demand models the predictive fragility is assessed for an example 

offshore 5-MW wind turbine support structure. The fragility is defined as the conditional 

probability of exceeding a performance level for a given vector of w . A predictive estimate 

of the fragility as formulated in Eqs. (3-12) and (3-13) is used, where here j y  or u  

stands for yield and ultimate performance levels, respectively. The considered damage states 

and their corresponding performance levels are listed in Table 4-5. Similar shear and 

bending capacity as those defined in Subsection 4.3 are used in this section for yield and 

ultimate performance levels. Monte Carlo simulations are used to estimate the predictive 

fragility for the example wind turbine support structure, where all the model parameters 

are considered to be normal random variables with statistical properties presented in 

Tables 5-1 and 5-2. Also, Table 5-3 lists additional random variables in the limit state 

function and their statistical properties. 

 

Table 5-3. Distribution, mean, and COV for random variables in the limit state function 
Random variables Distribution Mean COV (%) 

yf  Lognormal 300.0 10 

u
f  Lognormal 410.0 10 

uM  Lognormal 390.6 10.13 

sC  Lognormal 109.2 30 
/ ft kk  Lognormal 0.0020 30 
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The predictive fragility estimates for the wind turbine configuration of interest 

are presented in Figure 5-3. Figure 5-3(a) presents the predictive fragility estimates 

plotted as a function of spectral acceleration a
S , at the natural period of the support 

structure ( 2.5nT s ) within its linear elastic range, for both the yield and ultimate limit 

states. The significant wave height is set to 1msH  . The dotted, solid and dashed lines 

in the figure show the fragilities for cut-in, rated and cut-out wind speeds, respectively. 

As shown in the figure, the fragility at the rated wind speed is higher than the fragilities 

at the other two wind speeds due to the higher wind speed than the cut-in wind speed and 

higher operational loading than at the cut-out wind speed. However, the contribution of 

the wind loading in the operational range of wind turbines is not significant compared to 

the seismic excitation even for small earthquakes. In addition, the fragility in shear 

failure mode is found to be negligible compared to the bending failure mode, as expected 

for slender elements like wind turbines towers. 

Predictive fragility estimates due to ultimate and yield limit states are also plotted 

as a function of the mean wind speed, for 1msH   and in absence of earthquake, 0aS   

(Figure 5-3(b).)  The figure shows how the fragility rapidly increases after the cut-out 

wind speed due to the lack of aerodynamic damping for parked (idle) wind turbine in the 

presence of high wind speeds. 
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Figure 5-3. Fragility estimates for a typical 5-MW offshore wind turbine as a function of (a) spectral 

acceleration and (b) mean wind speed for 0
a

S    

 

5.4.2 Sensitivity Measures 

A sensitivity analysis is conducted to identify to which parameter(s) the reliability of 

wind turbine support structure is most sensitive. The sensitivity measures can provide 

insight into the behavior of support structures and are useful for optimal design and 

resource allocation. Following Hohenbichler and Rackwitz (1983), the sensitivity of 

reliability index β  is defined as the gradient of β  with respect to a set of parameters g
Θ  

 1β = *,
g g gg

G
 

Θ Θ z Θ
    

(5-8) 

where ( ) ( ( ))G g u z u limit state function expressed in terms of the standard normal 

variables. Once β
g

Θ  is known, the gradient of the first-order reliability approximation 

of the failure probability is obtained using chain rule of differentiation as 
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 1 = β β
g g
p   Θ Θ

    
(5-9) 

where ( )=  standard normal probability density function.  

In this study, [ ( / ), ( ), ( ), ( ), , ]g t f s u yE k k E C E M E f PGD PGVΘ . Table 5-4 lists 

the sensitivity measures for the bending moment failure mode for both ultimate and yield 

capacity levels. Results show that increasing the tower to foundation stiffness ratio 

( / )t fk k  is the most effective way of increasing the bending moment reliability 

(reducing the probability of failure.) Also, the shear wave velocity sC  happens to be the 

second most important parameter, whose increment (increasing the soil stiffness) will 

increase the reliability of the support structure. 

 

Table 5-4. Sensitivity measures for ultimate and yield bending moment failure modes 

  ( )βc
 x  

Parameter, 
c

x  Symbol Ultimate Yield 

Mean of tower to foundation stiffness ( / )t fE k k  124.0 220.1 

Mean of shear wave velocity of soil ( )
s

E C  1.542 1.333
Mean of ultimate bending moment ( )

u
E M  0.000 0.000 

Mean of yield stress of steel ( )yE f  0.000 0.000 

Peak ground displacement PGD 0.003 0.001 

Peak ground velocity PGV 0.062 0.294 

 

 

5.4.3 Importance Measures 

Among several random variables that one may have in a limit state function, some have 

larger effect on the variance of the limit state function and thus are more important. Der 

Kiureghian and Ke (1985) presented a formulation for the measure of importance γ  as 
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T

* *

T

* *

α
α

T





u ,z

u ,z

J SD
γ

J SD     
(5-10) 

where α= unit vector at the design point directed towards the failure set, z vector of 

random variables, 
* * u ,z

J Jacobian of the probability transformation from the original 

space z  to the standard normal space u with respect to the coordinates of the design 

point *z , and finally,  SD standard deviation matrix of equivalent normal variables z  

defined by linearized inverse transformation * ** ( *)   
z ,u

z z J u u  at the design point. 

The elements of SD  are the square roots of the corresponding diagonal elements of the 

covariance matrix 
* * * ** T  

z ,u z ,u
z J J  of the variables z . 

 

Table 5-5. Importance measures for ultimate and yield bending moment failure modes 

 i  
Random Variable Symbol Ultimate Yield 

Model parameter for 
1mh  1m 0.673 0.674 

Model error /
m  m 0.500 0.501 

Model parameter for 
18mh  18m 0.421 0.419

Model parameter for 
13mh 13m 0.275 0.275 

Model parameter for 
15mh  15m 0.116 0.104

Shear wave velocity of soil sC 0.110 0.115 

Ultimate bending moment capacity uM 0.098 0.000 

Model parameter for 
11mh 11m 0.071 0.071

Tower to foundation stiffness ratio / ft kk 0.064 0.066 

Model parameter for 
2mh  2m 0.014 0.014

Standard deviation of moment model error m 0.001 0.029 

Yield stress of steel yf 0.000 0.097 

 

 

Table 5-5 shows the importance measures for the bending failure mode, for both 

ultimate and yield capacity levels, where ( , )p mz x Θ , in which ( / , , ,p t f s uk k C Mx
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, , )
y u m

f f   set of random variables in the limit state function, in addition to the model 

parameters mΘ . It is seen that in addition to the model error m , some of the model 

parameters 1m
 , 18m

  and 13m
  are also important random variables that affect the 

variance of the limit state function. On the other hand, there are random variables in the 

limit state function that are not important and one can ignore their uncertainty in fragility 

estimates without significant loss of accuracy. Therefore, vector z  is partitioned in a 

vector of constant parameters 2 11 15( / , , , , , , , , )c t f s u y u m m m mk k C M f f    z , which 

includes the point estimates of unimportant random variables at their mean values ,and a 

vector of random variables 1 18 13( , , , )p m m m m   z , so that z  can be written as 

( , )c pz z z . Reducing the number of random variables in the limit state function makes 

the computation of fragilities faster without significant loss of accuracy. Figure 5-4 

illustrates the comparison between predictive fragility by Monte Carlo simulations (solid 

line) and the first-order reliability approximation of fragility with reduced random 

variables (dotted line.) The figure shows a close match between the two fragility 

estimates.  

 

5.4.4 Annual Probability of Failure 

Once the fragilities and the annual probability density functions for seismic and wind 

hazards are available, the annual probability of failure for a wind turbine support 

structure can be estimated at any particular locations using the total probability rule (Eq. 

(5-3).) 
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Figure 5-4. Comparison between predictive fragility estimate by Monte Carlo simulations (solid lines) and 

FORM with reduced number of random variables (dotted lines) 

 

 

In this study, two locations are selected; Site I in the Gulf of Mexico, about 70 

Km east of Galveston, Texas; with Latitude of 29° 25' N and Longitude of 94° 03' W 

and prone to hurricane, and Site II in the west coast, about 90 Km west of Santa Babara, 

California; with Latitude of 34° 16' N and Longitude of 120° 42' W, a high seismic 

region. 

USGS seismic hazard exceedance curves are used for both Sites I and II. Figure 

5-5 shows a comparison between the annual PDF of spectral acceleration at the two sites 

of interest. The figure clearly shows that the annual probability of occurrence of an 

earthquake in Site II is significantly larger than in Site I. 

Day-to-day wind is modeled using the BIW distribution as presented in Eq. (5-5), 

with the distribution parameters estimated by Morgan et al. (2011) for sample ocean 

buoy stations at both Sites I and II. Table 5-6 lists the BIW distribution parameters 
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considered for the two locations.  It is noteworthy that depending on the type of buoy, 

the wind speed recorded by NDBC is measured at either 5 or 10 meters above sea level 

(Morgan et al. 2011.) However, the wind speed data at the height of turbine hub are of 

interest. To obtain the wind speed at the turbine hub height, an empirical approximation 

of wind speed profile ( )
s h

W h  is used as (DNV/Risø 2002) 

  h
s h r

r

h
W h V

H


 

  
   

(5-11) 

In which, rV wind velocity at a reference height, where a common choice for the 

reference height is 10
r

H m . The Guidelines for Design of Wind Turbines (DNV/Risø 

2002) suggests a value of 0.12   for offshore winds. Then, the probability density 

functions are update such that the cumulative density values are kept unchanged. 

 

 

Figure 5-5. Annual probability density function for spectral acceleration at Site I (dashed line) and Site II 
(solid line) 
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Table 5-6. BIW distribution parameters 

Parameter

Value 

Site I* Site II† 

1  4.455 1.694 

1  5.809 5.515 

2 2.067 4.405 

2 6.368 9.848 
  0.141 0.467 
*Buoy 42035 [26] 
†Buoy 46063 [26] 

 

 

As mentioned earlier, Wang (2010) found the lognormal distribution to provide 

the best fit for the annual PDF of gradient wind speeds during hurricane along the length 

of the Texas coastline. The gradient level is generally taken as between 500m and 

2000m. Lee and Rosowsky (2007) summarized the gradient-to-surface wind speed 

conversion factor for 10-min sustained wind speeds for different locations. They 

suggested a value of 0.65 for offshore sites. The surface wind speed is the value of wind 

velocity at 10 meters height above the ground or sea level. However, the wind speed at a 

wind turbine hub height is of interest in this study. As such, the gradient wind speed is 

converted to hub height wind speed by first bringing it down to surface level by applying 

the gradient-to-surface conversion factor and then taking it up to hub height using Eq. 

(5-11.) Finally for Site I, the lognormal distribution function presented in Eq. (5-6) is 

used for the hub height wind speed during the hurricane with location and scale 

parameters of 3.348   and 0.34  , respectively. 

The occurrence of hurricane is modeled as a Poisson process with an annual 

occurrence rate of hurricane to be 0.1689   for Site I in the Gulf of Mexico, based on 

the Historical Hurricane Tracks database at the National Oceanic and Atmospheric 
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Administration (NOAA.) NOAA provides a detailed database of hurricanes occurred 

around the Unites States. For Site II in the West Coast the occurrence rate of hurricane 

found to be 0  . Wind hazard curves are then developed using Eq. (5-7.) Figure 5-6 

shows the wind hazard curves for the two particular locations of interest. 

 

  
Figure 5-6. Annual probability density function for wind speeds at (a) Site I and (b) Site II  

 

 

Table 5-7 lists the annual probabilities of failure for the NREL offshore 5-MW 

wind turbine subject to different hazards. Table 5-7 shows that even though the 

occurrence rate of hurricane is much larger at Site I than Site II, the wind hazard alone 

happens to result in the same failure probabilities for the two sites of interest. Figure 5-

6(b) can explain the reason for the relatively high probability of failure at Site II due to 

wind hazard. The PDF of day-to-day wind speed for Site II has a considerably higher 

density around the rated wind velocity (where the wind turbine experiences its maximum 
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operational loads) compared to Site I, that has most of its PDF density at the low wind 

speeds (where the fragility is very small.) Also, with the wind turbines operating at their 

maximum rate of power production at the rated wind speed, the West Coast happens to 

be a great location candidate for an offshore wind farm with the superior wind resources 

for the power production. 

 

Table 5-7. Annual probabilities of failure 

Damage 

state 

Performance 

level 

Annual probability of failure 

Wind Hazard  Seismic Hazard  Multi-hazard 

Site I Site II  Site I Site II  Site I Site II 

       

(ND)    

 yield limit 

exceedance 

0.0131 0.0139  0.0098 0.0229  0.0143 0.0267 

   

(PO)        

 ultimate limit 

exceedance 

0.0016 0.0016  0.001 0.0033  0.0017 0.0037 

(C) 
  

         

 

 

For the case of seismic hazard in presence of day-to-day wind for operating wind 

turbine, as expected based on the seismic hazard curves, the wind turbine installed in 

Site II will have a considerably larger probability of failure than the one installed in Site 

I. Finally with the consideration of multiple hazards (wind and seismic), it is seen that 

the West Coast with significantly higher seismic risk results in an overall higher failure 

risk for the wind turbine of interest in this study. 

 

5.5 Conclusions 

A probabilistic framework is proposed to evaluate the multi-hazard structural reliability 

of offshore wind turbines. Probabilistic models were developed for shear and moment 
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demands on the support structure of wind turbines using the information obtained from 

detailed three dimensional nonlinear finite element (FE) models of the support 

structures. The FE models incorporated the aeroelastic interaction as well as the 

influence of soil-structure interaction in the dynamic response of the support structures. 

Developed demand models are then used to assess the fragilities of an example offshore 

wind turbine subject to day-to-day and extreme wind speeds in addition to earthquake. 

Finally incorporating the hazard information of two particular locations in the Unites 

States, the probability of failure is evaluated for a typical 5-MW offshore wind turbine 

subject to day-to-day and extreme wind loads during hurricane in the presence of the 

seismic risk. The results clearly show a higher failure risk for the wind turbine installed 

in the West Coast of the United States, due to high seismic risk and high probability 

density of wind speeds close to rated wind velocity. Although, with the wind turbines 

operating at their maximum rate of power production at the rated wind speed, the West 

Coast happens to be a great location candidate for an offshore wind farm with the 

superior wind resources for the power production. 
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6. PROBABILISTIC ASSESSMENT OF EXCESSIVE DRIFTS FOR OFFSHORE 

WIND TURBINES 

 

6.1 Introduction 

The rapid growth of wind power industry highlights the importance of predicting the 

cost of energy to evaluate the success of wind energy projects. The cost of energy in a 

wind energy project is the total cost of the wind farm including the cost of 

manufacturing and installation, and also operation and maintenance costs. Investigating 

the reliability of power production of a wind farm by evaluating the performance and 

serviceability of wind turbines can help ensure the success of an energy project. 

Adequate reliability can help reduce the need for costly repairs and downtime (Walford 

2006.) Excessive vibrational responses can result in adverse effects (such as the 

unavailability of power production) on the performance and serviceability of wind 

turbines. For example, excessive wind-induced vibrations at the nacelle of wind turbines 

can either affect the performance or lead to the malfunction of the acceleration-sensitive 

components and consequently interfere with the operation of wind turbines (Dueñas-

Osorio and Basu, 2008.) Displacement at the top of the structure can be represented by 

the drift response. Excessive drifts, similar to other excessive vibrational responses, can 

cause unfavorable influences on the serviceability of wind turbines (DNV-OS-J101.) 

The drift threshold for wind turbines will be specified by the manufacturer based on the 

specific design of each wind turbine. Although a drift ratio of 0.5% has been considered 

in some studies as the serviceability threshold for the drifts of wind turbine structures 
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(Lavassas et al. 2003), this value might change for different wind turbines. To this end, a 

framework independent of the value of threshold is needed to evaluate the performance 

of wind turbines operating under day-to-day loads. The results can assist the wind 

industry to predict the availability of a wind turbine for power production and 

accordingly, modify the structural design such that the expected time of staying above a 

drift threshold is limited to an acceptable level for the unavailability of power 

production. This section develops models that can predict the probability and expected 

time that the drift response of a wind turbine stays above certain thresholds for offshore 

wind turbines supported by mono-pile foundations. 

Traditional approaches to estimate the performance of wind turbines rely on 

historical wind speeds or historical wind turbine failure rates. For example, Walford 

(2006) and Tavner et al. (2007) investigated the prediction of operation and power 

production reliability of wind turbines based on historical data of failures and their 

associated costs. However, a methodology that relies on the structural vibration response 

of wind turbines will provide a more accurate estimation of their performance.  

A number of researchers (Lavassas et al., 2003; Murtagh et al., 2005) have 

proposed different models to analyze the vibration response of the support structure of 

wind turbines. Lavassas et al. (2003) studied the dynamic response of wind turbines 

using the simplified models that lumped the nacelle and rotor as a point mass at the top 

of the tower. As a result, the aeroelastic interaction is not incorporated in the responses. 

Modeling the tower and rotating blades as discretized multi-degree-of-freedom entities, 

Murtagh et al. (2005) incorporated the tower/blade interaction into the equation of 
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motion of the tower. Their results showed the exclusion of tower/blade interaction can 

considerably underestimate the response of the support structure. However with the 

considered geometry for the blades being much simpler than in reality, the results 

obtained by Murtagh et al. (2005) primarily indicate behavioral trends rather than 

realistic responses for the support structure. Furthermore, as mentioned earlier, 

aeroelastic simulators such as FAST, ADAMS, and GH Bladed were introduced to the 

wind industry for more accurate analysis of wind turbines incorporating the aeroelastic 

interaction. However, these simulators are not capable of continuous modeling of the 

nonlinear foundation behavior and the dynamic soil-structure interaction. To account for 

the dynamic soil-structure interaction, a continuous modeling of the foundation 

including the pile and the soil can be conducted using a detailed nonlinear finite element 

(FE) analysis of the support structure and the foundation. However, both developing and 

running such FE analyses can be quite expensive and time consuming. 

To explore wind turbines unavailability for power production, Dueñas-Osorio 

and Basu (2008) estimated the annual probability of failure (based on exceeding certain 

acceleration thresholds) as a measure for unavailability of typical wind turbines. They 

obtained a distribution for the acceleration response of operating wind turbines for 

various levels of wind speeds based on the probabilistic description of dynamic 

properties (damping ratio and natural frequencies) of the wind turbine. However using 

the mathematical model proposed by Murtagh et al. (2005) towards obtaining the 

coupled tower/blade response of wind turbines, results obtained by Dueñas-Osorio and 

Basu (2008) do not represent an accurate estimate for modern wind turbines. Suzuki et 
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al. (2011) investigated the progressive drift mode of failure for wind turbine moored 

systems. Also Ren et al. (2010) evaluated the motion performance of two types of wind 

turbine floating platforms with combined tension leg and mooring line support systems. 

Although, those studies are limited to floating foundations and their results cannot be 

used for other types of wind turbines with fixed support systems.  

This section develops a method to predict the probability and expected time that 

drift response of offshore wind turbines exceeds certain thresholds. To develop the 

method, an equation based on random vibration theory (Lutes and Sarkani 2003, 

Vanmarcke 2010) that depends on the mean and standard deviation of the drift response 

is used. Separate models are developed for the estimation of the mean and standard 

deviation of drift responses. To incorporate the current knowledge and facilitate the 

acceptance of the proposed models, the proposed method starts from a simple and yet 

accurate model that is also commonly used in practice, and modifies it by adding some 

correction terms. Following an approach consistent with the one used in previous 

sections, the wind turbine simulator FAST is used as the start point to estimate the 

response of the support structure. Using a combined modal and multi-body dynamics 

formulation, even though FAST provides acceptable accuracy in simulating the 

aerodynamics of the wind turbine and estimating the wind and operational loads, it still 

fails to provide accurate structural response of the wind turbine support structure. 

Correction terms are then added to incorporate the missing terms and correct for the bias 

in FAST simulation. Model parameters used in the correction terms are estimated by 

comparing the mean and standard deviation of drifts obtained from FAST models and 
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those values from corresponding detailed 3D nonlinear FE models in ABAQUS that 

properly account for the dynamic properties of the support structure and nonlinear 

behavior of the soil-structure interaction. Therefore, the developed models could provide 

more unbiased predictions than FAST because the correction terms can compensate for 

ignoring some important factors such as soil-structure interactions in FAST. In this 

section, FAST is referred to as a simplified model because of its relative simplicity in 

structural modeling compared to detailed FE models. 

This section has five subsections. After the introduction, the dynamic response of 

offshore wind turbines is explored. Then, in the third subsection, the model for 

estimating the probability and expected time of exceeding drift thresholds for offshore 

wind turbines is developed and its parameters are estimated. The fourth subsection is 

devoted to the verification of the model and the last subsection presents the summary 

and conclusions of the section. 

 

6.2 Dynamic Response of Offshore Wind Turbines 

The focus of this section is on the analysis of the vibration response of wind turbine 

support structures subject to day-to-day wind, wave, current and the loads from 

operation of the turbine. Representative configurations of typical horizontal axis offshore 

wind turbines generated in Section 3 are used in this section. Similar to Section 3, a two-

step simulation is conducted to obtain the dynamic vibration response of wind turbines. 

In the first step, the aerodynamics of the turbine is simulated using FAST. The 

operational loads on the top of the tower, resultant from FAST, are later used in a 
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detailed 3D nonlinear FE analysis conducted in ABAQUS as an external loading in 

addition to wave and current loads that are modeled separately as described in details in 

Subsection 3.2.2. The FE models, as developed and described in Section 3, properly 

account for the nonlinear soil-structure interaction by continuous modeling of the 

supporting tower, steel pile and the surrounding soil. Dynamic nonlinear analyses in the 

time domain are conducted on the FE models for calculated day-to-day wind, wave, 

current and the loads from operation of wind turbines. 

 

6.3 Development of the Model 

Following Madsen et al. (1999) and Chen et al. (1996), it is assumed that the wind 

vibration responses of structures are Gaussian stationary processes. Figure 6-1 illustrates 

the diagnostic plots for the normality assumption for the drift responses of 9 samples of 

wind turbines used in this study.  Also a Kolmogorov-Smirnov (KS) test (Kolmogorov 

1933) is conducted as a goodness of fit test to evaluate the validation of the normality 

assumption. The KS test is conducted under null hypothesis that the sample comes 

from a normal distribution and results in a p-value that is a measure of the believability 

of the null hypothesis. The KS test p-values are also presented in Figure 6-1. Plots and 

p-values presented in Figure 6-1 show that the assumption of normality is a reasonable 

assumption. 

According to Vanmarcke (2010), the probability of exceeding a threshold for a 

stationary random process is given as 

   1 XP X b F b                                                (6-1) 
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where X  is the random process, b is the threshold and ( )
X

F  represents the cumulative 

distribution of X . Also, the probability that X is below b  can be written as 

   XP X b F b                                                  (6-2) 

 

 

Figure 6-1. Diagnostic plots for normality assumption along with the p-values of Kolmogorov-Smirnov 

test (KS P-value) for the drift responses of 9 wind turbine configurations considered in experimental 

design 

 

 

Since the probabilities in Eq. (6-1) and Eq. (6-2) are mutually exclusive, the following 
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     1 X XP X b F b F b                                          (6-3) 
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where   represents the absolute value operator. Assuming the vibration response of 

wind turbines as a Gaussian stationary process, Eq. (6-3) can be expressed as follows 

  1 X X
X X

X X

b b
P X b

 
 

     
      

   
                           (6-4) 

where ( )X 
 
is the standard normal distribution and X  and X represent the mean and 

standard deviation of the responses. Then, the expected value for the time that X  

exceeds b can be written as   

1 X X
X XX b

X X

b b
E t T

 
 

                     
                             (6-5) 

where [ ]E 
 
is the expected value operator and T  is the total time of the process. Let  

denote the normalized estimated time that drift exceeds a given threshold b. This is 

evaluated as the time above the threshold over the total time of the process. Figure 6-2 

compares values of  using Eq. (6-5) with the corresponding values from the time 

history of the drifts for the models explained in the previous section. Good predictions of 

Eq. (6-5) presented in Figure 6-2 support the assumption of drift response of wind 

turbine towers being stationary Gaussian random processes. The point estimates of  X
  

and X  obtained from the time history of the drifts from ABAQUS models are used in 

Eq. (6-5) to obtain the predicted values in Figure 6-2. The accuracy of predictions of Eq. 

(6-5) depends on using accurate values for X
  and X

 . 

In practical situations, time history of drifts from detailed 3D nonlinear FE 

analyses considering soil-structure interaction are not usually available for estimation of 
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X
  and X

  of the drift response. However using the drift response time histories 

resulted from simple fixed base models (e.g., FAST models), the estimation of X  and 

X
  might be biased and inaccurate. Therefore, to provide a solution to this problem, 

models are proposed to estimate X  and X  by adding some correction terms that 

compensate for the errors that arise from using simplified models. For this purpose, the 

framework proposed by Gardoni et al. (2002) is used to develop unbiased models to 

estimate X
  and X

 as follows: 

     ,

1

ˆ ˆln ln

n

u

X X i i

i

h


  


  x                                       (6-6) 

     ,

1

ˆ ˆln ln
n

u

X X j j

j

h


  


  x                                     (6-7) 

 

 

 
Figure 6-2. Comparison between the predictions of Eq. (6-5) and corresponding measured 

values for different drift thresholds 
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where ˆ u

X  and  ˆ u

X  are unbiased estimates of X  and X , ˆ
X  and ˆ

X are the estimates 

of X
  and X

  resulted from simulations in FAST, 
,i  and , j  are parameters of the 

models,  ih x  and  jh x are dimensionless explanatory functions, n  and n  are the 

number of explanatory functions and x  is a vector of geometrical, mechanical and 

physical parameters that are expected to have influence on the responses of the structure. 

The natural logarithm transformation is used as a variance stabilization technique in Eqs. 

(6-6) and (6-7) to make sure that the residuals have constant standard deviation. 

 

6.3.1 Model Selection 

The same candidate explanatory functions as those used in Section 3 are used in this 

section, except for 2k
h   that is chosen to be the ˆln( )X  or ˆln( )X  in the developed 

models for X
  and X

 , respectively to capture possible bias in the estimates of 

corresponding parameters obtained from FAST. Table 6-1 lists the candidate explanatory 

functions.  

To develop parsimonious models, the desire is to keep only the explanatory 

functions that are strictly needed. Therefore, a model selection process is used to achieve 

a compromise between the simplicity (few correction terms) and accuracy of the model. 

The selection of candidate explanatory functions is based on the physics of the problem 

and engineering judgment. All the parameters that are thought to be ignored or not 

perfectly considered in the simplified model should be available in the candidate 

explanatory functions. For example, soil structure interaction is ignored in the 
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estimations obtained from FAST. Therefore, the ratio of the stiffness of the tower to the 

stiffness of foundation, shear wave velocity, cohesion and friction angle of the soil are 

considered as candidate explanatory functions to capture the bias in the simplified model 

due to ignoring the soil-structure interaction. If after the model selection, one of these 

explanatory functions survives in the final model, it implies that soil properties are 

important terms that are missing in the simplified model.  

 

Table 6-1. Candidate explanatory functions for the developed models for mean and standard deviation 

Explanatory function Formula Parameters 

hk1 1 k  ,   

h2 ˆln( )X   

h2 ˆln( )
X

  

hk3 ln( / )s n HW T H   

hk4 ln( )wIT   

hk5 ln( / )
s H

H H   

hk6 ln( / )p nT T   

hk7 ln( / )HRD H   

hk8 maxln( / )
s s

C C   

hk9 ln( / )
soil soil

C E   

hk10 ln[tan( )]
soil
   

hk11 ln( / )t fk k   

 

A model selection process is used to construct accurate and parsimonious models 

for the mean and standard deviation of drifts. In the absence of lower bound data, 

statistical model selection criteria including Root Mean Squared Error (RMSE), the 

adjusted R
2
, Mallows’ Cp, the Corrected Akaike’s Information Criterion (AICc) and 

Bayesian Information Criterion (BIC) (Schwarz 1978) are used as the selection criteria. 

RMSE is a commonly used measure of accuracy of the model, the adjusted R
2 

and AICc 

are two selection criteria that capture how closely the model fits the data, BIC is closely 
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related to AICc with a larger penalty term and Cp  is used to check potential overfitting of 

the data. More details about the model selection criteria used in this study can be found 

in statistical textbooks such as Burnham and Anderson (2002.) Among all possible 

models that have the same number of explanatory functions, the one with highest 

adjusted R
2
 or lowest Cp, AICc, BIC or RMSE provides the most accurate predictions. 

The advantage of this model selection method over step-wise deletion process is the 

possibility to select the “best” model with k
n   explanatory functions from a set of 

candidate models using all possible subsets of explanatory functions that have kn  

members. Selection of the number of the explanatory functions in the final forms of the 

models is then a trade-off between simplicity and accuracy of the model because 

choosing a larger number of explanatory functions might result in a more accurate but 

more complex model. To choose the optimum number of the explanatory functions, the 

value of all the selection criteria for the best models with k
n  explanatory functions is 

recorded with kn  as shown in Figures 6-3 and 6-4. Based on the presented graphs, 5 and 

4 explanatory functions are considered for the mean and standard deviation models, 

respectively. Then the parameters of the models can be estimated using a regression 

analysis. In the regression analysis, the error term is the dependent variable and those 

explanatory functions that have survived in model selection process, are considered as 

predictors. The error term is defined as the difference between mean or standard 

deviation obtained from detailed 3D nonlinear models and the corresponding values 

obtained from FAST models.  



 

119 

 

As a result, the final models for the mean and standard deviation of drifts can be 

expressed as follows:  

           ,2 ,3 ,5 ,6 ,8 max
ˆ ˆexp 1 ln ln / ln / ln / ln /u

X X s n H s H p n s sW T H H H T T C C                 
   (6-8) 

         ,2 ,3 ,5 ,6
ˆ ˆexp 1 ln ln / ln / ln /u

X X s n H s H p nW T H H H T T                        (6-9) 

Table 6-2 presents the statistical properties of the model parameters in Eqs. (6-8) 

and (6-9.) In the presence of additional field or virtual experiment data in the future, the 

estimated properties of the model parameters presented in Table 6-2 can be updated 

using a Bayesian updating rule (Ang and Tang, 2007.) 

 

 

 Figure 6-3. Values of the selection criteria versus number of explanatory functions for the mean model 

  

 

 

Figure 6-4. Values of the selection criteria versus number of explanatory functions for the standard 

deviation model 
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Table 6-2. Statistical properties of model parameters 

Parameter Mean Standard deviation 

,2  -0.215 0.052 

,3  0.096 0.043 

,5  0.364 0.069 

,6  -0.535 0.114 

,8  -0.259 0.088 

,2  -0.688 0.047 

,3  0.391 0.123 

,5  0.787 0.085 

,6  -1.282 0.155 

 

 

 
Fig 6-5. Measured versus predicted mean of the drifts based on FAST models (left) and proposed models 

(right) 

 

 

 
 

Fig 6-6. Measured versus predicted standard deviation of the drifts based on FAST models (left) and 

proposed models (right) 
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6.3.2 Model Accuracy 

Figures 6-5 and 6-6 show predicted versus measured values for the mean and standard 

deviation of the drifts, respectively. The predicted values in the left graphs of Figures 6-

5 and 6-6 are obtained from simplified models in FAST and the right graphs are plotted 

using the predictions of the proposed models presented in Eqs. (6-8) and (6-9) with the 

point estimate of the parameters at their mean values. The dashed lines in Figures 6-5(b) 

and 6-6(b) delimit the region within one standard deviation of errors for developed 

models. Figures 6-5 and 6-6 reveal that the FAST estimates of the mean and standard 

deviations of the drift response are over- and under-estimated, respectively while the 

proposed models properly correct the bias in the estimates obtained from FAST. Using 

Eq. (6-5) and with the FAST estimations of mean and standard deviations, Figure 6-7 

presents the normalized estimated time that drift response exceeds given drift ratio 

thresholds in a range of [0.1% , 1%] versus the corresponding measured values from 

accurate FE analyses.  The range of b values used is quite broad and includes the value 

of 0.5% for the drift ratio threshold that has been considered in some studies (Lavassas 

et al. 2003) as the serviceability threshold for drift of wind turbine support structures. It 

is obvious from this figure that the estimates of response obtained from FAST 

simulations do not provide a good prediction for the amount of time that drifts exceed a 

certain threshold. Figure 6-8 presents similar graphs with predicted means and standard 

deviations from proposed models in Eqs. (6-8) and (6-9.) Figure 6-8 shows that even the 

predictions for the estimated time that drifts exceeds a threshold are not perfect using the 

developed models in this section, but they are considerably less biased compared to the 
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results obtained using simplified models. To compare the errors in the predictions shown 

in Figures 6-7 and 6-8, RMSE that is a measure of the accuracy of predictions is 

calculated for the predictions presented in those figures. Table 6-3 lists the values of 

RMSE for the two cases, which confirms that using proposed models produces less error 

than using simplified model in FAST.  

 

 

 
                                                         (a)                                                                         (b) 

 

 
                                                           (c)                                                                           (d) 

 
Figure 6-7. Predicted versus measured values of  based on FAST models for drift ratio thresholds of (a) 

b=0.1%, (b) b=0.25%, (c) b=0.5% and (d) b=1% 

 

 

 

Table 6-3. RMSE values for the predictions of  

  Drift ratio threshold 

Model 0.1% 0.25% 0.5% 1% 

Simplified model in FAST 0.3 0.28 0.21 0.11 

Proposed model 0.12 0.14 0.12 0.09 
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                                                                      (a)                                                                              (b) 

 
                                                                      (c)                                                                              (d) 

 

Fig 6-8. Predicted versus measured values of  based on proposed models for drift ratio thresholds of (a) 

b=0.1%, (b) b=0.25%, (c) b=0.5% and (d) b=1% 

 

 

6.4 Verification 

To verify the developed models in this section, a new typical wind turbine configuration 

that was not included in the configurations used for model development is considered. 

For the selected wind turbine, detailed 3D nonlinear FE model in ABAQUS and the 

corresponding model in FAST are created. Table 6-4 shows the properties of the 

considered example wind turbine. 

Fig. 6-9 shows the schematic 3D curve for the probability of exceeding different 

thresholds in different wind speeds for the considered wind turbine. Fig. 6-10 represents 
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levels of wind speed, namely, the rated and cut-out wind speeds. The probability of 

exceeding a specific threshold, as shown in Fig. 6-10, increases with the wind speed up 

to the rated wind speed and after that, due to the activation of pitch control system, 

decreases suddenly and then increases again gradually with the increase of wind speed. 

 

Table 6-4. Properties of the example wind turbine considered for the verification of the developed models 

Property Value 

Rotor diameter 88.29 m 

Hub height 73.18 m 

Water depth 24.00 m 

Pile penetration 24.77 m 

Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s 

Tower steel type S355 

Tower top diameter and wall thickness 2.00 m, 0.017 m 

Tower base diameter and wall thickness 5.60 m, 0.047 m 
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Figure 6-9. Schematic 3D curve for the probability of exceeding drift ratio thresholds versus threshold 

values and wind speed for the example wind turbine 
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Figure 6-11 represents the cuts of Figure 6-9, perpendicular to those in Figure 6-

10, with the calculated probability of exceeding drift ratio thresholds for two specific 

levels of threshold (0.25% and 0.5%.) Figures 6-10 and 6-11 reveal that the proposed 

models generally provide better predictions for the studied example wind turbine.  

 

 

 

 

 
 

Figure 6-10. Probability of exceeding drift ratio thresholds versus wind speed for the example wind 

turbine 

 

 
(a)                                                                (b) 

Fig 6-11. Probability of exceeding drift ratio thresholds versus threshold values for the example wind 

turbine at (a) rated wind speed and (b) cut-out wind speed 
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6.5 Summary and Conclusion 

With the assumption that the drift responses of wind turbines subject to wind and 

wave loads are Gaussian stationary processes, this section proposed a formulation for the 

estimation of probability and the expected time that the drift responses stay above a 

threshold. For the use of the proposed formulation, the mean and standard deviation of 

drifts are required to be estimated. One method to estimate the mean and standard 

deviation of drifts is to use the point estimation of those parameters at their mean values 

using the drifts obtained from simplified models in FAST. But since simplified models 

in FAST do not consider some of the important factors that affect the drift response of 

the support structure, such as soil-structure interaction, this section developed models to 

correct for the bias in the estimation obtained from FAST. In the developed models, 

correction terms were added to the mean and standard deviation of the drifts obtained 

from FAST to capture the bias inherent in those values due to simplification. The 

parameters in the correction terms were estimated using a regression analysis on the 

error values of the drift mean and standard deviation versus selected explanatory 

functions. Error values were defined as the difference between the responses of the 

detailed 3D nonlinear FE models in ABAQUS and the responses of the simplified 

models in FAST. Explanatory functions were selected among a set of candidates using a 

model selection process. Comparison between the estimation of expected time above a 

threshold using the developed method and the exact time above the same threshold using 

detailed 3D FE models showed that the developed method provides closer predictions to 

the measured values than FAST models. Probability of exceeding two specific drift 
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thresholds at rated and cut-out wind speeds for a typical wind turbine were estimated 

using the developed method and results were compared to the corresponding results 

from detailed FE models and also FAST models. That comparison showed that the 

developed method is more successful than FAST in prediction of probability of 

exceeding drift thresholds. The merit of using the developed method is that it does not 

need to run time-consuming detailed 3D nonlinear FE models to capture the effects of 

some factors such as soil-structure interaction and can be easily used by engineers to 

estimate the expected time that the drift of a wind turbine exceeds a desired threshold. 
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7. CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

This dissertation investigated the structural reliability of offshore wind turbines. The 

focus of this work was on modern horizontal axis offshore wind turbines installed in 

water depth less than 30 meters, and supported by tubular steel tower and steel mono-

pile foundation. Probabilistic models were developed to predict the deformation, shear 

and moment demands on wind turbine support structures, and calibrated using the 

information obtained from a database of virtual experiments. Virtual experiment data are 

generated by conducting detailed three dimensional (3D) nonlinear finite element (FE) 

analyses on a suite of typical offshore wind turbines. The FE models incorporated both 

aeroelastic interaction and the influence of soil-structure interaction in the dynamic 

response of the support structures. Separate probabilistic demand models were 

developed for three operational/load conditions including: (1) operating under day-to-

day wind and wave loading; (2) operating throughout earthquake in presence of day-to-

day loads; and (3) parked under extreme wind speeds and earthquake ground motions. 

The proposed approach gives special attention to the treatment of both aleatory and 

epistemic uncertainties in predicting the demands on the support structure of wind 

turbines. Furthermore, the probabilistic models provide unbiased predictions for the 

demands on the support structures, accounting for the inherent uncertainties, including 

the statistical uncertainty (associated with the finite sample size) and the modeling errors 

(associated with the selection of the variables in the models and the model form.) The 
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developed demand models were used to assess the structural reliability of offshore wind 

turbines for specified performance levels. A probabilistic framework was then proposed 

for predicting the annual probability of structural failure of wind turbines given seismic 

and wind hazards for a specific location. Finally, the serviceability of wind turbines was 

explored in terms of wind turbines availability for power production, where the 

unavailability of wind turbine was investigated based on exceeding certain drift 

thresholds. The results of this study can be summarized as: 

 Evaluating the accuracy of prevailing approaches for the analysis of laterally 

loaded mono-pile foundations revealed that depending on the pile diameter and 

soil type, using common simple methods such as p-y method, and particularly 

modeling the pile employing one-dimensional beam-column elements may result 

in inaccurate responses. This is true in particular for the pile sizes typical of 

foundations of offshore wind turbines. 

 Fragility curves assessed for a typical 5-MW offshore wind turbine using 

developed probabilistic demand models showed that the bending mode controls 

the probability of exceeding the yield and ultimate limit states, while the shear 

failure mode was found to provide negligible contributions to the fragility. 

 The conditional probabilities of exceeding three specified performance levels 

(serviceability, yield, and ultimate) were found to increase with the average wind 

speed up to the rated wind speed. Upon reaching the rated wind speed, a control 

system is activated to limit the aerodynamic forces on the blades of the wind 

turbine and keep the power generated constant by changing the blade pitch angle. 
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The activation of the control system was found to reduce the values of the 

fragilities. 

 For the example wind turbine operating under day-to-day loads, the fragility 

estimates showed that wave loading does not noticeably affect the probability of 

failure, especially for large wind speeds. 

 The fragility estimates for the wind turbine of interest operating throughout the 

earthquake indicated that wind speeds within the wind turbines’ operational 

range do not noticeably affect the probability of failure in case of a seismic 

excitation, especially for large earthquakes. 

 Annual probability of failure assessed for two identical 5-MW offshore wind 

turbines installed in two locations: Site I to be prone to hurricane; and Site II to 

be a high seismic region indicated that a wind turbine installed in a seismic 

region like California is more vulnerable to structural failure. 

 With a high probability density of wind speeds close to rated wind velocity in 

Site II (off the California’s Coast) and given the wind turbines operating at their 

maximum rate of power production at the rated wind speed, the California’s 

Coast happens to be a great location candidate for an offshore wind farm with the 

superior wind resources for the power production. 

 

7.2 Unique Contributions 

This dissertation provided for the first time a probabilistic framework to investigate the 

structural reliability of offshore wind turbines subject to multiple hazards. The proposed 
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approach can assist the wind industry decision makers choosing optimum design and 

location for future wind energy projects. The random vibration based framework 

developed to explore the performance of wind turbines can assist the wind industry to 

predict the availability for power production and accordingly, modify the structural 

design such that the expected time of staying above a drift threshold is limited to an 

acceptable level for the unavailability of power production. 

 

7.3 Future Work 

Some suggestions for future work based on the progress of the research here include:  

 Using the developed probabilistic framework to assess the performance of wind 

farms. In this case, the developed demand models in this dissertation can be used 

for each individual wind turbine and then the probability of failure for the wind 

farm can be estimated using system reliability methods that include spatial 

correlation factors. 

 Updating the developed probabilistic demand models using additional data to be 

generated considering other types of hazards such as high waves, storm surge, 

tornadoes, typhoons and tsunamis. Such models can provide more 

comprehensive predictions for multi-hazard reliability of wind turbines. 

 Developing same probabilistic models for offshore wind turbines supported with 

other types of foundations such as tripods and floating foundations, as the wind 

industry is extending the wind farm projects to deeper waters because of the 

superior wind resources that are available farther from the coast.  
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