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Abstract—Infrastructure-based vehicular networks (consisting
of a group of Base Stations (BSs) along the road) will be widely
deployed to support Wireless Access in Vehicular Environment
(WAVE) and a series of safety and non-safety related applications
and services for vehicles on the road. As an important measure of
user satisfaction level, uplink connectivity probability is defined
as the probability that messages from vehicles can be received
by the infrastructure (i.e., BSs) through multi-hop paths. While
on the system side, downlink connectivity probability is defined
as the probability that messages can be broadcasted from
BSs to all vehicles through multi-hop paths, which indicates
service coverage performance of a vehicular network. This paper
proposes an analytical model to predict both uplink and down-
link connectivity probabilities. Our analytical results, validated
by simulations and experiments, reveal the trade-off between
these two key performance metrics and the important system
parameters, such as BS and vehicle densities, radio coverage
(or transmission power), and maximum number of hops. This
insightful knowledge enables vehicular network engineers and
operators to effectively achieve high user satisfaction and good
service coverage, with necessary deployment of BSs along the
road according to traffic density, user requirements and service
types.

Index Terms—Vehicular ad-hoc Network (VANET), Wireless
Access in Vehicular Environment (WAVE), IEEE 802.11p, IEEE
1609, Connectivity Probability

I. INTRODUCTION

VEHICLES started to emerge as an important way of
traveling in Chinese daily life during the past decade.

Since 2005, the number of private car ownership keeps in-
creasing by around 30% every year and has reached 34.43
million by the end of 2010 [1]. Statistics also show that the
average commuting time in major cities of China is more
than 60 minutes [2]. As people have to spend more and
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more time on road, there is a strong demand to provide
a media rich broadband wireless communications system to
passengers. China has been carrying out an ambitious plan
to build a national TD-LTE mobile network. Meanwhile, the
IEEE 802.11p and 1609 standards are under development to
support Wireless Access in Vehicular Environment (WAVE)
in VANETs and to deliver safety and non-safety applications
to vehicles on the road [3][4], and wireless system for high
speed trains are also under research [5]. However, how to
provide easy and effective communications between vehicles
with dynamic mobility and as well as between vehicles and
roadside base stations still remains an open and challenging
area.

Various challenges need to be solved before an intelligent
vehicular network comes into reality. Due to the random
location and mobility of vehicles, and the limited roadside
resources, the connectivity among vehicles and BSs are not
naturally guaranteed. From passengers’ perspective, the uplink
connectivity probability, defined as the probability that mes-
sages from vehicles can be received by BSs through multi-
hop paths, is a critical performance metric and is arguably
the most important service requirement that directly affects
users’ experiences and satisfaction levels in data transmissions.
From roadside infrastructures’ perspective, the downlink con-
nectivity probability, defined as the probability that messages
can be broadcasted from BSs to all vehicles through multi-
hop paths is important and is related to the service coverage
of a vehicular network that determines the efficiency/quality
broadcasting services (from a BS to many vehicles), such
as safety and emergency information dissemination from a
traffic manager or a network operator to all vehicles. Several
ways can be used to improve both the uplink and down-
link connectivity probabilities including increasing the radio
coverage (or transmission power) of BSs, deploying more
BSs or allowing multi-hop communications. However, the
inter-cell interference may increase when the transmission
power of BSs increases or the number of BSs increases. The
more dense deployment of base stations will cost operators
more at up-front investments and maintenance, hence multi-
hop communications becomes an good solution for increasing
the chance of accessibility when a vehicle cannot directly
communicate with any BS (e.g., it is located in a coverage
gap between adjacent BSs) by enabling it to rely on its
neighboring vehicles to forward/relay data packets to/from
a nearby BS. Although using multi-hop communications can
greatly improve the connectivity probability, it will increase
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transmission delay, the complexity and system overhead of the
routing algorithm and so on. Therefore, the maximum number
of hops a path can go through should be up bounded. Finally,
the probabilities are affected by real wireless channels (i.e.,
fadings) as well.
The connectivity probability in VANETs has been widely

studied. Factors such as traffic flow models (e.g., individual
mobility models [22], random waypoint model [20], Poisson
distribution model [8], uniform distribution model), communi-
cation models (e.g., protocol model and physical model [19]),
dimensions of network (e.g., one-dimensional, 2-dimensional
network), and whether infrastructure is needed are considered
most frequently. List just a few very closely related work:
for ad-hoc-like networks, the authors in [7] derived a for-
mula for one-dimensional MANET with vehicles uniformly
distributed under a simple communication model (protocol
model). The authors in [9] addressed connectivity problem
in ad-hoc network under a realistic wireless channel model
with shadowing and fading effects (physical communications
model). In addition, closed-form formula for connectivity in
linear ad-hoc network was calculated in [10] under a novel
mobility model using multi-dimensional hypercube and hyper-
plane method. For infrastructure-based vehicle networks, con-
nectivity probability formula for a vehicle-to-BS connection
(defined as uplink connectivity probability in this paper)
was derived in [11] and [21] under Poisson distribution and
protocol model.
Those work above are insightful and important, however

results for ad-hoc-like networks cannot be directly used in
infrastructure-based networks, and results for infrastructure-
based networks only focus on simple communication models
(i.e., protocol models). Our work considers a realistic sce-
nario wherein wireless devices at roadside BSs and moving
vehicles have different coverage and capacity, and for the
first time, we differentiate and derive uplink and downlink
connectivity probabilities for infrastructure-based vehicular
networks. Moreover, we use a Poisson traffic model and a
log-normal shadow fading model for performance analysis
in this paper, but our analytical approach can be easily
extended to study connectivity probability under other traffic
and channel models. Our work can be regarded as an integra-
tion, enhancement and extension of those work. Finally, we
have already done some work to derive 2-hop connectivity
probability for infrastructure-based VANETs [12] and [13],
and it is straightforward to extend our work above to de-
rive multi-hop connectivity probability for infrastructure-based
VANETs. A recent closely related work in [6] provided an
analysis framework for probabilistic delay for the delivery of
vehicle-to-infrastructure packet under the concept of disrupted
connectivity for highways with low density. Our work is
complementary to this work, and focuses on the uplink and
downlink connectivity performance in multi-hop scenarios.
In this paper, we firstly derive and analyze the connectivity
probability between a pair of arbitrary base station and vehicle
(which can be regarded as connectivity probability in ad-hoc-
like networks) and then we move forward to study the uplink
and downlink connectivity probabilities for infrastructure-
based VANETs. The trade-off between some key performance
metrics and some important system parameters, such as BS

and vehicle densities, radio coverage (or transmission power),
and maximum number of hops, are fully investigated. This
insight knowledge enables vehicular network engineers and
operators to effectively achieve high user satisfaction and good
service coverage, with only necessary deployment of BSs
along the road according to traffic density, user requirements
and service types. Finally, our analytical results are validated
by both computer-based simulations and experiments (real-
traffic-flow-based simulations).
The rest of this paper is organized as follows. System

model of infrastructure-based vehicular networks is defined
in section II. The connectivity probability between an ar-
bitrary pair of BS and vehicle is derived in sections III.
The multi-hop uplink and downlink connectivity probabilities
for infrastructure-based VANETs are derived in section IV.
Analytical, simulation and experiment results are presented in
section V, followed by conclusions in section VI.

II. SYSTEM MODEL

The abstracted network scenario is presented in Fig. 1. In
this figure, roadside infrastructure (Base stations) is built along
the road, such as BS1 and BS2. A, B, C, ..., and H are vehicles
traveling on the road segment1. Here let L be length of the
road segment in meters.
Multi-hop relay is allowed in this network, and thus vehicles

without direct link to BSs will have connections to BSs if they
can find multi-hop relays (e.g., D can access BS1 via C, B, and
A2, and be accessed by BS1 via B and C). Vehicles that have no
multi-hop connections to BSs, such as E are isolated vehicles.
We assume there are some existing protocols to allow vehicle
to choose one of their neighboring vehicles with minimum-hop
connections to BSs be the next hop relay (e.g., F will choose
H instead of G as its next hop relay, and it can access BS2 via
just two hops), and doppler shift has been compensated with
some schemes, e.g. [14]. To guarantee the delay performance
in VANETs, a maximum number of hops a packet can travel
is assumed to be K .
For traffic flow models, first, Poisson distribution is used

to determine the random number of vehicles in our analysis,
where the probability that there are n vehicles on the road
segment is

f(n, L) =
(ρL)ne−ρL

n!
(1)

where ρ is the traffic density, defined as cars per meter.
This distribution has been partly verified by our field test.

During the field test, we collected real traffic data of S20
expressway in Shanghai from 0:00, Dec. 19 to 24:00, Dec.
20, 2010, CST. The number and average speed of vehicles
crossing the testing point were recorded every twenty seconds.
A histogram of number of cars (during a two-hour interval in
the evening) is shown in Fig. 2. From this figure, it can be seen
that the distribution of the number of vehicles approximately
follows Poisson distribution. Finally, given the number of
vehicles on the road, the vehicles are uniformly distributed
along the road segment.

1Road segment is a part of a road between two adjacent BSs.
2There is only an unidirectional connection from BS1 to B, as BS1 is not

in the coverage radius of B.
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Fig. 1. Scenario of VANET along the road segment.

Fig. 2. Histogram of S20 Traffic Flow.

For communication models, both the unit disk (protocol
model) and log-normal shadow communication model3 are
considered in this paper. For the unit disk model, any vehicle
pair or vehicle-BS pair is able to be connected if the distance
between each other is less than the coverage radius [17].
Expression for log-normal shadow model will be given in the
following section. In our analysis, the capacity of communica-
tion modules at different vehicles are assumed to be identical
and communication modules at different BSs stations are also
assumed to be identical.

III. CONNECTIVITY PROBABILITY BETWEEN AN

ARBITRARY PAIR OF BS AND VEHICLE

Define a k-hop neighbor of a BS to be a vehicle that is
able to receive messages from the BS via exactly k hops. Let
Φb

k(x) be the probability of the event that “a vehicle x meters
away from a BS is a k-hop neighbor of the BS”. Similarly,
define a k-hop neighbor of a vehicle to be a BS (or a vehicle)
that is able to receive messages from the vehicle via exactly k
hops. Let Φv

k(x) be the probability of the event that “a BS (or
a vehicle) x meters away from a specific vehicle is a k-hop
neighbor of the vehicle”. These two types of definitions are
corresponding to downlink transmission (i.e., safety or enter-
tainment information from BSs) and uplink transmission (i.e.,
feedback or request information from vehicles), respectively.
It is worth noting that the communication capabilities of BSs
and vehicles are usually different, so Φb

k(x) and Φv
k(x) are

expected to be different. The formula for Φb
k(x) will be derived

at first.
If a vehicle is a k-hop neighbor of a BS, then k should

3Large-scale fading is implicitly incorporated in this model.

satisfy the following equation

k =

⎧⎨
⎩

0, if the vehicle has no connection to the BS
1, if the vehicle has direct connection to the BS
min{hops of its neighbors} + 1, otherwise

Lemma 1: A vehicle is a k-hop neighbor of a specific BS,
if it is not n-hop (0 ≤ n < k) neighbor of the BS, and at least
one of its neighbors is a (k-1)-hop neighbor of the BS.
Lemma 1 is obvious, and the proof is omitted.
Φb

0(x) is the probability that a vehicle x meters away from
a BS is isolated from the BS. Meaning of Φb

1(x) is clear, i.e.,
under protocol model, if a vehicle is in the coverage radius of a
BS, it is able to receive messages from the BS with 100%, and
thus it is 100% a 1-hop neighbor of the BS. If coverage radius
of BSs is R, then Φb

1(x) can be expressed mathematically as
follows,

Φb
1(x) =

{
1, x < R
0, otherwise

(2)

Under log-normal shadow model (physical model) which is
more close to reality, from the following expression,

pr = p0 − 10α log10

x

d0
+ Nσ (3)

where pr is the received power (in dBmW) at target vehicle,
p0 is the power (in dBmW) at a reference distance d0, α is
the path loss exponent, Nσ is a Gaussian random variable
with zero mean and variance σ2, x is the Euclidean distance
between the BS and a vehicle, if threshold (pth) of the received
power for decoding at BSs is given, we have

Φb
1(x) = Pr(pr > pth) (4)

Now, we move to the stage of finding the value of Φb
i(x)

where i > 1 and present a lemma at first.
Lemma 2: The sum of Φb

i (x) (i = 0,1,2,...,+∞) is 1, i.e.,
+∞∑
i=0

Φb
i (x) = 1 (5)

Proof: For any vehicle x meters away from a BS, denote
Ei(x) be the event that “a vehicle x meters away from a BS
is a i-hop neighbor of the BS”. E0(x), E1(x), E2(x), ... , and
E+∞(x) are mutually disjoint events, and all of them forms
a sample space Ω. Therefore,

Pr(
+∞⋃
i=0

Ei(x)) =
+∞∑
i=0

Pr(Ei(x)) =
+∞∑
i=0

Φi(x) = 1

After going through Lemma 1 and 2, we have the following
proposition.
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Fig. 3. Target vehicle x meters away from a BS is k-hop neighbor of the
BS.

Proposition 1: when k > 1,

Φb
k(x) =

(
1 −

k−1∑
i=0

Φb
i (x)

)
(

1 − exp(−
∫

Γ

Φb
k−1(s) · Φv

1(x − s) · ρds)
)

(6)

where Γ is integration area, and ds is integration increment4.
Proof: As shown in Fig. 3, area enclosed by dashed line

and borders of road segment (denoted as Γ) is where possible
neighbors of the target vehicle (a vehicle arbitrarily chosen
for the analysis) could be found.
Set position of the BS as reference point. Then we start our

analysis from a point that is s meters away from the BS.
Lemma 1 tells us that a vehicle has to meet two require-

ments in order to define itself as k-hop neighbor of a specific
BS. In fact, left part of the righthand side of (6) is expressed in
terms of the first condition, i.e., the probability that the vehicle
is not 0, 1, 2... and (k−1)-hop neighbor of the BS. Let G(x)
be the event that “for a specific vehicle x meters away from
the BS, at least one of its neighbors is a (k−1)-hop neighbor
of the BS”. Then the right part of the righthand side of (6) is
just the probability of G(x), but it needs a bit explanation.
Let g(s) be probability that no vehicle in s∩Γ is a (k−1)-

hop neighbor of the BS. Then, g(s + ds) is probability of the
event that “no vehicle in (s+ds)∩Γ is a (k−1)-hop neighbor
of the BS”. This event is equivalent to the event that “there
are no vehicles in s ∩ Γ and ds is a (k−1)-hop neighbor of
the BS”. Let f(ds) denote the probability that there is at least
one vehicle traveling in ds, then we can express g(s + ds) as

g(s + ds) = g(s) · (1 − f(ds) · Φb
k−1(s) · Φv

1(x − s)) (7)

Following Poisson distribution, when ds is infinitely small,
we have

f(ds) = ρds (8)

Then, re-arrange (7), we have a differential equation,

g(s + ds) − g(s)
ds

= −g(s) · Φb
k−1(s) · ρ · Φv

1(x − s)

⇒ g′(s) = −g(s) · Φb
k−1(s) · ρ · Φv

1(x − s) (9)

Solve (9) and we have the probability of G(x)

4In our analysis, for simplicity Γ could be regarded as 1-dimensional
integration interval, while actually, if distributions for traffic flows on different
lanes are known, then we could modify (6) a little bit into double integration
to support 2-dimensional scenarios.

Pr(G(x)) =
∫

Γ

dg(s)ds

= C · exp(−
∫

Γ

Φb
k−1(s)Φ

v
1(x − s)ρds)(10)

Note the constant number C equals 1, as Pr(G(x)) should
be in the interval [0, 1].
Effortlessly, we have the probability of G(x)

Pr(G(x)) = 1 − exp(−
∫

Γ

Φb
k−1(s) · Φv

1(x − s) · ρds) (11)

which is just the right part of righthand side of (6).
Similarly, the probability that a BS is a k-hop neighbor of

a vehicle can be written as

Φv
k(x) =

(
1 −

k−1∑
i=0

Φv
i (x)

)
(

1 − exp(−
∫

Γ

Φv
k−1(s) · Φv

1(x − s)ρds)
)

(12)

where for unit disk model

Φv
1(x) =

{
1, x < r
0, otherwise

(13)

, and for log-normal model, with (3), we have

Φv
1(x) = Pr(pr > p

′
th) (14)

where p
′
th is threshold of received power for decoding at the

vehicles.
For simplicity, Φb

0(x) is approximated to be probability that
the BS has no 1-hop neighbors, and Φv

0(x) is approximated to
be probability that the target vehicle has no 1-hop neighbors.
Note that since Φb

1(x) and Φv
1(x) are different, values for (6)

and (12) are expected to be different. For some other traffic and
communication models, if f(ds), Φv

1(x) and Φb
1(x) are known,

then (6) and (12) can be easily extended. And for Φv
k(x), it

can be regarded as the connectivity probability formula for
pure ad-hoc-like networks.

IV. CONNECTIVITY PROBABILITY FOR MULTI-HOP
INFRASTRUCTURE-BASED VANETS

Rationale behind the difference in the definitions for up-
link and downlink connectivity probability is that capacities
(transmit/receive radii) of BSs and vehicles are different and
safety information broadcasting in VANETs has the highest
priority, so for downlink transmission, how to guarantee that
all vehicles are able to receive safety information should be
focused, while for uplink transmission, it is not that strict5

(e.g., if 98% of messages from vehicles can be received by
the infrastructure, then uplink connectivity performance may
also be regarded as good).

5For pure VANETs, since every node (vehicle) in the network is identical,
there are no uplink and downlink differences.



ZHANG et al.: MULTI-HOP CONNECTIVITY PROBABILITY IN INFRASTRUCTURE-BASED VEHICULAR NETWORKS 5

A. Uplink Connectivity Probability

The uplink connectivity probability is presented in the
following proposition.
Proposition 2: Multi-hop uplink connectivity probability

for infrastructure based VANETs is

pu =
∫ L

0

dx

L

{
1 −

(
1 −

K∑
i=1

Φv
i (x)

)(
1 −

K∑
i=1

Φv
i (L − x)

)}
(15)

Proof: Let H(x) be the event that “messages from a vehi-
cle x meters from BS1 can be received by the infrastructure”.
If H(x) is true, then “either BS1 or BS2 or they both are
n-hop (n=1,2,..., or K) neighbors of the vehicle”. Thus the
probability of H(x) is

Pr(H(x)) = 1 −
(

1 −
K∑

i=1

Φv
i (x)

)(
1 −

K∑
i=1

Φv
i (L − x)

)
(16)

The uplink connectivity probability can be regarded as the
expectation of the probability that “messages from an arbitrary
vehicle can be received by the infrastructure”. Hence the
uplink connectivity probability is

pu =
∫ L

0

Pr(H(x))
dx

L
(17)

and thus (15) is obtained.

B. Downlink Connectivity Probability

We divided the road segment equally into two parts: left and
right part. If messages can be broadcast from infrastructure
to all vehicles on the road segment, then approximately all
vehicles traveling on the left part can be accessed by BS1

(i.e., messages from BS1 can reach these vehicles) and all
vehicles on the right part can be accessed by BS2.
Lemma 3: The probability that all vehicles traveling on

the right part can be accessed by BS2 is approximately the
probability that vehicle farthest to BS2 can be accessed by
BS2.

Proof: Φv
k(x) contains information about connection con-

ditions with neighboring vehicles, and thus vehicles traveling
on the right part farthest to BS2 has the least probability to be
accessed by BS2. If that vehicle can be accessed by BS2, then
we can assume all vehicles on the right half can be accessed
by BS2.
With Lemma 3, we have the following proposition,
Proposition 3: Multi-hop downlink connectivity probabil-

ity for infrastructure based VANETs is

pd =
{

e−
ρL
2 +

∫ L
2

0

ρdu · e−ρu ·
( K∑

i=1

Φb
i (

L

2
− u)

)}2

(18)

Proof: We derive the downlink connectivity probability
for the right part at first. As shown in Fig. 4, the central line
of the road segment is set as reference, and direction BS1 →
BS2 is set as positive direction.
Define T (u) as the event that “the farthest vehicle which

can be accessed by BS2 in the right part lies in (u, u + du)”.
More intuitively, T (u) is equivalent to the event that “there

Fig. 4. The farthest vehicle to BS2 lies in the area (u, u+du).

are no vehicles in (0, u), and there is one n-hop (n=1,2,..., or
K) neighbor of BS2 in (u, u + du)”. With (1) we have

Pr(T (u)) = e−ρu · ρdu ·
( K∑

i=1

Φb
i(

L

2
− u)

)
(19)

If there are no vehicles traveling on the right part of the road
segment, network along the right part is also be considered as
fully connected. Denoted this event as κ, according to (1), the
probability of κ is

Pr(κ) = e−
ρL
2 (20)

Derivation for the left half is the same, and they are
independent to each other. Thus finally we will have (18).

V. NUMERICAL RESULTS AND DISCUSSIONS

Both computer-based simulations and experiments (real-
traffic-flow-based simulations) have been done to validate our
analytical results. For the computer-based simulations, 10000
Poisson distribution realizations were generated to indicate
positions of vehicles on the road segment. Then the downlink
and uplink connectivity probabilities were calculated during
each realization and averaged over all realizations. For the
experiments, four hidden radars were installed on expressway
S20 in Shanghai to monitor traffic flows. The number and
average speed of vehicles crossing the testing point were
recorded every twenty seconds for eight days. Average traffic
density ρ were calculated to be 0.0350 and 0.0845 cars per
meters during non-busy periods (from 22:00 to 23:59, Dec. 19,
2010, CST) and busy periods (from 12:32 to 16:42, Dec. 19,
2010 CST), respectively. Analytical results were derived from
equations (15) and (18). Different vehicle traffic densities,
inter-BS distances, radio coverage ranges (BS and vehicle),
and multi-hop communication capabilities were considered.
Fig. 5 (a) and (b) show the uplink connectivity probabilities

pu during non-busy and busy periods as a function of inter-
BS distance L under unit disk model. In both cases, simula-
tion and experiment results match very well with analytical
results under different multi-hop communications conditions.
Obviously, single-hop uplink connectivity probability achieves
100% when L is less than 2r (1000 meters). In multi-hop com-
munications, the probability of finding multiple relays (one
for each hop) declines when the number of hops increases. So
the turning points for K-hop (K = 2, 3, 4) uplink connectivity
probability curves are slightly less than 2Kr in both (a) and
(b)6. When inter-BS distance L becomes larger than these
turning points, the corresponding pu curves are monotonically

6During busy periods, number of neighboring vehicles is larger, thus the
probability of finding multi-hop relays is higher, so turning points in (b) are
larger than that in (a).
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(a) Non-busy Periods (b) Busy Periods

Fig. 5. Uplink Connectivity Probability, R = 1000m, r = 500m (under unit disk model).

decreasing in parallel, with a vertical gap of 2r/L between
adjacent curves. So network designers can effectively control
and manage uplink connectivity probability performance for
vehicles/end-users by applying gradual impact from inter-BS
distance L (related to network investment) and/or stepwise
impact from hop number K (related to operation complexity).
Fig. 6 (a) and (b) show the downlink connectivity proba-

bilities pd as function of inter-BS distance L under unit disk
model. As seen, analytical, simulation and experiment results
are better matched in (b) than that in (a). Turning points of
experiment curve for 4-hop pd in (a) deviates that of analytical
and simulation curves a little bit. Similar as turning points in
Fig. 5, the falling-down edges of for single-hop and multi-hop
analytical and simulation curves are located at L=2R+2(K-1)r
(slightly to the left due to the same reasons as in Fig. 5). These
sharp edges indicate the technical challenges, key system
parameters and basic rules in designing and realizing a fully
connected vehicular network.
Form pu and pd curves in Figs. 5 and 6, it is seen that

the turning points for the downlink connectivity curves start
from 2R (2000m) while turning points for uplink connectivity
start from 2r (1000m), which indicates that if R > r, then
downlink transmission is more reliable than uplink trans-
mission in the same network. Also pu and pd curves in
Figs. 5 and 6 demonstrate the accuracy of our analytical
approach and results, i.e., (15) and (18), which can effectively
guide the real-world practice of vehicular network design,
implementation and management. In particular, they enable
network designers and operators to achieve and guarantee
predefined performance targets, in terms of the uplink and
the downlink connectivity probabilities, under different vehicle
traffic density, radio coverage and multi-hop communications
conditions. The horizontal gaps 2r between adjacent turning
points (Fig. 5) and adjacent edges (Fig. 6) reveal the trade-off
between hop number K and inter-BS distance L under the same
connectivity performance. Specifically, without affecting the
100% connectivity probability performance, L can be extended
by a distance of 2r (meaning less BSs and less investment)
when one more hop is allowed in vehicular communication
networks7.

7This conclusion is valid when traffic density ρ is sufficiently large.

Fig. 7 (a) and (b) shows the uplink connectivity probability
performance as a function of radio coverage range r of a
vehicle under unit disk model. When r is less than 1/ρ, it
is hard to find any neighboring vehicles as a relay, so the
uplink connectivity probability curves for different multi-hop
capabilities are indistinguishable in the range of [0, 1/ρ].
As r increases, the advantages of multi-hop communications
get clearer. The exact locations of the saturation points for
these curves reaching the maximum 100% uplink connectivity
probability can be estimated as rs = L/(2K) + (K-1)/(Kρ), K=1,
2, 3, 4.
Fig. 8 (a) and (b) shows the downlink connectivity prob-

ability as a function of vehicle coverage range r under unit
disk model. The sharp rising edges of these curves indicate
the critical conditions for realizing a fully connected vehicular
network. Note that the rising edge of single-hop curve is
located at r=1250 meters and, therefore, not presented in
Fig. 8. These two figures clearly demonstrate the trade-off be-
tween service performance, in terms of downlink connectivity
probability, and key system parameters, i.e., hop number K
and vehicle coverage range r, which determine the operation
complexity and transmission power of vehicles. Comparing
(a) and (b), it is seen that turning-points in (b) are smaller
than that in (a), which indicates that when traffic density ρ
is high, without impacting the 100% downlink connectivity
probability, vehicle coverage range r can be decreased to
save energy and reduce interference. Moreover, comparing (a)
and (b), it is seen that the experiment results for non-busy
periods have higher attenuations, which is due to that vehicle
density is lower in non-busy periods, and as each vehicle has
fewer neighboring vehicles (statistically), it is more difficult
to identify relays for establishing a connection with a roadside
BS.
The impact of inter-vehicle distance, i.e., the inverse of traf-

fic density parameter ρ, on the uplink connectivity probability
performance is shown in Fig. 9 for different multi-hop con-
ditions under unit disk model. Considering a specific vehicle,
single-hop uplink connectivity probability curve depends on
its location and is therefore fixed at 2r/L = 0.4. Multi-hop pu

curves start from the values of min{1, 2Kr/L} (when traffic
density is very high) and are then monotonically decreasing as
inter-vehicle distance increases, which means fewer and fewer
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(a) Non-busy Periods (b) Busy Periods

Fig. 6. Downlink Connectivity Probability, R = 1000m, r = 500m (under unit disk model).

(a) Non-busy Periods (b) Busy Periods

Fig. 7. Uplink Connectivity Probability, L = 2500m, R = 1000m (under unit disk model).

Fig. 9. Uplink Connectivity Probability, L = 2500m, R = 1200m, r = 500m
(under unit disk model).

neighboring vehicles can be found and used as relay.
By using Figs. 8-9 as a practical guidance, a network

designer or operator can effectively conduct (through roadside
BSs) dynamic transmission power control among neighboring
vehicles, thus to minimize energy consumption, interference
and multi-hop complexity while achieving the predefined
network service performance.
Fig. 10 shows comparisons between analytical results of the

downlink connectivity probability under unit disk model with
that under log-normal shadow model during non-busy periods.

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Distance Between Adjacent BSs (m)

D
ow

nl
in

k 
C

on
ne

ct
iv

ity
 P

ro
ba

bi
lit

y

 

 

Unit disk
Log−normal
1 hop
2 hops
3 hops
4 hops

Fig. 10. Downlink Connectivity Probability, L = 2500m, R = 1000m, r =
500m (Comparisons under unit disk model and log-normal shadow model).

Here, α = 3, σ = 8dB, ρ = 0.015 cars/meter. As seen, the
downlink connectivity curves for unit disk model have sharper
falling-down edges. The single-hop downlink connectivity
curve for unit disk model indicates better performance when
L < 2000, while for the multi-hop downlink connectivity
probability curves, results under log-normal shadow model
outstrip that under unit disk model, which indicates that for
multi-hop VANETs, shadow increases connectivity probabil-
ity. Moreover, when σ is zero, curves under both models are
the same, and thus, results under unit disk model can be
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(a) Non-busy Periods (b) Busy Periods

Fig. 8. Downlink Connectivity Probability, L = 2500m, R = 1000m (under unit disk model).

regarded as special cases of that under log-normal shadow
model.

VI. CONCLUSIONS

In this paper, an analytical model supporting multi-hop
relay for infrastructure-based vehicular networks was pro-
posed. Based on this model, formulae for multi-hop uplink
and downlink connectivity probabilities were derived. These
analytical results, verified by computer simulations and exper-
iments, reveal the trade-off between these key performance
metrics and some important system parameters, such as BS
and vehicle densities, radio coverage (or transmission power),
and the maximum number of hops a path contains. This insight
knowledge enables vehicular network engineers and operators
to effectively achieve high user satisfaction and good service
coverage, with only necessary deployment of BSs along the
road according to traffic density, user requirements and service
types. Our analytical approach and results will be extended by
considering more practical traffic flow models.
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