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Abstract

Matrix factorization algorithms are frequently used in the ma-
chine learning community to find low dimensional represen-
tations of data. We introduce a novel generative Bayesian
probabilistic model for unsupervised matrix and tensor fac-
torization. The model consists of several interacting LDA
models, one for each modality. We describe an efficient col-
lapsed Gibbs sampler for inference. We also derive the non-
parametric form of the model where interacting LDA mod-
els are replaced with interacting HDP models. Experiments
demonstrate that the model is useful for prediction of missing
data with two or more modalities as well as learning the latent
structure in the data.

Introduction
Matrix factorization refers to the problem of representing a
given input matrix as the product of two lower rank matri-
ces. In this paper we focus on Matrix factorization for the
purpose of learning the latent or hidden structure of the data
and prediction of missing elements of the input matrix. Col-
laborative filtering is an example of a problem where Ma-
trix factorization has been applied to achieve these goals. In
Collaborative filtering we assume a set of N users 1,...,N, a
set of M items 1,...,M, and a set of V discrete rating values
1,...,V. For example we might have N movie patrons (users)
and M movies, for which we have sparse data on how some
users rated some movies. We can represent this data as a
matrix X with N rows and M columns most of which are
unknown. Our goal may be to predict the missing values of
X, (i.e. how much a user will enjoy a movie they have not
seen), or we may want to find groups of users with similar
tastes or movies with similar themes. If we factor X into the
product ofUWV T we can generate values for the unknown
elements of the input data. Furthermore, if each row of U is
a reduced dimensionality description of a user, and each row
of V is a reduced dimensionality representation of a movie,
we may learn hidden structure in the data by examining the
rows of U and V.

Non probabilistic models for Matrix factorization such as
NMF and SVD have been applied to collaborative filtering
and work well for predicting missing values, or classifica-
tion based on the low rank representation. However, gen-
erative probabilistic models have a number of advantages
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that these methods lack such as predictivedistributionsfrom
which confidence intervals can be inferred, the possibility to
include prior knowledge into the generative process and a
principled framework to select model structure. Moreover,
the inferred latent structure is directly tied to the generative
process and therefore often easy to interpret.

Probabilistic Models such as PLSA and their Bayesian
Extensions such as LDA (Blei, Ng, & Jordan 2003), have
been proposed as text models in the bag-of-words represen-
tation. These models have the benefit of learning a latent
structure for the data and providing a probability distribu-
tion for the missing data predictions. Extensions of PLSA
(Hofmann 2004) and LDA (Marlin 2003) to the collabora-
tive filtering case have also been proposed. However, using
movie ratings as an example, these models treat users and
movies differently. In particular, they discover hidden struc-
ture for users but not for movies.

Our model fits into the class of models known as “block-
models” (Airoldiet al. 2008). The parametric, two modality
version of our model, Bi-LDA, is similar to (Airoldiet al.
2008) with multinomial instead of Bernoulli mixture com-
ponents. The extension to nonparametric methods has also
been considered before with other blockmodels (Kempet al.
2006) and (Mansinghkaet al. 2006). However these non-
parametric block models have objects (users, movies) be-
longing to only a single group. In our model objects can
belong to several groups (i.e. one for each rating).

(Meedset al. 2007) is another Bayesian matrix factor-
ization method which does treat two modalities symmetri-
cally but assumes a different structure for the data. They
use a ’factorial learning’ model that encourages a represen-
tation where an object is described by a diverse set of fea-
tures. Our model on the other hand encourages a succinct
representation where an object belongs to few groups akin
to soft multi-modality clustering. Specifically, in our model
we have that the more an object belongs to one group, the
less it belongs to other groups. Another essential difference
is that our model combines factors/topics in the probability
domain, while the model of (Meedset al. 2007) combines
factors in the log-probability domain.

Bi-LDA.
Bi-LDA consists of two interacting LDA models, one LDA
model for the movie patrons (users) and one for the movies.
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LDA is a Bayesian generative model originally proposed for
text modeling where documents are represented as a vector
of word counts. LDA has the following generative model for
words and documents. For each each ofN words in docu-
mentd, sample a topiczn ∼ Multinomial(πd) then sample
a wordwn ∼ p(wn|zn, φzn

). π andφ are given Dirichlet
priors to complete the model.

We can naively apply LDA to movie ratings by ignor-
ing users and treating movies as documents and ratings as
words. In the same way we could ignore movies and treat
users as documents and movies as words. However, unlike
in documents where LDA successfully discovers topics, be-
cause we only have a small vocabulary of ratings, we are
unlikely to discover interesting groups of movie or user rat-
ing patterns.

Bi-LDA treats users and movies symmetrically, learning
both groups of users and groups of movies. In Bi-LDA rat-
ings are generated in the following way:

1. ChooseJ × K distributions over ratingsφm
jk ∼ Dir(β)

2. Choose a distribution over K user groups for each user
πuser

u ∼ Dir(αuser)

3. Choose a distribution over J movie groups for each movie
πmovie

m ∼ Dir(αmovie)

4. For each movie-user pair (mu)

(a) Choose a user groupzuser
mu ∼ Multinomial(πuser

u )

(b) Choose a movie groupzmovie
mu ∼ Multinomial(πmovie

m )

(c) Choose a rating rmu ∼
p(rmu|z

user
mu , zmovie

mu , φm
zmovie

mu
,zuser

mu

)

Φjk is the distribution over values1...V for clusterj, k
and has a Dirichlet prior with parameterβ. πmovies

m and
πusers

u are distributions over movie and user groups with
Dirchlet priors using parametersαmovies, αusers respec-
tively. We also introduce indicator variableszmovies

um and
zusers

um for each modality representing the group chosen for
each movie-user pair. Sozmovie

um represents the group that
moviem picked for the rating given by useru. Xmu is the
rating observed for useru and moviem. To reduce clutter
m, u will be used instead ofmovie, user in the superscript
to indicate the modality (πu

u ≡ πuser
u )

Putting everything together we obtain the joint distribu-
tion for the Bi-LDA model.

P (X, zm, zu,Φ, πm, πu) = (1)

P (X |zm, zu,Φ)P (Φ|β) P (zm|πm) ×

P (zu|πu) P (πm|αm)P (πu|αu)

Where bold variables represent the collection of individ-
ual variables,zm ≡ {zm

11, z
m
12, .., z

m
UM} (U is the number of

users, andM is the number of movies). Now our goal is to
perform inference on (1) to learn the posterior distribution
of {zm, zu} and other variables of interest given the input
data.

Gibbs Sampling
Although exact inference is intractable in Bi-LDA as it is
in LDA, we can derive an efficient collapsed Gibbs sampler

analogous to the one derived for LDA (Griffiths & Steyvers
2002). If we then run the Gibbs sampler long enough, we
will produce samples from the correct posterior distribu-
tion which we can use for inference. The basic idea is to
analytically marginalize out all the conjugate distributions
Φ, πu, πm in (1) and obtain an expression for the joint prob-
ability P (X, zm, zu). From this joint probability one can
compute the conditional distributions necessary for Gibbs
sampling.

We will need the following counts:Nuk =
∑

m I[zu
um =

k], Nmj =
∑

u I[zm
um = j] andNv

jk =
∑

um I[Xmu =

v]I[zm
mu = j]I[zu

mu = k]. WhereNv
jk represents the num-

ber of entries in the entire data-array that are assigned to
user factork and movie factorj, for which the rating has the
valuev. Nuk is the number of ratings for useru assigned
to factork. Nmj is the number of ratings for moviem as-
signed to factorj. AlsoNjk =

∑

v Nv
jk. We will use the su-

perscript¬(um) to denote that data-entry(um) is subtracted
from the counts. In terms of these we find the following
conditional distribution for movie indicator variablesz

m,

P (zm
um = j|z\zm

um, X) ∝
(

N
v,¬(um)
jk + βv

N
¬(um)
jk + β

)

(

N
¬(um)
mj +

αm

J

)

(2)

whereJ is the number of movie factors,Xum = v, zu
um = k

andβ =
∑

v βv. The conditional distribution is the same for
the user indicator variables with the role of user and movie
reversed. The Gibbs sampler thus cycles through the indi-
cator variableszm

um, zu
um∀u, m. Ratings are conditionally

independent givenΦ so we can marginalize out unobserved
ratings from the model. The Gibbs sampler therefore only
scans over the observed entries in the matrixX .

Prediction
In a typical collaborative filtering scenario the product-
consumer rating matrix is very sparse. In the movie user
example, for each user the data will contain ratings for only
a small fraction of the movies. One task is to estimate the
ratings for movies the user has not seen. To make predic-
tions, once converged we collect samples from the Markov
chain. Given a single sample from the chain forz we start
by calculating a mean estimate forΦjk, πm

m , πu
u

Φjk[v] =
Nv

jk + βv

Njk + β
πm

m [j] =
Nmj + αm/J
∑

j Nmj + αm

πu
u[k] =

Nuk + αu/K
∑

k Nuk + αu

(3)

Then we calculate the expected value ofXum

E(Xmu) =
∑

j,k

(

∑

v

v Φjk[v])

)

πm
m [j]πu

u [k].

To see the connection with matrix factorization define
Φjk =

∑

v vΦjk[v] as the core matrix,U = πu and
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V = πm. ThenE(Xmu) is given by the matrix multipli-
cation

X ∼ UΦV t

It may also be useful to estimate how confident we should
be in the predicted valueXum. The distribution ofXum is
multinomial (4),

P (Xmu = v|Φjk, πm
m , πu

u) =
∑

j,k

Φjk[v]πm
m [j]πu

u [k] (4)

so it’s variance can easily be calculated.
In the previous calculations for the predicted value of

Xmu, we used just a single sample. We would like to take
many samples from the chain and use them to find estimates
of Φjk, πm

m , πu
u marginalized overz. However, there may

be multiple equivalent modes of the distribution where the
assignment variablesz have different values which would
cause the average of equations (3) calculated over sam-
ples from different modes to be incorrect. Instead we can
marginalize overz implicitly by averaging over predictions
from many Gibbs iterations. CallΦs, πm

s andπu
s the mean

estimates ofΦ , πm, πu based on a single samplezs We
initialize X = 0. After scan number “s” through the data-
matrix we update our average as follows,

X̄ →
s − 1

s
X̄ +

1

s
Φs

∏

m

πm
s

where we suppressed summations to avoid clutter. We find
this online averaging results in a significant improvement in
prediction accuracy.

Bi-LDA Experiments
Netflix
In these experiments we evaluate Bi-LDA on the Netflix
movie ratings dataset. The Netflix dataset consists of user-
movie ratings provided by the Netflix corporation as part
of a data-mining contest. The input data is movie-user rat-
ing pairs where the rating can take integer values 1 to 5
(Xmovie,user ∈ 1, 2, 3, 4, 5). We use the Netflix training
dataset of approximately 100 million ratings for our train-
ing data and 10% of the Netflix probe dataset for our held
out test data. We use Root Mean Squared Error (RMSE) to
measure the prediction performance on the test data. Us-
ing 50 user groups and 500 movie groups we ran the Gibbs
sampler for 1600 epochs (an epoch is resampling all the vari-
ables once). The parametersαm, αu, β were set to 1. The
resulting RMSE on the test data set was .933.

Methods focused on the best RMSE for the Netflix dataset
have achieved a better RMSE on the probe set, such as .9089
using an ensemble of methods (Takacset al. 2007). How-
ever, Bi-LDA offers the advantage of a distribution for the
predictions. In figure 1(top) we show a histogram of the av-
erage RMSE values binned and ordered by variance. When
we compare this with the percentage of predictions falling
in those variance bins, we may conclude that we can clas-
sify 90% of the data with an RMSE of .9 and 40% with an
RMSE of .75. Ordering the prediction by variance would
for example, enable a company to target the most interested
customers.
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Figure 1:Top: The RMSE of predictions binned by their predicted
variance. The first bar is predictions with variance less then .25, the
second bar is the RMSE of predictions with variance between .25
and .5, and so on by increments of .25. Bottom: The percentage of
predictions that fall within each bin.

Multi-LDA.
In this section we extend the model to more then two modal-
ities. For example, we may want to consider the release date
of the movie to learn if there was a shift in the movie groups
users preferred over the years. Although it is not difficult to
extend Bi-LDA to Multi-LDA, we introduced Bi-LDA first
because it is the most common case and the description of
Multi-LDA involves bookkeeping that clutters the descrip-
tion of the model.

In order to make the transition to Multi-LDA we need
to replace the two modalities user-movie with a list of
modalities 1..M. Thus instead ofπuser andπmovie we have
πm, m ∈ 1...M . To index the observations associated with
the combination of modalities we replacem, u with i1..iM .

In Bi-LDA movie and user groups were indexed byj and
k, in Multi-LDA j andk are replaced byj1..jM . For in-
stancez1

i1..iM
= j1 tells us that for modality 1 and data item

i1..iM groupj1 is assigned. Also,Φj1..jM
[v] is the probabil-

ity of valuev for the cluster identified by the factorsj1..jM .
Thus the equation for the Bi-LDA model 1 becomes the fol-
lowing for the Multi-LDA model

P (X, {zm},Φ, {πm}) =

P (X |{zm},Φ)P (Φ|β)
∏

m

P (zm|πm) P (πm|αm)

The conditional distribution for samplingz becomes

P (zm
i1..iM

= jm|z\zm
i1..iM

, X) ∝
(

N
v,¬(i1..iM)
j1..jM

+ βv

N
¬(i1..iM )
j1..jM

+ β

)

(

N
¬(i1..iM )
j1..jM

+
αm

J

)

WhereXi1..iM
= v andzm′

i1..iM
= jm′ ∀m′\m.
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Bi-HDP
One consideration when applying the Multi-LDA model to a
new data set, is how to choose the number of groups for each
modality. Nonparametric Bayesian models offer an elegant
solution, providing a prior over possible partitions of each
modality into groups.

Using the movie ratings example again, we note that if we
hold the assignment variables for the movie modality con-
stant, inference in the user-branch is the same as inference
in an LDA model. This observation suggests an easy proce-
dure to take the infinite limit: replace each LDA branch with
the nonparametric version of LDA, the Hierarchical Dirich-
let Process (HDP) (Tehet al. 2006).

HDP introduces aroot pool of groups. Each movie draws
a distribution over groups,πmovie

m using theroot distribution
as a prior. Starting with the finite version of this extended
model withJ movie groups andK user groups we replace
the distribution forπm, πu in the Bi-LDA model with the
following: τm ∼ Dir(γ/J, ..., γ/J), πm

m ∼ Dir(αmτm),
τu ∼ Dir(γ/K, ..., γ/K), πu

u ∼ Dir(αuτu). The rest of the
model remains the same as in Bi-LDA.

We use the results from (Tehet al. 2006) to take the limit
asJ, K → ∞ and get the nonparametric version of Bi-LDA,
Bi-HDP.

For inference we use the direct assignment method of
Gibbs sampling for a HDP distribution. Unlike in Bi-LDA
and Multi-LDA where all variables other thenz, X were
marginalized over, we keepτu, τm.

The equations for the conditional probability ofz (the
user and movie group assignments for a rating) are the fol-
lowing:

P (zm
um = j|z\zm

um, τ ) ∝ (αmτm
j + N

¬(um)
mj ) ×

(

N
v,¬(um)
jk + βv

N
¬(um)
jk + β

)

P (zu
um = k|z\zu

um, τ ) ∝ (αuτu
k + N

¬(um)
uk ) ×

(

N
v,¬(um)
jk + βv

N
¬(um)
jk + β

)

The key difference between these equations and the finite
case (2), is thatτm andτu are distributions over J+1 and
K+1 possible groups. If there currently exist K user groups,
thenαuτu

(K+1) is proportional to the accumulated probabil-
ity of the infinite pool of ’empty’ clusters. The same holds
true for the movies. At every sampling step there is the pos-
sibility of choosing a new group from the countably infinite
pool of empty groups. In this way the Gibbs sampler sam-
ples over the number of groups or if we make the connection
to Matrix factorization again, the rank of the matrix decom-
position. We must also sampleτm, τu the details of which
are omitted for space.

Although with the transition to Bi-HDP we have elim-
inated the need to choose the number of user and movie
groups, we still have the parametersαm, γm, αu, γu to
choose. Fortunately we can also sample these parameters us-
ing the auxiliary variable trick explained in (Tehet al. 2006).

Again we omit the detail for space. The Gibbs sampler thus
alternates sampling the assignment variables{zm, zu} with
αm, αu, γm, γu, τm, τu. This is guaranteed to converge to
the equilibrium distribution of the Bi-HDP model.

Finally, We can again extend Bi-HDP to Multi-HDP in
the same way that we extended Bi-LDA to Multi-LDA.

Discussion
We have introduced a novel model for nonparametric
Bayesian tensor factorization. The model has several advan-
tages. First, it provides a full distribution over predictions
for missing data. In collaborative filtering experiments we
show we can use the variance for a prediction’s distribution
to reliably order the predictions by there accuracy. Second,
the model can infer structure in multiple modalities concur-
rently. Third, the model infers the rank of the matrix/tensor
decomposition and only requires a few hyper-parameters.

Throughout our description of the model, we use a multi-
nomial distribution, Multinomial(φj1..jm

), for a data value.
However, the model works with other distributions with a
conjugate prior, such as normal, with little modification.
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