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ABSTRACT

GPU (Graphics Processing Unit) computing is one of the most pop-
ular accelerating methods for various high-performance computing
applications. For scientific computations based on multi-physical
phenomena, however, a single device solution on a GPU is insuf-
ficient, where the single timescale or degree of parallelism is not
simply supported by a simple GPU-only solution. We have been re-
searching a combination of a GPU and FPGA (Field Programmable
Gate Array) for such complex physical simulations. The most chal-
lenging issue is how to program these multiple devices using a
single code.

OneAP], recently provided by Intel, is a programming paradigm
supporting such a solution on a single language platform using
DPC++ based on SYCL 2020. However, there are no practical ap-
plications utilizing its full features or supporting heterogeneous
multi-device programming to demonstrate its potential capability.
In this study, we present the implementation and performance eval-
uation of our astrophysics code ARGOT used to apply the oneAPI
solution with a GPU and an FPGA. To realize our concept of Cooper-
ative Heterogeneous Acceleration by Reconfigurable Multidevices,
also known as CHARM, as a type of next-generation accelerated
supercomputing for complex multi-physical simulations, this study
was conducted on our multi-heterogeneous accelerated cluster ma-
chine running at the University of Tsukuba.

Through the research, we found that current oneAPI framework
is effective not only for its typical programming by DPC++ but also
for utilizing traditionally developed applications coded by several
other languages such as CUDA or OpenCL to support multiple
types of accelerators. As an example of real application, we success-
fully implemented and executed an early stage universe simulation
by fundamental astrophysics code to utilize both GPU and FPGA
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effectively. In this paper, we demonstrate the actual procedure for
this method to program multi-device acceleration over oneAPL
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1 INTRODUCTION

Accelerators are one of the most important technologies driving
modern HPC (High-Performance Computing) from the perspec-
tive of performance and power-consumption. They are particularly
important on large-scale systems with a number of computation
nodes, and have been top machines on the TOP500 List [9]. Thus
far, the GPU (Graphics Processing unit) has been the most repre-
sentative accelerator owing to its SIMD base operation supporting
a large FLOPS under a simple operation, as well as its high affinity
to high-performance memory such as HBM2 based on its type of
calculation operation. NVIDIA Tesla A100 [5] provides a theoretical
peak performance of up to 9.7 TFLOPS with double precision (FP64)
and 2.039 TB/s of theoretical memory bandwidth. Although recent
GPUs have mainly focused on Al or deep learning applications,
they are still the strongest accelerators used in traditional HPC ap-
plications such as climate, biomedical, astrophysics, and quantum
physics modeling.

In addition to the excellent features for HPC, however, GPU
computing is based on a relatively simple execution model with
SIMD-style computations where a large number of regular compu-
tations are required to utilize its high performance potential. For
instance, most of the Linpack benchmark results for large-scale
GPU clusters have achieved approximately 50% of the theoretical
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Table 1: Acceleration devices

Device [ GPU [ FPGA |
Parallelism SIMD Pipeline
M Strong Weak
cmory (large HBM2) (DDR and small HBM)
. Weak Strong
Conditional branch (true/false part run sequentially) (true/false part run in parallel)
. Weak
Lower Parallelism (most of core goes to rest) Strong
Inter-node Weak Strong
Communication (by CPU interconnect) (own optical link)

peak performance because the linear algebraic computations ap-
plied are quite suitable for the nature of GPU computing. However,
achieving an actual sustained performance on real applications is
difficult owing to various limitations, including the following:

e an insufficient number of floating-point operations in the
complete codes,

e irregular computational patterns inhibited based on the branch

conditions,
e or frequent communications between computational nodes,
forcing a switching between the CPU and GPU execution.

In addition to their relatively low programmability, these are im-
portant issues in the application of GPUs for various applications.

By contrast, the FPGA (Field Programmable Gate Array) is at-
tractive as a new type of accelerator for HPC applications, and is
a fully reconfigurable processor allowing a rewriting of the inner
circuit according to the application. The benefits of this device are
as follows:

e It is optimizable for computational applications.

o It is vertically parallelizable in a pipeline manner.

e The optimized performance based on the power consump-
tion can exceed that of a GPU.

e Recent high-end FPGAs enable a direct communication be-
tween FPGA devices using high-speed optical links.

However, an FPGA also has several disadvantages for HPC use,
including the following:

e The HDL (Hardware Description Language) is difficult to
program for general application users.

o A long compilation time (usually from several to more than
10 h) prevents the productivity of the codes.

o Hardware resources (logic elements and memory devices) are
limited because they cannot be reused in different locations
within a large code unlike with an ordinary CPU or GPU.

The recent high-end FPGA for HPC provides much larger hard-
ware resources and memory capacity, which decreases some of the
weaknesses described above.

Herein, we focus on the complementary characteristics of both
a GPU and an FPGA (Table 1). Thus, we have been researching
ways to couple these devices together on a computational node
for use in a large-scale cluster system, achieving a 360-degree type
system that will allow each device to compensate the other for var-
ious types of HPC computing. We have been studying this concept,
which we call CHARM (Cooperative Heterogeneous Acceleration
with Reconfigurable Multidevices), as shown inFig. 1. Accelerators
such as GPUs are used for coarse-grained parallel applications,
whereas multiple FPGAs connected by a high-speed interconnect
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Figure 1: CHARM: Cooperative Heterogeneous Acceleration
with Reconfigurable Multidevices
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Figure 2: Complicated simulation with multi-physical phe-
nomena

autonomously conduct communication and computations in areas
where CPUs/GPUs are weak. We consider this concept to be partic-
ularly applicable to complicated computational simulations based
on multi-physical phenomena. In advanced physics and chemistry,
the target physics is not simple and we need to combine several
physical phenomena in the target problem, as shown in Fig. 2.

The platform used for our concept is based on a complex com-
putational node with CPUs, GPUs, and FPGAs connected by an
intra-node PCle switch [1]. Recent CPUs are equipped with a num-
ber of PCle lanes (gen3 or gen4), where multiple devices can be
easily connected. However, we need additional FPGAs along with
multiple GPUs on a single node. Thus, we may need external PCle
switches to sufficiently enlarge the number of PCle lanes and sup-
port the combined use of multiple GPUs and FPGAs. Of course,
another set of PCle lanes is required for an interconnection network
such as InfiniBand.

Although the hardware construction is relatively easy owing to
the generality of PCle to connect all devices, the program coding
is quite difficult for application users. We have been constructing
a uniform programming environment to apply OpenACC [8] to
cover both types of accelerators with multiple background com-
pilers [20]. Another recent approach has been the use of oneAPI
[6], provided by Intel, for supporting multiple accelerators in a
single programming framework, including the operation control
over multiple devices and the data transfer among such devices
with interoperability. In the oneAPI framework, for applicability to
various accelerating devices including a GPU or an FPGA, a code is
written in DPC++ based on SYCL 2020.

However, there is a large stock of codes by different languages,
particularly for GPUs, such as CUDA (C/C++), CUDA Fortran,
OpenCL, or OpenMP. OneAPI is also designed to involve such codes
described in different languages to invoke appropriate backend com-
pilers. Moreover, for certain hardware platforms, it is possible to
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(a) ARGOT code: radiation transfer simulation

Figure 3: (a) Overview of the ARGOT code and (b) how to
accelerate it using the CHARM concept

even include compiled binary codes in the oneAPI framework. We
focus on this oneAPI feature of utilizing traditional codes written
for multiple devices to replace the complicated coding in a sin-
gle manner for computation kernel execution, event queuing, data
movement, and total control under the host CPU. In this study, we
describe how to implement our CHARM concept on the oneAPI
framework and apply it to our already running code for computa-
tional astrophysics.

2 ARGOT: RADIATIVE TRANSFER
SIMULATION CODE FOR ASTROPHYSICS

ARGOT is an astrophysics simulation code developed in our orga-
nization for the simulation of how the first objects were generated
in the early stage of the universe. As shown in Fig. 3 (a), two al-
gorithms are combined to solve the radiative transfer problems:
the ARGOT algorithm [17], which computes the radiative transfer
from the point sources, and the ART algorithm [18], which com-
putes the radiative transfer from sources spreading out within the
target space. To accelerate the ARGOT code, we run the ARGOT
algorithm on GPUs and run the ART algorithm on FPGAs sepa-
rately, as shown in Fig. 3 (b). In the next section, we provide a brief
description of the two algorithms.

2.1 ARGOT algorithm

To solve the radiative transfer from point radiation sources, a com-
putation of the optical depth between each pair of a point radiation
source and a target mesh grid, that is, the end point of each light
ray (see Fig. 4 (a)), is necessary. Assuming that the number of mesh
grids is constant, the computational complexity is proportional to
the number of point radiation sources. To address this, the ARGOT
algorithm builds an oct-tree data structure for the distribution of
radiation sources, as shown in Fig. 4 (b). A cubic computational
domain is hierarchically subdivided into eight cubic cells until each
cell contains only one radiation source, or the size of a cell becomes
sufficiently small compared to that of the computational domain. In
other words, the sources in a distant tree node can be treated as a
single luminous source, and the effective number of point radiation
sources is reduced from N to logN. When targeting a mesh grid,
for example, a target mesh grid in Fig. 4 (b), the photon flux coming
from each radiation source at the target mesh grids is given by

—7(v)
fin =20

where L(v) and 7(v) represent the intrinsic luminosity and optical
depth for a given frequency v, respectively. In addition, 7(v) is given

1)
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t(v) = a(v) / n(x)dl = o(v) Z n(x1)Al @)
L

where n(x) is the number density of the gas molecules that absorb

light.

Fig. 4 (c) shows how to parallelize the ARGOT algorithm. This
parallelized technique is called “Node Parallelization.” It decom-
poses the simulation volume evenly along each direction. Light
rays are divided by boundaries of parallel domains into several “ray
segments,” and a computation of the optical depths of the assigned
ray segments in each parallel domain is conducted. In the GPU
simulations, this computation was conducted concurrently on the
GPUs. Subsequently, a sum reduction of the optical depths of each
ray segment to their target mesh grids was applied. However, in
this study, the ARGOT code runs on a single node, and we do not
use this parallelization technique. In this case, the number of ray
segments is treated as the number of light rays. The radiative trans-
fer for each ray is assigned to each CUDA thread of the GPU, and
each computation is then conducted in parallel.

2.2 ART algorithm

To solve the radiation transfer from spatially diffuse sources, the
ART algorithm is used, which is based on a ray-tracing method
in a 3D space split into meshes. The computation part of the ART
algorithm accounts for more than 90% of the ARGOT code; thus,
accelerating the ART algorithm directly results in the performance
improvement of the ARGOT code. As shown in Fig. 5, multiple
incident rays come from a boundary and move in a straight direction
parallel to each other, without any reflection or refraction. The ART
algorithm solves a radiation transfer equation along parallel light
rays starting from one edge to another of the computational volume,
using the following equation:

¥ (R) = I ()™ + S, (1 — e™27)

®)

This calculation is conducted every time the ray passes through
a mesh grid. For a given incoming radiation intensity I'* along
the direction 1, the outgoing radiation intensity I9%! after pass-
ing through a path length AL of a single mesh is computed by the
above integrating equation, where A7 is the optical depth of the
path length AL (i.e., At = kA7), and S, and k, are the source
function and the absorption coefficient of the mesh grid, respec-
tively. The direction (angle) of the ray was computed using the
HEALPix algorithm [13]. The number of meshes depends on the
configuration of the target problem. There will be between 1003
and 1000 meshes in our target problems. The number of ray angles
also depends on the problem size. The number will be at least 768,
for which the resolution parameter Ny;4, = 8 in HEALPix.

Because the ART method uses ray tracing, the computational
order within a ray must be sequential, whereas computations for
different rays can be conducted in parallel because no two rays are
computationally dependent on each other. However, implementing
the ART method on a SIMD-like architecture is problematic in two
ways.

First, because the memory access pattern of the mesh data varies
depending on the ray direction, hundreds or thousands of different
patterns are possible. In some cases, the computation of multiple
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Figure 4: (a) Schematic illustration of the ray-tracing method for the radiation emitted by a point radiation source in the
two-dimensional mesh grids, (b) a way to solve it using the ARGOT algorithm, and (c) the parallelized ARGOT algorithm
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Figure 5: Ray tracing method used in the ART method. The
arrows and yellow clouds show the rays and gas used to com-
pute the reactions, respectively.

ray interactions in a SIMD manner requires the mesh data to be
accessed in non-continuous locations in memory, which causes a
low cache hit ratio on the CPU and a long latency in the GPU.

Second, the integration of mesh data resulting from two rays
that are close to each other will cause a conflict. When multiple
light rays pass through shaded mesh grids, as shown in Fig. 5,
the physical quantities in those mesh grids must be incremented
in an atomic manner. However, the atomic operation itself has
a certain overhead. If a large number of threads conduct atomic
operations simultaneously, many contentions may occur, and the
processing speed may be significantly reduced. The number of
atomic operations is cubically proportional to the size N of one
side of the mesh, that is, O(N3). To avoid this atomic operation, the
method proposed in [18] does not compute the neighboring rays
simultaneously, which means that ray tracing along the red and
blue light rays is separately performed as shown in Fig. 5. However,
this method further exacerbates the memory access problems in the
ART algorithm described for the first reason because this method
causes the memory access patterns to become more scattered. This
overhead is expected to be nearly cubically proportional, and close
to the number of atomic operations.

Given the characteristics of the ART algorithm, we consider
that SIMD-style processors such as CPUs and GPUs are unsuitable
for this algorithm. By contrast, FPGAs can access on-chip internal
memory with low latency, and high bandwidth for random access.
In addition to its performance, we can program memory access
patterns as part of the FPGA hardware. Therefore, we consider the
use of the ART method on an FPGA to be suitable. A previous study
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In the GPU-FPGA collaborative ARGOT code,
the data to be computed resides on the GPU.

Figure 6: Overview of the implementation of the GPU-
FPGA-accelerated ARGOT code

For CPU + GPU

Source file For FPGA

Figure 7: Compilation flow of the GPU-FPGA-accelerated
ARGOT code

implemented an FPGA-based hardware engine with an OpenCL pro-
gramming framework [12], and we integrated the engine into the
ARGOT code. Its implementation is described in the next section.

Please note that, although the ART algorithm is based on a
ray-tracing algorithm, it is essentially different from that of CG
(Computer Graphics), which can be accelerated through NVIDIA
Turing architecture-based GPUs. The raytracing of the CG retroac-
tively calculates the light reflection and transmission on the object
surface from the viewpoint of the observer. By contrast, the ART al-
gorithm calculates the radiation intensity every time a ray is passed
through a mesh grid, and takes the average intensity by calculating
the radiation intensity in each ray direction. In short, their only
common point is a “raytracing.”
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2.3 GPU-FPGA-accelerated ARGOT code

An overview of the implementation of the ARGOT code with the
GPU and FPGA [14] is shown in Fig. 6. The existing GPU imple-
mentation of the ARGOT code enables both algorithms to execute
on the GPU. Based on the GPU implementation of the ARGOT code,
we replaced the implementation of the ART algorithm on the GPU
by implementing the algorithm on the FPGA. This necessitated an
appropriate data transfer between the GPU and FPGA because the
ART algorithm initially generates data on the GPU, which are then
sent to the FPGA. Ultimately, the resulting data processed by ART
are sent back to the GPU.

The ARGOT code was implemented using multilingual program-
ming composed of CUDA and OpenCL; therefore, a separate com-
pilation was necessary. Fig. 7 shows the flow of the compilation.
The CUDA code and OpenCL host code were compiled usingnvcc
and g++, respectively, and the generated object files were linked
using the nvcc to generate an ELF (Executable and Linkable For-
mat) file. As previously described, the OpenCL kernel code for the
ART algorithm was compiled offline using an Intel FPGA OpenCL
compiler.

However, the implementation cost of such an application exe-
cuting cooperative GPU-FPGA computations using APIs of various
programming languages is extremely high and the source code is
cumbersome, which is likely to compromise the maintainability
and availability of the application code. Therefore, in this paper,
we report the implementation and performance evaluation of a
GPU-FPGA-accelerated ARGOT code using the Intel oneAPI as
one of the methodologies for realizing a GPU-FPGA cooperative
computation with as little effort as possible for application users.

3 GPU-FPGA-ACCELERATED ARGOT CODE
WITH INTEL ONEAPI

3.1 Intel oneAPI

Intel oneAPI [6] is a cross-architecture programming framework
proposed by Intel®. The purpose of oneAPI is to simplify the devel-
opment across different architectures. As shown in Fig. 8, oneAPI
includes the DPC++ programming language and a set of libraries,
enabling development in a single language and API.

e
-
)i~

Figure 8: Intel oneAPI programming model.

Intel
oneAP|
DPC++

compiler

DPC++

DPC++

src code runtime

prepared
| by users

tained in the Intel oneAPI toolkit |

In oneAPI programming, the queue class is used as an inter-
face to conduct operations on accelerator devices. This operation
is called an action, and typical actions include a kernel launch

(parallel_for or single_task)and an explicit data transfer (memcpy).

When a queue is created, it is always associated with a single accel-
erator device, and the actions submitted to the queue are executed
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on the associated device, such as a GPU or an FPGA. To handle
both the GPU and FPGA simultaneously, it is necessary to prepare
a queue for the GPU and a queue for the FPGA, and then submit
actions to each queue. The devices officially supported by oneAPI
are listed in [4]. Although NVIDIA GPUs can also be used, they are
currently in the experimental stage[2].

3.2 CHARM on Intel oneAPI

DPC++ CUDA OpenCL.

DPC+
gpu_func. | || fpga_func.
cu cl

J maincop
@ Compile and Link

gpu_func
(on GPU)

gpu_func. | | fpga._func.
cpp cpp

J maincon
@ Compile and Link
main (on CPU)

gpu_func
(on GPU)

(a) All source files are written in DPC++

fpga_func
(on FPGA)

fpga_func
(on FPGA)

(b) CUDA and OpenCL programs are called from DPC++

Figure 9: Two approaches to realizing CHARM with Intel
oneAPL

As shown in Fig. 9, there are two approaches to realizing CHARM
with oneAPI: (a) writing all device programs in DPC++ or (b) in-
voking existing CUDA and OpenCL kernels from the DPC++ pro-
gramming framework.

The former approach is recommended by Intel®, and we con-
firmed that it is possible to make an Intel CPU, NVIDIA GPU, and
Intel FPGA work together using this approach. However, to execute
existing applications with this approach, it is necessary to rewrite
the entire source code in DPC++. This would impose a heavy bur-
den on application users because most existing HPC applications,
including the ARGOT code targeted in this study, are actually im-
plemented in CUDA, being that they are intended to be executed
on NVIDIA GPUs.

Therefore, we focus on approach (b), which reduces the program-
ming effort as much as possible for application users by exploit-
ing the existing CUDA and OpenCL code without modification,
and by using DPC++ for their cooperative operation. It is possi-
ble to call CUDA and OpenCL kernels from DPC++ by utilizing
interop_task (an extension of DPC++) for the CUDA kernels, and
to construct DCP++ objects from OpenCL objects for OpenCL ker-
nels. Using these features, we propose a methodology for realizing
a GPU-FPGA-accelerated ARGOT code using oneAPIL.

We believe that this study is valuable as a guideline for applica-
tion users who are required to accelerate their already implemented
HPC applications with oneAPI. This is because, by making the GPU
and FPGA work collaboratively under oneAPI, it is possible to use a
unified API (i.e., queue) to launch the kernel of each device and to
synchronize and mediate between the two devices, thus maintain-
ing a high maintainability and the availability of the application
code. Although OpenCL is the same as traditional OpenCL pro-
gramming in terms of managing different devices with a unified
queue, OpenCL still requires application users to rewrite all applica-
tions they want to run on GPUs and FPGAs in OpenCL, which is a
burden for application users. However, with oneAPI, as mentioned
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earlier, the CUDA and OpenCL codes developed thus far can be
directly used and absorbed by DPC++. If the performance loss of
the CUDA and OpenCL kernels absorbed by DPC++ is acceptable,
it would be beneficial to application users.

In the following sections, to realize the CPU-FPGA-accelerated
ARGOT code with oneAPI, we describe how to call the ARGOT
and ART methods, which are major arithmetic components of the
ARGOT code, as described in the previous section.

3.3 ARGOT method called in DPC++

The ARGOT method is implemented by the CUDA kernel and com-
puted using a GPU. This CUDA kernel is called by SYCL API/DPC++.
To invoke the CUDA kernel from DPC++, we use "DPC++ for
CUDA" (see [3]), which provides support for Nvidia GPUs. An
example of this code snippet is shown in Fig. 10, which is a part of
the code used to calculate the optical depth of the ARGOT method
(Equation (2)).

cudaSetDevice(idev);
err = cudaMalloc((void **) &(cuda_mem[idev].segment_dev),

sizeof{struct ray_segment)*nseg_to_devlidev]);
assert(err == cudaSuccess);

{ cuda_memlidev] segment_dev = sycl-malloc._device<struct
| ray_segment>(nseg_to_devlidev], sycl_gpu->strm_queue[idev]);

(Svel_gpu->strm_queuelidev] submit([&](sycl-handler& h) {
h.memcpy(cuda_memiidev].segment_dey, segtoffset_seglidev],
sizeof(struct ray_segment)*nseg_to_dev(idev]);

cudasetDevice(idev);
err=

memcpy (CPU -> GPU)

fidev] o
ment)*nseg_to_devlidev],
, this_cud: lidev])

seglidev

sycl_gpu->strm_queuelidev] wait();

SSert(erT == CUGaSUCCess); .
while{nseg_waiting > 0) {

dim3 nthrd(nthread, 1, 1);
while(nseg_waiting > 0) { dim3 nblck(nblock, 1, 1);
sycl_gpu->strm_queue[idev].submit([&](sycl:-handler& h) {
h.interop_task([=](sycl::interop_handler ih) {
// Call the CUDA kernel directly from SYCL
calc_optical_depth_kernel<<<nbick, nthrd, 0>>>
(cuda_memlidev].mesh_dey, cuda_mem(idev] segment_dev,
cuda_menidev].this_run_dev, offset);

dim3 nthrd(nthread, 1, 1)
dim3 nbick(nblock, 1, 1);
nblek{nblock, 1, 1) CUDA kernel launched
ale_optical_depth ] e, O,
(cuda_memidev].mesh_dev, cuda_mem(idev].segment_dev,
cuda_mem(idev].this_run_dev, offset); W
SseT = nihread HIoek;

Sycl_gpu->strm_queueidev].wart();

}

DPC++ code to use CUDA code
Figure 10: Code snippet to calculate the optical depth of the
ARGOT method (Equation (2).

First, to use DPC++ for CUDA, it is necessary to include the
<CL/sycl/backend/cuda.hpp> header file. By reading this header
file, it is possible to conduct operations equivalent to the CUDA
API from oneAPI In Fig. 10, the orange line in the upper part
corresponds to the data transfer from the CPU and GPU. The CUDA
kernel is called in the orange line at the bottom. To invoke the CUDA
kernel, DPC++ for CUDA provides a function called interop_task.
This function allows us to call the existing CUDA kernel directly.

3.4 ART method called in DPC++

In our previous study [14], we used an Intel Arria 10 FPGA as the
accelerator to run the ART method; however, in this study, we used
the more powerful Intel Stratix 10 FPGA. We also proposed an
OpenCL implementation of the ART method for the Intel Stratix 10
FPGA [11], and used this OpenCL kernel code through the DPC++
APIs, as shown in Fig. 11.

As shown in the figure, the hardware accelerator for the ART
method implemented in the FPGA consists of an engine that ex-
ecutes the calculation of the ART method and a handler that is
responsible for loading mesh data from the external memory into
the engine and writing the calculation results back to the external
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the computation of the ART method
(with Block RAM to hold 163 problem size)
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Figure 11: OpenCL implementation of the ART method for
Intel Stratix 10 FPGA [11].

memory, which are all implemented in OpenCL. The computing
engine is composed of PEs (Processing Elements), which are com-
puting cores connected in a three-dimensional (2 X 2 X 2) manner.
In other words, the problem space for which a single FPGA is re-
sponsible is divided into smaller blocks and assigned to each PE
to perform parallel computations. The divided problem space is
stored in a working memory (such as a scratchpad memory) imple-
mented using block BRAMs (Block RAMs) in each PE, for which
each PE holds 163 problem sizes (32° problem sizes are held in a
single FPGA). Each PE then communicates the ray data to the other
PEs. The PE that receives the ray data then executes the arithmetic
kernel of the ART method and sends the ray data reflecting the re-
sult of the arithmetic kernel to the PE in charge of the next problem
space located in the ray direction, thereby realizing the ray tracing
algorithm of the ART method. The execution result, which is the
mesh data affected by the radiative transfer, is then written back to
the external memory through the handler.

Figure 12: DPC++ code used to call the OpenCL implementa-
tion of the ART method from the host (CPU).

Fig. 12 also shows the DPC++ code snippet used to make this
OpenCL implementation of the ART method available to oneAPI.
The DPC++ is based on the C++ standard and the SYCL specifica-

tions developed by the Khronos Group, and we include <CL/sycl. hpp>

and <CL/opencl.h> headers in lines 1 and 2 to allow OpenCL ob-
jects to be handled as DPC++ objects. The operations for this, that
is, the conversion of OpenCL objects (c1_context, c1_kernel, and
cl_queue) into DPC++ objects, correspond to lines 12-27. To send
the mesh data (already copied from the GPU to the CPU) as the
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initial data to the FPGA from the host CPU, the device memory
area of the FPGA is allocated in line 30, and the memory copy from
the CPU to the FPGA is executed in lines 31-33. Subsequently, the
FPGA-based ART method is executed by launching all OpenCL
kernels (the external memory handler and eight PEs) with the oper-
ations in lines 35-57. When the ART method finishes, the operation
in lines 67-69 writes the execution result from the external memory
of the FPGA back to the CPU memory (these data are later copied
from the CPU to the GPU).

3.5 Compilation flow

| argot.
| "o

aout

clhost.
o

clhost.cc

SYCL

include OpenC
Librar L

y
Hoader fles (a’s0)
for OpencL&
SYCLiPCas)

Figure 13: Compilation flow for GPU-FPGA-accelerated AR-
GOT code with oneAPIL

Library

Carso)

Fig. 13 shows the compilation flow for GPU-FPGA-accelerated
ARGOT code with oneAPI The compilation procedure itself is the
same as in Fig. 7, with a separate compilation and linking of the
ARGOT method source code and the ART method source code. The
clang compiler used in this compiler flow is an open-source version
of the oneAPI Data Parallel C++ compiler, which can input not only
DPC++ and OpenCL source codes, but also CUDA code (CUDA
Toolkit is used in the backend to generate NVPTX).

In this study, the source codes of CUDA and OpenCL kernels
are used as they are, and the DPC++ code is added to the part to
invoke the kernels (the part marked in red). These are compiled
according to the compile flow shown in the figure, and finally a
host binary that can control both the GPU and FPGA is generated.
Note that the aocx for loading into the FPGA is generated by the
offline compilation using the Intel FPGA SDK for the OpenCL tool,
similar to Fig. 7.

4 EVALUATION
4.1 Experimental Settings

Table 2 shows our experimental machine configuration. This is a
heterogeneous platform composed of three types of devices: two
Intel® Xeon® Gold 6242 CPUs, a single NVIDIA V100 GPU for PCle-
based servers (Gen3 x16), and a single Intel® FPGA PAC D5005
board connected to the CPU through a PCle Gen3 x16 interface. In
this evaluation, we used a single CPU, GPU, and FPGA as located on
the same CPU socket to avoid the performance degradation caused
by a PCle access over the Intel UPI (Ultra Path Interconnect).
CentOS 7.3 was used as the operating system of our experimental
machine, and the ARGOT code with the oneAPI was compiled using
the oneAPI Data Parallel C++ compiler (clang), as shown in the
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Hardware specifications

CPU Intel® Xeon® Gold 6242 x 2
GPU NVIDIA Tesla V100
(PCIe Gen3 x16 card version)
FPGA Intel FPGA PAC D5005
(Intel Stratix 10 SX)
Software specifications
Host OS CentOS 7.3
Linux Kernel Version 3.10.0-1160.15.2.el7.x86_64
Compiler oneAPI data parallel C++
compiler [7] (commitID: 6e9ddbé6)
MPI Open MPT 4.0.3
Accelerator Platforms CUDA 10.2.89
Intel FPGA SDK for OpenCL
2021.2.0 Build 268.1 Pro edition

Table 3: Resource usage and clock frequency of ART applied
to FPGA implementation.

ALMs | Registers | M20Ks | DSPs | fmax [MHz]
500,885 | 1,054,972 5,070 | 1,916 260
(54%) (28%) | (43%) | (33%)

previous section. CUDA version 10.2.89 was used as the backend.
The ART algorithm working on the FPGA was implemented in
OpenCL kernel code and was compiled using the offline compiler
provided by the Intel FPGA SDK for OpenCL, version 2021.2.0 Build
268.1 Pro edition. Because the ARGOT code was developed under
the assumption that it would run on multiple nodes using MPI, we
used OpenMPI 4.0.3, and made the ARGOT code run with a single
process during this evaluation.

The problem size used for the evaluation was only 323 because
the current FPGA implementation of the ART method [11] is not
equipped with a feature [15] for dividing a large problem stored in
DDR memory into small blocks that can be stored in BRAM, and
owing to time constraints, executes the ART calculation through
time division multiplexing in each block using the FPGA. The ART
applied in the FPGA implementation uses a design with eight PEs
(2%), with each PE having BRAM:s for 16> meshes. Therefore, 323
meshes are stored in an FPGA. Nside, which is a parameter used to
determine the resolution in HEALpix, is set to 8, which generates
768 different angles of rays (768 is the number of angles, not the
number of rays for the ray tracing). In this evaluation, the com-
putation time on a CPU was measured and included the cost of
launching and synchronizing the device, for both FPGA and GPU
implementations. The time for the data transfer between the host
and devices is also included.

4.2 Resource Consumption

Table 3 shows the FPGA resource utilization. The ALM (Adaptive
Logic Module) is a term used by Intel and is a logic component
that includes a logically partitionable LUT (Lookup Table) and
several registers (flip-flops). ALM utilization is a metric used to
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estimate the size of the hardware components implemented in
the FPGA. The M20K memory block is an internal memory of the
FPGA, which is called a block RAM, and internal buffers such as
FIFOs are implemented using memory blocks. The DSP (Digital
Signal Processor) is a built-in hardware component that is faster and
offers more compact implementations of integer multiplications and
floating-point operations than programmable logic components.
Here, “fmax” means the maximum operating frequency in the clock
domain for OpenCL kernels.

If we optimize the OpenCL code to decrease the resource usage in
the design, implementing more PEs into the FPGA is possible, which
directly leads to a reduction in the execution time. As listed in the
table, the ALMs are the greatest resource users in this design, with
more than half of the total ALMs used, which becomes a bottleneck
when attempting to increase the performance. From the perspective
of resource utilization, using all DSPs is the goal for optimization
because floating additions and multiplications are implemented on
them. However, we cannot double the number of PEs to increase
the DPS utilization owing to an ALM overutilization. We consider
the next possible number of PEs to be 16 (2 X 2 X 4). Because each
PE has a working memory with 163 meshes, the number of PEs
for each dimension should be at a power of 2. In general, as the
resource usage per PE is reduced, the operating frequency increases
because place-and-routing is easy to apply. This also improves the
performance of ART.

4.3 Performance Evaluation of the ARGOT
code

= ARGOT
ART
Others

Execution time [s]
6 - N w s OO N @ O

ARGOT(CPU)
ART(CPU)

ARGOT(GPU)
ART(GPU)

ARGOT(GPU) ~ ARGOT(GPU)
ART(FPGA) / CUDA  ART(FPGA) /
+OpenCL oneAP!

Figure 14: Performance comparison between FPGA, CPU,
and GPU implementations. The problem size was 323.

Fig. 14 shows the performance comparison between the CPU,
GPU, and FPGA implementations, applying a problem size of 323.
These results indicate the execution time per simulation step. “AR-
GOT (CPU) / ART (CPU)” indicates that both algorithms are imple-
mented in the CPU, and the remaining graph items represent each
implementation in the same manner. The CPU implementation is
written in C and uses OpenMP for the thread parallelization. In
this evaluation, we used a single Xeon CPU, and the CPU imple-
mentation was applied with 16 OpenMP cores (threads). The GPU
implementation is based on the CPU implementation but written
in CUDA.

As shown in these figures, not only the ART algorithm but also
the “Others” execution are dominant in the CPU implementation.
This part mainly solves the chemical reactions and radiative heat-
ing/cooling of each mesh, based on the execution results of the
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ARGOT and ART algorithms. Fortunately, solving the chemical
reactions and radiative heating/cooling of each mesh is an indepen-
dent task, which is why the GPU implementation can accelerate its
execution.

However, the ART algorithm does not benefit from this situation
and is still dominant in the ARGOT code even when the GPU is used.
Considering the GPU implementations in Fig. 14, the execution
of the ART algorithm is not accelerated. This is because SIMD-
style processors, such as CPUs and GPUs, are unsuitable for this
algorithm, as previously described in Section 2.2. In addition, their
problem sizes are too small to sufficiently exploit the 5,120 CUDA
cores of the GPU because the requisite parallelism is not achievable,
and GPU kernel activation and CPU-GPU communication may also
reduce the performance.

As reported in [15], on the GPU, the performance of the ART al-
gorithm improves significantly when solving larger sized problems.
This is because the parallelism increases on the order of O(N?)
and computational complexity increases on the order of O(N?),
where N is the size of one side of the mesh. As described in Sec-
tion 2.2, the ART algorithm is based on a ray-tracing method in
a 3D space split into meshes, and this is why the increase of the
computational complexity is cubically proportional. And, the ART
algorithm solves radiation transfer equation along parallel light-
rays starting from one edge to another of computational volume,
which means that each CUDA thread is mapped to each ray in
two dimensions, and this is why the increase of the parallelism is
squarely proportional. In other words, by increasing the problem
size, sufficient computational complexity and parallelism begin to
appear in the GPU-based ART algorithm, which push away the
inherently unsuitable for SIMD-type processors to perform the ART
algorithm and the overhead of offloading it to the GPU, and can
fully operate all of the CUDA cores. As a result, the performance of
the GPU-based ART algorithm becomes better due to these reasons
and the performance difference between the GPU and the FPGA
becomes smaller.

On the other hand, the FPGA-based ART implementation is
better than the GPU-based implementation even when solving
smaller sized problems. As reported in [12], this high performance
comes from the pipelined ART algorithm implemented in the FPGA,
and compared with the ART method applied on a GPU, we achieved
a performance improvement of 18.7 and reduced the execution time
of the entire ARGOT code to 5.42 times.

We then compared the CUDA+OpenCL implementation with the
oneAPI implementation and found that there was almost no differ-
ence in performance between the two. In our implementation of the
GPU-FPGA-accelerated ARGOT code using oneAPI, the ARGOT
and ART methods used in the CUDA+OpenCL implementation are
directly applied (in fact, the oneAPI implementation applied in this
evaluation still uses the CUDA API instead of the DPC++ API for a
small portion of the ARGOT method, such as the GPU device mem-
ory allocation, but it does not affect the performance evaluation).
In other words, this result shows that the existing developed appli-
cation codes can be used in oneAPI with almost zero performance
loss. As previously described in Section 3.2, by making the GPU
and FPGA work collaboratively under oneAP], it is possible to use
a unified API (i.e., queue) to launch the kernel of each device and
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to synchronize and mediate between the two devices, thus main-
taining the high maintainability and availability of the application
code.

When the ARGOT method is executed on the GPU, the execution
time increases slightly compared to the CPU because the ARGOT al-
gorithm includes code to allocate pinned memory for each iteration.
This is because the ARGOT algorithm includes a code that allocates
the pinned memory for each iteration. Although this reduces the
computation time, the overhead of allocating the pinned memory
hinders such a reduction. Therefore, in the future, we will modify
the code to allocate the pinned memory outside of the iteration to
reduce the overhead as much as possible. As reported in [15], the
ARGOT and ART methods are inherently independent and can be
concurrently performed on each device. As a result, achieving a
higher simulation speed can be expected, which will be an area of
future study.

5 RELATED WORK

For our investigation, research on cooperative computations be-
tween CPUs, GPUs, and FPGAs conducted for more than a 10-year
period was considered. KH Tsoi et al. [19] proposed a heteroge-
neous computer cluster called Axel that contains a collection of
nodes, each of which can include multiple types of accelerators
such as FPGAs and GPUs, and demonstrated that FPGAs, GPUs,
and CPUs run collaboratively for an N-body simulation. At that
time, there were no commercial or open-source frameworks that
could comprehensively handle CPUs, GPUs, and FPGAs; therefore,
the authors of [19] developed their own framework for the Axel
cluster based on MapReduce. This means that in order to run an
already developed application on the Axel cluster, it is mandatory
to re-implement the application to fit the MapReduce framework.
To make matters worse, the FPGA implementation at the time had
to be applied using a hardware description language owing to a
lack of high-level synthesis tools. In addition, despite the fact that
a framework was developed that could handle the CPU, GPU, and
FPGA comprehensively, it is likely that there were few users who
could actually use it to the fullest.

The last decade has seen dramatic advances in high-level syn-
thesis tools, and many studies have proposed frameworks that
make use of these tools. For example, similar to our research, Maria
Anggélica Davila Guzman et al. [10] proposed a framework to handle
the CPU, GPU, and FPGA in a single programming language. They
reported that they extended EngineCL, a runtime that acts as a
wrapper for OpenCL C++, to support FPGAs with Intel FPGA SDK
for OpenCL (an HLS tool offered by Intel), and that CPUs, GPUs, and
FPGAs have achieved cooperative computations in such a frame-
work. They also confirmed that the inter-device load-balancing
algorithm provided by EngineCL improves the performance of
benchmarks run on compute nodes equipped with CPUs, GPUs,
and FPGAs. However, as previously described, most of the existing
HPC applications are CUDA-based implementations, and it would
be extremely burdensome for programmers to rewrite all of the
code into OpenCL for compatibility with EngineCL.

Although the Intel oneAPI was recently released for users in 2020,
results on the use of this toolkit have already been reported [16]. The
authors of this study implemented the algorithm for higher-order
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(fourth-order) epistasis detection in DPC++ (SYCL) and evaluated
its performance on an Intel Xeon Gold 6128 CPU (x2), Intel UHD
P630, Iris Xe MAX, and NVIDIA Titan RTX (Turing). In the future,
they plan to implement a heterogeneous cluster-based acceleration
with custom hardware such as FPGAs in addition to CPUs and
GPUs. Their implementation policy for multi-hybrid acceleration
can be categorized using Fig. 9 and falls under approach (a). It is
clear that if the development of a new code is required, it makes
sense to adopt approach (a) from the viewpoint of maintainability
and availability of the code, which we also plan to do. However, as
we pointed out in [10], for users who have already developed code
(most of which is implemented in CUDA) and are required to run
it with Intel oneAP], this is a huge burden because it is the same as
being forced to re-implement their applications in DPC++.

Therefore, in this study, we focus on approach (b), which reduces
the programming effort as much as possible for application users, by
exploiting the existing CUDA and OpenCL code without modifica-
tion, and by using DPC++ for their cooperative operation. We also
show a GPU-FPGA-accelerated ARGOT code with Intel oneAPI as
a proof of concept. We believe that this study will enlighten applica-
tion users who are required to accelerate their already implemented
HPC applications with oneAPL

6 CONCLUSION

In this paper, we presented the implementation and performance
evaluation of our astrophysics code ARGOT to apply a oneAPI
solution using a GPU and an FPGA. To realize our CHARM con-
cept for complex multi-physical simulations as a next generation
of accelerated supercomputing, this study was conducted on our
multi-heterogeneous accelerated cluster machine running at the
University of Tsukuba.

To reduce the programming effort as much as possible for appli-
cation users, we focus on an approach to exploit the existing CUDA
and OpenCL codes without modification, and by using DPC++ for
their cooperative operation. We evaluated the performance of the
GPU-FPGA-accelerated ARGOT code implemented with oneAPI
and found that it is comparable to the performance of the ARGOT
code implemented with CUDA+OpenCL. This means that existing
application codes can be used through oneAPI with almost zero per-
formance loss. Furthermore, by making the GPU and FPGA work
collaboratively under oneAPI, it is possible to use a unified API
(i.e., queue) to launch the kernel of each device and to synchronize
and mediate between the two devices, thus maintaining the high
maintainability and availability of the application code.

We showed that the GPU and FPGA can be controlled under the
oneAPI, and that a small part of the code (the part that allocates
GPU device memory) uses the CUDA APL Therefore, in parallel
with replacing this part with the DPC++ AP, in future studies we
will work on further optimization of the GPU-FPGA-accelerated
ARGOT code, specifically, the concurrent execution of the ARGOT
and ART methods, and optimization of the pinned memory alloca-
tion method used in the ARGOT approach.
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