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Multi-Histogram Equalization Methods 

 for Contrast Enhancement and Brightness Preserving 

David Menotti, Laurent Najman, Jacques Facon, and Arnaldo de A. Araújo 

 
Abstract — Histogram equalization (HE) has proved to be 

a simple and effective image contrast enhancement technique. 

However, it tends to change the mean brightness of the image 

to the middle level of the gray-level range, which is not 

desirable in the case of images from consumer electronics 

products. In the latter case, preserving the input brightness of 

the image is required to avoid the generation of non-existing 

artifacts in the output image. To surmount this drawback, Bi-

HE methods for brightness preserving and contrast 

enhancement have been proposed. Although these methods 

preserve the input brightness on the output image with a 

significant contrast enhancement, they may produce images 

with do not look as natural as the input ones. In order to 

overcome this drawback, this work proposes a novel 

technique called Multi-HE, which consists of decomposing the 

input image into several sub-images, and then applying the 

classical HE process to each one. This methodology performs 

a less intensive image contrast enhancement, in a way that the 

output image presents a more natural look. We propose two 

discrepancy functions for image decomposing, conceiving two 

new Multi-HE methods. A cost function is also used for 

automatically deciding in how many sub-images the input 

image will be decomposed on. Experiments show that our 

methods preserve more the brightness and produce more 

natural looking images than the other HE methods.1. 

 
Index Terms — Contrast enhancement, brightness preserving, 

histogram equalization, multi-threshold selection. 

I. INTRODUCTION 

The histogram of a discrete gray-level image represents 
the frequency of occurrence of all gray-levels in the image 
[1]. Histogram equalization (HE) is a technique commonly 
used for image contrast enhancement, since HE is 
computationally fast and simple to implement. It works by 
flattening the histogram and stretching the dynamic range of 
the gray-levels by using the cumulative density function of 
the image. 
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Despite its success for image contrast enhancement, this 
technique has a well-known drawback: it does not preserve 
the brightness of the input image on the output one. This 
drawback makes the use of HE not suitable for image 
contrast enhancement on consumer electronic products, such 
as video surveillance, where preserving the input brightness 
is essential to avoid the generation of non-existing artifacts 
in the output image. To overcome such drawback, variations 
of the classic HE technique have proposed to first 
decompose the input image into two sub-images, and then 
perform HE independently in each sub-image. These 
methods, described in details in Section III, use some 
statistical measures - which consider the value of the gray-
levels in the image, during the decomposition step. Another 
method, which will not be described in Section III but is of 
relevance for this work, is the variational framework based 
on histogram transformation for image contrast enhancement 
and brightness preserving with maximum entropy 
(BPHEME) presented in [2]. Although in [2] the authors 
claim that their method is a HE one, we claim that it is 
actually a histogram specification of an entropy distribution. 
Both the methods based on Bi-HE and the method proposed 
in [2] perform image contrast enhancement with success 
while preserving the input brightness in some extend, but 
they might generate images with do not look as natural as 
the input ones. Such result is unacceptable for consumer 
electronics products. 

In order to enhance contrast, preserve brightness and 
produce natural looking images, this article proposes a Multi-
HE (MHE) technique which first decomposes the input image 
into several sub-images, and then applies the classical HE 
process to each of them. We present two discrepancy 
functions to decompose the image, conceiving two MHE 
methods for image contrast enhancement, i.e., Minimum 
Within-Class Variance MHE (MWCVMHE) and Minimum 
Middle Level Squared Error MHE (MMLSEMHE). A cost 
function, taking into account both the discrepancy between the 
input and enhanced images and the number of decomposed 
sub-images, is used to automatically make the decision of in 
how many sub-images the input image will be decomposed 
on. The remaining of this work is organized as follows. As the 
proposed method use many concepts previously introduced in 
the literature, Section II presents some basic definitions 
regarding gray-level images, whereas Section III describes 
previous works. The proposed methods are introduced in 
Section IV. Results of our methods are presented, discussed 
and compared with other HE methods in Section V. Finally, 
conclusions are drawn in Section VI. 
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II. BASIC DEFINITIONS 

In this section, we present some basic definitions for gray-
level images, which will be used throughout this work. 

Let ¥ and ¢ denote the set of natural and integer 

numbers, respectively. Let mnX  be a subset of points 
2( , )x y ∈¥ , such that 0 x  m≤ <  , and 0 y n≤ < , where m  

and n  denote the dimensions of mnX . Note that 
mnX m n= × , where Y denote the cardinality of the set Y . 

A mapping I , from mnX  to { }0,..., 1L L= −¢  , is called an 

image. In applications, L  is typically 256. For a point 

( , ) mnx y X∈ , ( , )l I x y=  is called the level of the point ( , )x y  

in I . 
Let sl  and fl  be levels of the image I , where 

0 s fl l L≤ ≤ < . Let [ , ]s fI l l I⊆  be composed by all 

mappings from points ( , ) mnx y X∈  to { }, 1,..., 1,s s f fl l l l+ − . 

The sub-mapping [ , ]s fI l l  defines a (sub-)image of I . 

The definition above was presented to facilitate the 
definition of a sub-histogram and its probability functions, 
which are necessary for the definition of Bi- and Multi-HE 
methods. In the followings, when the boundaries [ , ]s fl l  of 

the image I  are omitted, they are assumed to be [0, 1]L − . 

Let mn
lX  be a subset of mnX , such that for all 

mnmn

l XXyx ⊆∈),( , we have ( , )I x y l= . Let I

lH  be the 

absolute frequency of the level l  in the image I , where 

0 1l L≤ ≤ − , i.e., I mn
l lH X= . 

The mapping IH  from the levels of the image I  to their 

absolute frequency levels, i.e., :I
LH →¢   ¥ , is called the 

histogram of the image I . Note that 
[ , ]s fI l lI

l lH H= , with 

0 s fl l l L≤ ≤ ≤ < . 

Let 
[ , ]s fI l l

lP  be the relative frequency (or the probability) of 

level l  in the (sub-)image [ , ]s fI l l , i.e., 

[ , ]
/s f f

s

I l l lI I
l il i l

P H H
=

= ∑ ,                            (1) 

where 0 1s fl l l L≤ ≤ ≤ ≤ − . The function 
[ , ]s fI l l

P , which is 

composed by all 
[ , ]s fI l l

lP , is the probability density function of 

the image [ , ]s fI l l . 

Let 
[ , ]s fI l l

lC  be the probability distribution (or the 

cumulative probability density) of the level l  in the image 
[ , ]s fI l l , i.e., 

[ , ] [ , ]s f f s f

s

I l l l I l l

il i l
C P

=
=∑ ,                            (2) 

where 0 ≤ ls ≤ l ≤ lf < L. The function 
[ , ]s fI l l

C  composed by all 

[ , ]s fI l l

lC  is the probability distribution function (or the 

cumulative probability density function) of the image 
[ , ]s fI l l . 

Let [ , ]s fI l l  be a sub-image of I . We define the mean (or 

the brightness) of the image [ , ]s fI l l  as 

[ , ]
( [ , ]) f s f

s

l I l l

m s f ll l
l I l l l P

=
= ×∑ .                      (3) 

Let [ , ]s fI l l  be a sub-image of I . We define the standard 

deviation (or the contrast) of the image [ , ]s fI l l  as 

[ , ]2( [ , ]) ( ( [ , ]))f s f

s

l I l l

s f m s f ll l
l I l l l l I l l Pσ =

= − ×∑ .       (4) 

III. PREVIOUS WORK 

This section describes some previous works in the literature 
which make use of the HE method with the purpose of 
brightness preserving. We start by describing the classical HE 
(CHE) method in Section III.A. The CHE method was the 
base for the other four methods, namely BBHE, DSIHE, 
MMBEBHE and RMSHE, which will be later described in 
this section. Notice that these four extensions of the CHE 
method have one main point in common: they decompose the 
input image into two or more sub-images, and then equalize 
the histograms of these sub-images independently. In contrast, 
the major difference among these methods is the criteria they 
use to decompose the input image into two or more sub-
images. The first method, described in Section III.B, divides 
the input image into two by using its mean gray-level. An 
extension of this method, which recursively segments the 
input image, is later described in Section III.E. Section III.C 
presents a method which uses the equal area value to segment 
the images, whereas the method described in Section III.D 
segments images by taking into account the level which yields 
the minimum brightness error between the input and the 
enhanced images. To conclude, Section III.F presents some 
final remarks. 

Note that, from now on, I and O denote the input (or the 
original) and the output (or the processed) images, 
respectively.  

A. Classical HE Method (CHE) 

This section describes the CHE method for gray-level 
images in detail, since this method is the core of this work. 
The goal of HE method is to uniformly distribute the 
histogram of an image over the entire range of gray-levels, 
increasing the image contrast. 

Let 
[ , ]s fI l l

H , 
[ , ]s fI l l

P  and 
[ , ]s fI l l

C  be defined as in Section 

II. Let 
[ , ]s fO l l

H  be the uniform histogram of the output image, 
where any level l , with s fl l l≤ ≤ , has the same amount of 

pixels, or the same density, i.e., 

[ , ] 1

1
s fO l l

l
f s

P
l l

=
− +

,                          (5) 
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The cumulative density function 
[ , ]s fO l l

C  is defined in 
function of l  as 

[ , ] [ , ] 1

( 1)
fs f s f

s

lO l l I l l s
l ii l

f s

i l
C P

l l=

− +
= =

− +∑ ,           (6) 

The 'l  output level corresponding to the input level l  is 
obtained as the one that minimizes the difference between 

[ , ]

'
s fO l l

lC  and 
[ , ]s fO l l

lC . In other words, the output level 'l  for 

the input level l  can be computed as the transformation 

function 
[ , ]( )s fI l l

T l , i.e., 

[ , ][ , ]
' ( ) ( ) s fs f I l lI l l

s f s ll T l l l l C= = + − × ,            (7) 

where z  stands for the nearest integer to z∈ . 

To generate the enhanced output image [ , ]s fO l l  using this 

transformation, for any pixel [ , ]( , )s fl I l l x y= , we obtain its 

respective output level [ , ]( , )s fO l l x y  as 
[ , ]

' ( )s fI l l
l T l= . 

The high performance of the HE in enhancing the contrast 
of an image is a consequence of the dynamic range expansion 
of the gray-level's image domain. That is, theoretically the 
output image enhanced by a HE method uses all the gray-
level's image domain, i.e., from 0 up to 1L − . Besides, the 
CHE tries to produce an output image with a flatten 
histogram, i.e., a uniform distribution. Based on information 
theory, the entropy of a message source will get the maximum 
value when the message respects the uniform distribution 
property [4]. This means that an image enhanced by the CHE 
method has the maximum information (i.e., the entropy) with 
respect to its original one. However, the CHE method barely 
satisfies the uniform distribution property in images with 
discrete gray-level domains. 

Despite of the advantages offered the CHE method, it can 
introduce a significant change in the image brightness, i.e., its 
mean gray-level. That is, thanks to the uniform distribution 
specification of the output histogram, the CHE method shifts 
the brightness of the output image to the middle gray-level, 
i.e., / 2L . This change in brightness is not desirable when 
applying the CHE scheme into consumer electronics devices, 
for instance TV and video surveillance. This is because it may 
introduce unnecessary visual deterioration to the output 
image. 

B. Brightness Bi-HE Method (BBHE) 

In order to overcome the drawback introduced by the CHE 
method described in the previous subsection, a brightness 
preserving Bi-HE (BBHE) method was proposed in [5]. The 
essence of the BBHE method is to decompose the original 
image into two sub-images, by using the image mean gray-
level, and then apply the CHE method on each of the sub-
images. In [5], it is mathematically shown that the BBHE 
method produces an output image with the value of brightness 
(the mean gray-level) located in the middle of the mean of the 
input image and the middle gray-level (i.e., / 2L ). 

C. Dualistic Sub-Image HE Method (DSIHE 

Following the same basic ideas used by the BBHE method 
of decomposing the original image into two sub-images and 
then equalize the histograms of the sub-images separately, [4] 
proposed the so called equal area dualistic sub-image HE 
(DSIHE) method. Instead of decomposing the image based on 
its mean gray level, the DSIHE method decomposes the 
images aiming at the maximization of the Shannon's entropy 
[6] of the output image. For such aim, the input image is 
decomposed into two sub-images, being one dark and one 
bright, respecting the equal area property (i.e., the sub-images 
has the same amount of pixels). 

In [4], it is shown that the brightness of the output image  O 
produced by the DSIHE method is the average of the equal 
area level of the image I  and the middle gray level of the 
image, i.e., / 2L . The authors of [4] claim that the brightness 
of the output image generated by the DSIHE method does not 
present a significant shift in relation to the brightness of the 
input image, especially for the large area of the image with the 
same gray-levels (represented by small areas in histograms 
with great concentration of gray-levels), e.g., images with 
small objects regarding to great darker or brighter 
backgrounds. 

D. Minimum Mean Brightness Error Bi-HE Method 

(MMBEBHE) 

Still following the basic principle of the BBHE and DSIHE 
methods of decomposing an image and then applying the CHE 
method to equalize the resulting sub-images independently, 
[3] proposed the minimum mean brightness error Bi-HE 
(MMBEBHE) method. The main difference between the 
BBHE and DSIHE methods and the MMBEBHE one is that 
the latter searches for a threshold level tl  that decomposes the 

image I  into two sub-images [0, ]tI l  and [ 1, 1]tI l L+ − , such 

that the minimum brightness difference between the input 
image and the output image is achieved, whereas the former 
methods consider only the input image to perform the 
decomposition. 

Once the input image is decomposed by the threshold level 

tl , each of the two sub-images [0, ]tI l  and [ 1, 1]tI l L+ −  has 

its histogram equalized by the classical HE process, 
generating the output image. Assumptions and manipulations 
for finding the threshold level tl  in ( )O L  time complexity 

were made in [3]. Such strategy allows us to obtain the 
brightness ( [ , ] [ 1, 1])ml O O l O l L∪ + −  of the output image 

without generating the output image for each candidate 
threshold level l , and its aim is to produce a method suitable 
for real-time applications. 

E. Recursive Mean-Separate HE Method (RMSHE) 

Recall that the extensions of the CHE method described so 
far in this section were characterized by decomposing the 
original image into two new sub-images. However, an 
extended version of the BBHE method (see Section III.B) 
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proposed in [7], and named recursive mean-separate HE 
(RMSHE), proposes the following. Instead of decomposing 
the image only once, the RMSHE method proposes to perform 
image decomposition recursively, up to a scale r , generating 

2r  sub-images. After, each one of these sub-images [ , ]r
s fI l l  

is independently enhanced using the CHE method. 
Note that when 0r =  (no sub-images are generated) and 

1r = , the RMSHE method is equivalent to the CHE and 
BBHE methods, respectively. In [7], they mathematically 
showed that the brightness of the output image is better 
preserved as r  increases. Note that, computationally 
speaking, this method presents a drawback: the number of 
decomposed sub-histograms is a power of two. 

F. An Insight on the Results Produced by HE Methods 

The previous sections described methods which use HE 
with the purposed of preserving the brightness of gray-level 
images. Fig. 1 shows, for the girl image, the output images 
produced by these HE methods. In turn, Table I shows the 
values of the brightness and contrast obtained for these 
images. 

 

 
Original 

 
HE 

 
BBHE 

  
DSIHE 

 
RMSHE ( 2r = ) 

 
MMBHEBE 

Fig. 1. An example of image contrast enhancement and brightness 

preserving on the girl image. 

 

By analyzing the data in Table I and the images in Fig. 1, 
we observe that the only method which preserves the 
brightness of the input image and generates a natural looking 
image is the RMSHE method ( 2r = ). Recall that this method 
is based on multi-histogram decomposition or, in other words, 
on the recursive decomposition of the image into two sub-
images. Still looking at the data presented in Table I, we can 
also conclude that the Bi-HE methods are not robust regarding 
brightness preserving. To overcome this drawback, Section IV 
introduces two new robust methods for image contrast 
enhancement and brightness preserving, also capable of 
producing natural looking images. 

 
TABLE I 

BRIGHTNESS PRESERVING METHODS FRO IMAGE CONTRAST 

ENHANCEMENT. 

Method Brightness Contrast 

Original 139.20 29.70 
HE 133.94 75.47 
BBHE 162.78 70.09 
DSIHE 131.66 75.42 

RMSHE ( 2r = ) 139.77 37.81 

MMBEBHE 144.97 68.70 

 

IV. MULTI-HISTOGRAM EQUALIZATION METHODS FOR 

CONTRAST ENHANCEMENT AND BRIGHTNESS PRESERVING 

As mentioned before, the HE method enhances the contrast 
of an image but cannot preserve its brightness (which is 
shifted to the middle gray-level value). As a result, the HE 
method can generate unnatural and non-existing objects in the 
processed image. In contrast, Bi-HE methods can produce a 
significant image contrast enhancement and, at some extend, 
preserve the brightness of the image. However, the generated 
images might not have a natural appearance. To surmount 
such drawbacks, the main idea of our proposed methods is to 
decompose the image into several sub-images, such that the 
image contrast enhancement provided by the HE in each sub-
image is less intense, leading the output image to have a more 
natural look. The conception of such methods arises two 
questions. 

The first question is how to decompose the input image. As 
HE is the focus of the work, the image decomposition process 
is based on the histogram of the image. The histogram is 
divided into classes, determined by threshold levels, where 
each histogram class represents a sub-image. The 
decomposition process can be seen as an image segmentation 
process executed through multi-threshold selection [8]. The 
second question is in how many sub-images an image should 
be decomposed on. This number depends on how the image is 
decomposed, and so this question is directly linked with the 
first question.  

In order to answer these questions, Section IV.A presents 
two functions to decompose an image based on threshold 
levels, whereas the algorithm used to find the optimal 
threshold levels is presented in Section IV.B. Finally, a 
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criterion for automatically selecting the number of 
decomposed sub-images is exposed in Section IV.C. 

A. Multi-Histogram Decomposition 

Many HE-based methods have been proposed in the 
literature to decompose an image into sub-images by using the 
value of some statistical measure based on the image’s gray-
level value [3]-[5], [7]. These methods aim to optimize the 
entropy or preserve the brightness of the image. Here, we will 
focus our attention on decomposing an image such that the 
enhanced images still have a natural appearance. For such 
aim, we propose to cluster the histogram of the image in 
classes, where each class corresponds to a sub-image. By 
doing that, we want to minimize the brightness shift yielded 
by the HE process into each sub-image. With the 
minimization of this shift, this method is expected to preserve 
both the brightness and the natural appearance of the 
processed image. 

From the multi-threshold selection literature point of view, 
the problem stated above can be seen as the minimization of 
the within-histogram class variance [8], where the within-class 
variance is the total squared error of each histogram class with 
respect to its mean value (i.e., the brightness). That is, the 
decomposition aim is to find the optimal threshold set 

{ }1 1,...,k k k
kT t t −=  which minimizes the decomposition error of 

the histogram of the image into k  histogram classes and 
decomposes the image [0, 1]I L −  into k  sub-images 

1, 1, , ,[ , ],..., [ , ]k k k k k k
s sf fI l l I l l , where ,j k

sl  and ,j k
fl  stand for the 

lower and upper gray-level boundaries of each sub-image j  

when the image is decomposed into k  sub-images. They are 

defined as: ,
1

j k k
s jl t −= , if 1j > , and , 0j k

sl =  otherwise, and 

, 1j k k
jfl t= + , if j k≠ , and , 1j k

fl L= −  otherwise. The 

discrepancy function for decomposing the original image into 
k  sub-images following the minimization of within-class 
variance can be expressed as  

,

,

,, 2 [0, 1]

1

( ) ( ( [ , ]))

j k
f

j k
s

lk
j kj k I L

m s f l
j l l

Disc k l l I l l P −

= =

= −∑ ∑ .       (8) 

The method conceived with this discrepancy function will 
be called Minimum Within-Class Variance MHE 
(MWCVMHE). Note that the mean gray-level (i.e., the 
brightness) of each sub-image processed by the CHE method 
is theoretically shifted to the middle gray-level of its range, 
i.e., ( [ , ]) ( [ , ]) ( ) / 2m s f mm s f s fl O l l l I l l l l= = + . As we want to 

minimize the brightness shift of each processed sub-image, 
such that the global processed image has its contrast enhanced 
and its brightness preserved (creating a natural looking output 
image), we focus our attention on the brightness of the output 
image. Hence, instead of using the mean ( [ , ])m s fl I l l  of each 

input sub-image [ , ]s fI l l  in the discrepancy function, we 

propose to use its middle level ( ) / 2s fl l+ , since every 

enhanced sub-image [ , ]s fO l l  will theoretically have its mean 

value (brightness) on the middle level of the image range - 
thanks to the specification of a uniform histogram distribution. 
Therefore, a new discrepancy function is proposed and it is 
expressed as 

,

,

,, 2 [0, 1]

1

( ) ( ( [ , ]))

j k
f

j k
s

lk
j kj k I L

mm s f l
j l l

Disc k l l I l l P −

= =

= −∑∑ ,       (9) 

where ,,( [ , ])j kj k
mm s fl I l l  stands for the middle value of the 

image ,,[ , ]j kj k
s fI l l . The method conceived with this 

discrepancy function will be called Minimum Middle Level 
Squared Error MHE (MMLSEMHE).  

 
Algorithm 1: Computing ( )Disc k  and ( , 1)PT k L − . 

Data: ( , )p qϕ  - discrepancy of sub-image ( , )I p q  

Result: ( )qD p  - disc. function ( )Disc p  up to level q  

Result: PT  - optimum thresholds matrix 
1  for 0q ←  ; q L< ; q + +  do ( ) (0, )qD l qϕ← ; 

2  for 1p ←  ; p k≤  ; p + +  do 

3    1( 1) ( ) ( 1, 1)p pD p D p p pϕ−+ ← + − − ; 

4    ( 1, ) 1PT p p p+ ← − ; 

5      for 1q p← +  ; q L k p≤ − +  ; q + +  do 

6        ( 1)qD p + ← −∞ ; 

7        for 1l p← −  ; 1l q≤ −  ; l + +  do 

8          if ( ( 1) ( ) ( 1, )q lD p D p l qϕ+ > + + ) then 

9            ( 1) ( ) ( 1, )q lD p D p l qϕ+ ← + + ; 

10           ( 1, )PT p q l+ ← ; 

 

B. Finding the Optimal Thresholds 

The task of finding the optimal 1k −  threshold levels which 
segment an image into k  classes can be easily performed by a 

dynamic programming algorithm with 2( )O kL  time 

complexity [9]. Algorithm 1 presents this algorithm, where 
( , )p qϕ  stands for the "discrepancy contribution" of the sub-

image [ , ]I p q , i.e., 

2 [0, 1]( , ) ( )
q

I L
l

l p

p q l Pϕ γ −

=

= −∑ ,                   (10) 

and γ  stands for ( [ , ])ml I p q  or ( [ , ])mml I p q , depending on 

the discrepancy function used (see (8) and (9)). 
Once Algorithm 1 is run, the optimal threshold vector Tk 

can be obtained through a back-searching procedure on PT, 
i.e., 

*
1( 1, )j k

jkt PT j t += + ,                           (11) 
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where 1 j k≤ < , *
1 1k

jt L+ = −  if 1j k+ = , and *
1 1

k k
j jt t+ +=  

otherwise. 

C. Automatic Thresholding Criterion 

This section presents an approach to automatically 
choose in how many sub-image the original image should 
be decomposed on. This decision is a key point of our 
work, which has three main aims: 1) contrast enhancement; 
2) brightness preserving; 3) natural appearance. 
Nonetheless, these goals cannot be all maximize 
simultaneously. We take into account that as the number of 
sub-images in which the original image is decomposed 
increases, the chance of preserving the image brightness 
and natural appearance also increases. However, the 
chances of enhancing the image contrast decrease. To 
decide on how many sub-images the original image should 
be decomposed, this tradeoff should be considered. Hence, 
we propose to use a cost function, initially used in [10], to 
automatically select the number of decomposed sub-images. 
This cost function takes into account both the discrepancy 
between the original and processed images (which is our 
own aim decomposition function) and the number of sub-
images to which the original image is decomposed, and it is 
defined as 

1/ 2 2
2( ) ( ( )) (log )C k Disc k kρ= + ,                   (12) 

where ρ  is a positive weighting constant. The number of 

decomposed sub-images k  is automatically given as the one 
which minimizes the cost function ( )C k . It is shown in [10] 

that the cost function presented in (12) has a unique 
minimum. Hence, instead of finding the value k  which 
minimizes ( )C k  throughout k  values range, it is enough to 

search for k  from 0 up to a value where ( )C k  starts to 

increase. 
V. RESULTS AND DISCUSSION 

In this section, we report results of experiments comparing 
our proposed methods with the other HE methods described 
in Section III and the method proposed in [2]. The input 
images used in the experiments were the ones previously 
used in [2]-[5], [7]. They are named as they were in the 
works where they first appeared: arctic hare, bottle, copter, 
couple, Einstein, F16, girl, hands, house, jet, U2, woman 
(girl in [2]). Images were extracted from the CVG-UGR 
database [11] and provided by the authors of [3], [7]. 

Table II shows the number of sub-images automatically 
obtained by the methods MWCVMHE and MMLSEMHE, 
represented by the columns ml  and mml , respectively. 

These values were obtained using the threshold criterion for 
image decomposition exposed in Section IV.C, and the 
weighting constant ρ  with the value 0.8 (as done in [10]). 

In practice, our methods take less than 50 ms to find the 
number k , decompose and enhance an image on a Pentium 
IV - 2GHz. 

To start our analysis, for each image, we computed the 
brightness (the mean) and the contrast (the standard deviation) 
of the original and the output images obtained by the HE 
methods. Moreover, in order to assess the appropriateness of the 
processed images for consumer electronics products, we 
computed the PSNR  measure [12] as well. In the image 
processing literature, the PSNR  has been used as a standard 
measure to evaluate and compare compression and 
segmentation algorithms [12]. It is well-known that a processed 
image with good quality (with respect to the original one) 
presents PSNR  values within 30 dB and 40 dB [12]. 

 
TABLE II 

AUTOMATIC SELECTION OF THE NUMBER OF SUB-IMAGES - k. 

Image lm lmm Image lm lmm 

arctic hare 5 7 Girl 5 6 
Bottle 6 6 hands 5 6 
Copter 6 6 house 6 6 
Couple 5 6 jet 5 5 
Einstein 6 7 U2 4 4 
F16 5 7 woman 6 7 

 
The values of brightness, contrast and PSNR obtained 

for each image are presented in Tables III, IV and V, 
respectively. These tables are divided into three parts: 1) 
The names and the data values of original images (for the 
PSNR  table, the values of original images are constant, 
i.e., ∞ ); 2) The data values obtained by the Uni- and Bi-
HE methods, i.e., HE, BBHE, DSIHE, MMBEBHE, and 
BPHEME; 3) The values obtained by the MHE methods, 
i.e., RMSHE ( 2r = ), and our proposed MWCVMHE and 
MMLSEMHE. 

In Tables III and IV, we first compare the data values 
(image brightness and image contrast, respectively) of 
each image in parts 2 (i.e. Uni- and Bi-HE) and 3 (i.e. 
MHE) of the table with the data values of the input image 
in part 1. For each image, the best data values in each part 
of the table appear in gray. In a second step, we compare 
the best values in parts 2 and 3 of the tables against each 
other (i.e. Uni- and Bi-HE methods against MHE 
methods). The best value is dark-grayed, the worse light-
grayed. 

Let us first analyze the results in Table III, regarding 
the brightness of the original and the HE processed 
images. By observing the absolute difference between the 
value of brightness in the original and the processed 
images (i.e., the brightness preservation), we state that: 1) 
The images produced by our proposed methods are better 
in preserving the brightness of the original images in 8 
out of 12 images; 2) Even thought our methods are not 
always the best brightness preserving ones, their resulting 
brightness is always very close to the brightness of the 
original images; 3) The MMLSEMHE method has shown 
to be more robust than the MWCVMHE method in terms 
of brightness preservation. 



IEEE Transactions on Consumer Electronics, Vol. 53, No. 3, AUGUST 2007 1192 

 
TABLE III 

IMAGE BRIGHTNESS - MEAN ( ∑ −

=
×=

1

0
)(

L

l
lplμ ) 

Image Original HE BBHE DSIHE MMBEBHE BPHEME RMSHE( 2r = ) MWCVMHE MMLSEMHE

arctic hare  220.89 139.45 199.18 184.76 209.22 222.92 218.05 217.96 220.13 
bottle  78.76 128.35 94.15 97.73 82.36 79.37 81.08 78.94 79.08 
copter  191.44 128.69 174.23 164.47 188.57 192.12 188.43 190.2 190.53 
couple  33.35 129.83 66.47 77.23 49.79 33.96 43.46 36.54 35.45 
Einstein  107.75 128.83 126.99 119.78 108.84 109 117.85 110.5 108.64 
F16  179.2 129.42 180.22 163.24 180.24 180.32 180.4 184.99 178.93 
girl  139.2 133.94 162.78 131.66 144.97 145.21 139.77 139.46 140.05 
hands  27.99 179.71 52.99 46.64 46.06 38.36 31.75 41.61 31.63 
House  68.97 129.86 94.00 95.48 70.48 70.74 77.01 72.68 71.35 
jet  201.11 129.33 196.15 174.25 201.51 201.93 200.42 200.75 201.7 
U2  32.51 131.33 49.32 74.21 39.78 33.56 37.06 32.66 33.55 
woman  113.13 128.52 129.07 124.43 114.17 114.12 113 113.84 113.24 

 
TABLE IV 

IMAGE CONTRAST - STANDARD DEVIATION ( ∑ −

=
×−=

1

0
)()(

L

l
lPl μσ ) 

Image Original HE BBHE DSIHE MMBEBHE BPHEME RMSHE( 2r = ) MWCVMHE MMLSEMHE

arctic hare 49.07 86.73 71.91 81.29 57.9 34.87 52.76 56.69 49.11 
bottle 52.07 73.34 73.47 75.7 59.65 63.65 59.12 55.19 54.83 
copter 40.66 73.9 72.7 76.76 52.52 55.89 52.05 44.85 44.48 
couple 31.57 71.81 74.13 79.5 48.46 32.98 53.26 35.83 32.02 
Einstein 37.11 73.56 73.87 73.92 62.33 72.14 57.92 40.05 37.59 
F16 45.12 74.57 67.68 77.4 68.79 62.61 61.08 55.3 46.74 
girl 29.7 75.47 70.09 75.42 68.7 74.67 37.81 35.37 31.47 
hands 54.36 27.29 60.92 75.8 69.39 21.74 59.9 50.51 54.69 
house 38.25 73.61 75.14 75.55 55.43 59.66 56.84 41.93 39.72 
Jet 52 74.31 64.71 78.33 54.36 49.7 56.79 57.19 55.92 
U2 25.62 72.23 64.58 78.39 50.00 32.14 44.68 36.52 29.63 
woman 49.19 73.51 73.62 73.69 66.11 72.8 62.57 52.26 50.69 

 
TABLE V 

MSELPSNR /)1(log10 2
10 −×=  

Image HE BBHE DSIHE MMBEBHE BPHEME RMSHE( 2r = ) MWCVMHE MMLSEMHE 

arctic hare 8.11 16.63 13.09 23.55 22.95 30.74 31.44 40.27 
bottle 12.88 18.68 17.53 28.44 25.72 29.68 35.99 36.71 
copter 10.61 15.95 14.2 25.5 23.2 25.62 33.83 34.77 
couple 7.57 13.18 11.61 19.86 38.54 19.65 30.59 40.16 
Einstein 15.08 15.15 15.58 18.91 16.21 19.51 31.42 34.53 
F16 11.92 20.69 16.02 20.32 21.61 22.72 24.43 37.1 
girl 13.03 13.3 12.99 14.03 13.19 28 29.39 33.03 
hands 4.36 19.58 17.76 19.99 17.18 30.93 24.49 35.82 
house 10.82 14.27 14.07 21.41 19.93 21.36 31.81 36.37 
Jet 9.51 22.5 14.37 30.78 23.99 27.85 29.14 31.74 
U2 6.99 15.06 10.94 19.87 27.32 22.12 26.21 31.08 
woman 17.83 17.73 18.25 21.6 19.23 23.67 28.83 34.53 

 
We perform a similar analysis to the one performed in Table 

III in Table IV. By observing the contrast values, we state that: 
1) The method DSIHE produces the best image contrast 
enhancement in 10 out of 12 images, losing only twice for the 
classical HE method; 2) The RMSHE ( 2r =  - four sub-images) 
presents the best image contrast enhancement among the MHE 
methods in 10 out of 12 images, losing only twice for our 

MWCVMHE method; 3) The MMLSEMHE method produces 
the smaller image contrast enhancement - this is the price to pay 
when we want to obtain at the same time image contrast 
enhancement, brightness preserving, and natural looking 
images. Nonetheless, as will be shown in a further visual 
analysis of images, the images produced by the MMLSEMHE 
method are the best ones regarding natural look. 
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original 

 
BPHEME 

 
MWCVMHE ( 5k = ) 

 
MMLSEMHE ( 6k = ) 

Fig. 2. Enhancement for the girl image based on BPHEME, MWCVMHE, and MMLSEMHE methods. 

 

 
original 

 
RMSHE ( 2r = ) 

 
MWCVMHE ( 6k = ) 

 
MMLSEMHE ( 7k = ) 

Fig. 3. Enhancement for the Einstein image based on RMSHE ( 2r = ), MWCVMHE, and MMLSEMHE methods. 

 

 
original 

 
RMSHE ( 2r = ) 

 
MWCVMHE ( 5k = ) 

 
MMLSEMHE ( 7k = ) 

Fig. 4. Enhancement for the arctic hare image based on RMSHE ( 2r = ), MWCVMHE, and MMLSEMHE methods. 

 
Finally, we analyze the data presented in Table V. In Table 

V, the best values of PSNR are highlighted in gray. Recall that 
the greater the value of the PSNR , the better it is. Looking at 
these figures, we observe that the images processed by the 
MMLSEMHE method produces the best PSNR  values, as they 
are within the range [30 dB , 40 dB]. It is based on this result we 
argue that the MMLSEMHE method performs image contrast 
enhancement and brightness preserving and still produce images 
with a natural looking. Moreover, this result corroborates, in 
practice, our hypothesis that the MMLSEMHE method, using 
the discrepancy function in (9), yields images with the best 
PSNR  values among all HE methods. 

Once the images were analyzed considering their 
brightness, contrast and PSNR, we performed an image visual 
assessment. Remark that all the 12 input images, their 
histograms, their respective enhanced images and equalized 
histograms (obtained by all the methods listed in Table III), 
adding up to more than 200 images, can be seen in [13]. Here 
we present an analysis of 3 images: girl, Einstein and artic 
hare. Fig. 2 shows the resulting images obtained by the 
BPHEME method [4] and our proposed ones for the girl 
image. Note that the output images obtained by Bi-HE and the 

RMSHE methods for girl can be observed at Fig. 1. By 
visually inspecting the images on these two figures, we can 
clearly see that only the MHE methods (i.e., RMSHE ( 2r = ), 
MWCVMHE and MMLSEMHE methods) are able to 
generate natural looking images and still offer contrast 
enhancement. 

Fig. 3 shows the Einstein image and the resulting images 
obtained by the MHE methods, i.e., RMSHE ( 2r = ), 
MWCVMHE and MMLSEMHE. By observing the processed 
images, it is noticeable that our proposed methods are the only 
ones among the MHE methods that can produce natural 
looking images. Recall that the other methods are worst than 
MHE methods for producing natural looking images. 

Fig. 4 shows the images obtained by applying the MHE 
methods to the image artic hare. We chose this picture because 
it shows that, even thought the image contrast enhancement 
produced by our methods is sometimes limited, they can 
enhance particular and interesting parts of an image. Observe 
that on the upper right corner of the images we can perceive 
contrast enhancement. Nonetheless, the RMSHE ( 2r = ) and 
MWCVMHE methods generate better enhancement on that 
region than the MMLSEMHE method. 
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After analyzing the data presented on Tables III-V and 
visually observing some processed images, we can conclude 
that: 1) The MMLSEMHE method produces images with 
better quality than the other methods with respect to the 
PSNR  measure; 2) Nonetheless, a better image contrast 
enhancement can be obtained by the MWCVMHE method, 
which also presents satisfactory brightness preserving and 
natural looking images 3) The RMSHE method ( 2r = ) 
should be employed if more contrast enhancement than 
offered by the MMLSEMHE and MWCVMHE methods is 
desired. However, in this case, the processed image may 
present some annoying and unnatural artifacts (for instance 
Fig. 3-RMSHE ( 2r = )). 

VI. CONCLUSION 

In this work, we proposed and tested a new framework 
called MHE for image contrast enhancement and brightness 
preserving which generated natural looking images. The 
experiments showed that our methods is better on preserving 
the brightness of the processed image (in relation to the 
original one) and yields images with natural appearance, at the 
cost of contrast enhancement. The contributions of this work 
are threefold: 1) An objective comparison among all the HE 
methods using quantitative measures, such as the PSNR , 
brightness and contrast; 2) An analysis showing the 
boundaries of the HE technique and its variations (i.e., Bi- and 
Multi-HE methods) for contrast enhancement, brightness 
preserving and natural appearance; 3) Our proposed methods. 
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