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Abstract – This contribution presents an application of a

multi hypothesis tracking (MHT) algorithm to the case of

ground moving targets detected by GMTI (Ground Mov-

ing Target Indicator) sensors. We describe in some detail

how the following tracking tasks are performed: track ex-

traction, prediction, filtering, track maintenance and retro-

diction (smoothing). The experimental implementation has

been successfully tested in a NC3A (NATO Consultation,

Command and Control Agency) testbed with simulated

GMTI data of various ground surveillance sensors. On-

going developments and improvements are discussed.

Keywords: STAP (Space Time Adaptive Processing),

GMTI (Ground Moving Target Indicator), GMTI tracking,

MHT (Multiple Hypothesis Tracking), Sequential Track

Extraction

1 INTRODUCTION

In modern military conflicts, capabilities for long-range

and near real-time ground surveillance are increasingly re-

quired. One important sensor technology for such a task

is airborne GMTI radar with STAP processing [1], which

already is or will be soon available from a number of differ-

ent platforms. The purpose of automatic target tracking is

to facilitate surveillance by providing continuous high qual-

ity tracks of single vehicles and military equipment as well

as aggregations such as convoys. Ground target tracking

with airborne sensors often suffers from low visibility, high

clutter and high target density. The use of modern track-

ing algorithms for many targets in a cluttered environment

therefore is indispensable in order to obtain sensible results.

Furthermore, the exploitation of as much a priori informa-

tion as possible on the sensor as well as on the targets and,

in particular, on the terrain is suitable to enhance track qual-

ity and track continuity.

The increasing interest in aerial ground surveillance is re-

flected in the formation of international technology projects

for joint airborne ground surveillance. The purpose of such

projects is to establish interoperability by integrating, ex-

ploiting, and sharing sensor data from different surveillance

platforms to the associated ground stations. Relevant sensor

types in this context are predominantly GMTI and synthetic

aperture radar (SAR) but in future also optical, infrared,

and electronic intelligence (ELINT) sensors.

There exist different national exploitation stations for

aerial ground surveillance. In Germany an experimental

“Interoperable Image Exploitation Station” (IIES) is in de-

velopement, lead by EADS, Defence and Communications

Systems. One current task is the integration of an experi-

mental interactive tracking component. An important ob-

jective of such technology programs are exercises (simu-

lated or real) to evaluate program technology and opera-

tional concepts. Such real data as well as realistically simu-

lated MTI sensor data are extremely valuable for a reliable

evaluation of different tracking algorithms.

In the following we present an application of a multi

hypothesis tracking (MHT) algorithm to the case of ground

moving targets detected by GMTI (Ground Moving Target

Indicator) sensors. The paper is is organized as follows:

Section 2 decribes the elements of the BAYESian MHT

algorithm, including track extraction, prediction, filtering,

track maintenance and retrodiction, and the modifications

necessary for the processing of GMTI-sensor data. Ex-

perimental results for simulated MTI sensor data will be

presented in Section 3.

2 Multi Hypothesis Tracking

In general, BAYESian tracking algorithms perform se-

quential updates of the probability density function (pdf),

p(xk|Z
k), of a target state xk at time tk, conditioned on the

incoming measurements up to that time Zk.[2, 3] Here, Zk

denotes all measurements of each scan up to the k−th scan,

i.e. Zk = {Z1, Z2, . . . , Zk}.

Multiple hypothesis tracking (MHT) consists of several

tasks: target track extraction, prediction, filtering, track
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maintenance, and retrodiction. In this section, we describe

in some detail how each of these tasks is realized.

2.1 Dynamical Model and Kalman Filtering

The dynamical model is chosen and adapted to ground

moving targets. Since these targets typically exhibit much

less agility than military air targets, the inclusion of acceler-

ations into the state vector may not be necessary. Therefore

the target state at time tk is defined by

xk = (rk ṙk)> = (xk;1 · · · xk;6)>

Under idealized circumstances, one may set the z-

coordinates xk;3 = xk;6 = 0. The probabilities of the hy-

potheses representing a target are dependent on the algo-

rithm used for data processing, and the underlying target

dynamics model. The Kalman filter assumes that the poste-

rior density at every time step is Gaussian, i.e. completely

described by its mean and covariance. The filtered probabil-

ity density p(xk+1|Z
k+1) is Gaussian as well, implying the

following assumptions: As widely accepted in the tracking

literature [2], the underlying dynamical model is a known

linear Markov process:

xk+1 = Fk+1|kxk + Gk+1|kvk+1 (1)

and the measurement is a linear function of the target state:

zk = Hkxk + wk, (2)

with Gaussian process and measurement noise, vk and wk,

resp.. Following the realization of [4], the matrices Fk+1|k

and Gk+1|k are given by

Fk+1|k =

(
J tk+1|kJ

0 e−tk+1|k/θtJ

)

(3)

and

Gk+1|k = Σk+1|k

(
0

J

)

.

with

tk+1|k = tk+1 − tk , Σk+1|k = vt

√
1 − e−2tk+1|k/θt , (4)

and J = diag[1, 1, 0] and 0 = diag[0, 0, 0]. It can be shown

that the modeled target velocity is ergodic and given by

�
[ṙk ] = 0,

�
[ṙk ṙ>l ] = v2

t e−2(k−l)tk+1|k/θt .

The parameter vt means a velocity limitation, and θt is

called maneuver correlation time. Both parameters have to

be chosen appropriately.

The filtering of the hypotheses is carried out within the

well known Kalman formalism. Since our target dynam-

ics are based on coordinate uncoupled maneuvers [5], the

Kalman filter are uncoupled in x and y as well. The esti-

mated target state in the k-th scan is described by a normal

mixture of n̂k individual track hypotheses,

p(xk|Z
k) =

n̂k∑

i=1

pi(xk|Z
k)

=

n̂k∑

i=1

pik N (xk; x̂i
k|k, Pi

k|k). (5)

(See [6] for the definition of the normal distribution N .)

Thus Zk is the set of the nk measurements in the k−th scan:

Zk = {z1
k, z

2
k, . . . , z

nk
k }. As will be shown later, the number

of measurements nk and hypotheses n̂k normally differ. The

individual weights pik have to fulfill the condition
∑

i

pik = 1.

Applying the Bayes rule and the Markov property (1), the

predicted probability densities for each hypothesis at the

time tk+1 are given by

pi(xk+1|Z
k) =

∫

p(xk+1|xk)pi(xk|Z
k) dxk (6)

Evaluation of Eq. (6) again yields a normal mixture ana-

logue to Eq. (5) but with means xi
k+1|k and covariances

Pi
k+1|k , which can be calculated by

x̂i
k+1|k = Fk+1|k x̂i

k|k

Pi
k+1|k = Fk+1|kPi

k|kF>
k+1|k + Gk+1|kG>

k+1|k .

Each predicted hypothesis i now is evaluated with each in-

coming measurement zj using the Bayes formalism,

pij(xk+1|Z
k+1) ∝ p(z

j

k+1
|xk+1) pi(xk+1|Z

k),

where pi(xk+1|Z
k) is the predicted probability density func-

tion (pdf) from Eq. (6) and p(z
j

k+1|xk+1) is the likelihood

function for the j-th measurements given the target posi-

tion. Assuming wk in Eq. (2) to be Gaussian, the likelihood

function is normal and given by

p(z
j

k+1
|xk+1) = N (z

j

k+1
; Hkxk+1,Rk)

with the covariance Rk =
�

[wkw>
k ] of the measurement

noise vector. In multi hypothesis tracking, one has to ac-

count for the case, that the target has not been detected,

i.e. all measurements are false alarms. Supposing there are

nk+1 measurements at time tk , the MHT likelihood function

for the measurement set is given by:

p(Zk+1|xk+1) ∝ (1 − Pd)fc +

+ Pd

nk+1∑

j=1

N (z
j

k+1
; Hkxk+1,R

j), (8)

where fc denotes the clutter density and Pd the target de-

tection probability. The pdf of the estimated target state



after the update with the new measurements is calculated

by further application of the Bayes theorem. In the follow-

ing result, the index j = 0 expresses the hypothesis of not

detecting the target (i.e. the first part of the right hand side

of Eq. (8)):

p(xk+1|Z
k+1) =

n̂k∑

i=1

nk+1∑

j=0

p
ij

k+1N (xk+1; x̂
ij

k+1|k+1
, P

ij

k+1|k+1
),

(9)

To determine the hypotheses weights p
ij

k+1, calculate the

preliminary hypotheses weights p̂
ij

k+1

p̂
ij

k+1
=






pik
Pd

fc
N (z

j

k+1; Hk+1x̂i
k+1|k, Hk+1Pi

k+1|kH>
k+1 + R

j

k)

if j > 0

pik(1 − Pd), if j = 0 .
(10)

To ensure the completeness of the multi-hypothesis ap-

proach, the coefficients p̂
ij

k+1
have to be normalized to unity,

i.e.

p
ij

k+1
=

p̂
ij

k+1

n̂k∑

i=1

nk+1∑

j=0

p̂
ij

k+1

(11)

Equation (9) may be re-indexed to achieve the same formal

structure as Eq. (5), but with n̂k+1 = n̂k (nk+1 + 1) hypothe-

ses. The means and covariances are computed as follows:

x̂
ij

k+1|k+1 = x̂i
k|k + Kk+1(z

j

k+1 − Hk+1x̂i
k+1|k)

P
ij

k+1|k+1 = Pi
k+1|k − K

ij

k+1S
ij

k+1K
ij>

k+1 .

with Kalman gain K
ij

k+1
and innovation covariance S

ij

k

K
ij

k+1 = Pi
k+1|kH>

k+1S
ij

k+1

S
ij

k+1 = Hk+1Pi
k+1|kH>

k+1 + R
j

k

2.2 Hypotheses Reduction

As it is obvious from Eq. (9), the number of hypothe-

ses increases dramatically from scan to scan because of the

combinatorial disaster, i.e. n̂k+1 = n̂k (nk+1 + 1). To dimin-

ish the number of hypotheses, we use several techniques.

The first technique is individual gating when assigning the

measurements to the predicted hypotheses. The predicted

covariance of each hypothesis together with the measure-

ment error covariance forms an expectation area (gate), and

only measurements inside this gate, defined by

(

z
j

k+1
− Hk+1

x̂i
k+1|k

)>(

S
ij

k+1

)−1(

z
j

k+1
− Hk+1

x̂i
k+1|k

)

< λ2

are used to build up the hypothesis to the considered hy-

pothesis. The parameter λ is chosen empirically as 13.8.

The next step to reduce the number of hypotheses is prun-

ing, which means the deletion of all hypotheses with weight

pik smaller than an appropriate threshold, called cut-off-

parameter ccoff . In our case, we chose ccoff = 0.001.

Another way to reduce the number of hypotheses is merging

of similar hypotheses of a given track. If two hypotheses i

and j have very similar state vectors x̂
i/j

k|k and covariances

P
i/j

k|k , they are merged into one hypothesis using second mo-

ment matching, i.e.

x̂comb
k|k =

∑

l=i,j

plkx̂l
k|k

Pcomb
k|k =

∑

l=i,j

plk

{

Pl
k|k +

(

x̂l
k|k − x̂comb

k|k

)

·

·
(

x̂l
k|k − x̂comb

k|k

)>
}

pcomb
k =

∑

l=i,j

plk .

The similarity is detected by a χ2-test, which is applied to

the distance of the state vectors x̂
i/j

k|k, i.e. the test includes

location and velocity of the considered hypotheses. More-

over, the covariances P
i/j

k|k must not differ by more than 30

percent, if merging shall be applied.

2.3 Sequential Track Extraction

An important task in target tracking is track extraction.

We use a sequential likelihood ratio test [4], which is

closely related to the sequential hypothesis testing by Wald

[7], and shall be described in some detail. Every measure-

ment at any scan initiates its own extraction process by as-

sociating it to measurements in the subsequent scans and

building up the list Zk (see Figure 1).

initial
measurement

z1 2 3 4
Z Z Z

Figure 1: Track extraction starting from an initial mea-

surement

Given a sequence of measurements Zk =

{z1, Z2, . . . , Zk} arising from one initial measure-

ment z1, we consider two hypotheses

H0 : the data Zk contain only false data

H1 : the data Zk contain target measurements

and false alarms

The system, in which the decision has to be made is

characterized by the states z ∈ χ0 or z ∈ χ1 where χ0



denotes the subspace of measurements containing false

alarms, only, and χ1 denotes the supplement. We introduce

a cost function for the possible decisions:

L(Zk ∈ χi|Hi) = 0 for i ∈ {0, 1} correct decision

L(Zk ∈ χi|Hj) 6= 0 for i ∈ {0, 1}, i 6= j wrong decision

Minimizing the costs amounts to the calculation of the

likelihood ratio and, with the introduction of two thresholds

A and B, our sequential likelihood test is defined by

• If

L(Zk) =
p(Zk|H1)

p(Zk|H0)
≤ B −→ choose H0 (15)

• If

L(Zk) =
p(Zk|H1)

p(Zk|H0)
≥ A −→ choose H1 (16)

• otherwise wait for the next scan and repeat the test.

To derive approximate expressions for A and B, consider

the situation where the test terminates. If Eq. (16) termi-

nates, we have

p(Zk|H1) ' Ap(Zk|H0)

Integrating both sides over χ1, we obtain

P1 ' AP0 =⇒ A '
P1

P0

where

P1 =

∫

χ1

p(Zk|H1) dZk
= Prob.[accept H1|H1

︸ ︷︷ ︸
⇒correct decision

]

P0 =

∫

χ1

p(Zk|H0) dZk
= Prob.[accept H1|H0

︸ ︷︷ ︸
⇒wrong decision

]

In the same way consider the case where the sequential test

terminates because of L(Zk) ≤ B. Integrating Eq. (15)

over χ0 leads to

∫

χ0

p(Zk|H1) dZk
= 1−

∫

χ1

p(Zk|H1) dZk

︸ ︷︷ ︸
=P1

'

B

∫

χ0

p(Zk|H0) dZk
= B








1−

∫

χ1

p(Zk|H0) dZk

︸ ︷︷ ︸
=P0








or

B '
1 − P1

1 − P0

.

The track detection probabilities must be chosen reason-

ably, i.e. P1 = 0.95...0.99 and the false-track probability

P0 = 0.001...0.01. It can be shown that the desired like-

lihood ratio is given by the sum of all unnormalized hy-

pothesis weights p̂ik from Eq. (10) belonging to one ini-

tial measurement, whose hypothesis weight is set to unity,

i.e. p̂1
k = 1

L(Zk) =

n̂k∑

i=1

p̂ik

Once a track is extracted, i.e. the sequential likelihood ratio

test terminates because of L(Zk) ≥ A, the normal tracking

process starts. Therefore the sum of the hypotheses weights

will be normalized to unity (see Eq. (11)) and all hypothe-

ses reduction methods shown above will be applied. The

number of scans required to extract a target, i.e. the test

length depends on the chosen values of A and B, e.g. the

higher the probability to make a ”correct decision”, the

longer the test needs.

Furthermore, the sequential likelihood ratio test shown

above also is applied on existing tracks for track confirma-

tion. If the regarded target is still detected, the measure-

ments will be correlated and the sequential track extraction

will terminate with L(Zk) ≥ A every few scans. Then

p̂ will normalized and the test starts again. However, if the

sequential test procedure terminates with L(Zk) ≤ B, track

loss is detected and the track is deleted.

2.4 Track Management

Since every measurements starts an extraction process,

the sequential extraction test above continously extracts the

same track. Therefore, each newly extracted track needs to

be checked if it represents a new target or one that is already

tracked. In the latter case, the new track has to be deleted,

the older track ”survives”. Besides the track loss detection

mentioned above, we have to keep in mind two significant

track events, which have to be treated adequately: track

splitting, and track converging. Track splitting happens if

a track consists of at least two unresolved targets, and if at

least one target departs from the other(s) (see Figure 2). In

that case, the tracking program has to start a new track with

the separated sub track.

t k−1 tk tk+1 k+2ttk−2 t k−1 tk
tk+1 k+2t tk−2

track splitting track convergence

Figure 2: track management for splitting and converging

events

The opposite event, track convergence, has to be addressed,

too. This may happen if two or more tracks come so close



that they form an unresolved single track. The tracking sys-

tem has to merge this two tracks, each of them represented

by a number of hypotheses, to a single track. Track conver-

gence is much more likely than track splitting since it may

happen whenever a false track in the neighborhood of a true

target track is fed with the true track data.

2.5 Track Smoothing

The benefits of retrodiction for target tracking are well

known and shall be described only shortly. Retrodiction

means re-calculation of the track history with the measure-

ments up to the presence, i.e.

p(xl|Z
l)

{Zl+1,...,Z
k}

−−−−−−−−→ p(xl|Z
k) with l < k .

The Bayes theorem yields

p(xl|Z
k) =

∫
p(xl+1|xl)p(xl|Z

l)p(xl+1|Z
l)

∫
p(xl+1|xl)p(xl|Zl)dxl

dxl+1 . (18)

Evaluation of Eq. (18) provides Kalman like backward it-

eration formulas

x̂i
l|k = x̂i

l|l + Wi
l|l+1

(

x̂i
l+1|k − x̂i

l+1|l

)

Pi
l|k = Pi

l|l + Wi
l|l+1

(

Pi
l+1|k − Pi

l+1|l

)

Wi>

l|l+1

Wi
l|l+1 = Pi

l|lF
>
l+1|lP

i−1

l|l .

with Kalman gain Fl+1|l from Eq. (3). Not only the es-

timations of state and covariance, but also the hypothe-

ses weights are recalculated. At a given track history, the

weight of a hypotheses in the past is re-determined from the

weights of its associated hypotheses in the following scan:

pil =

nl+1∑

j=1

p
ij

l+1

where j sums over all hypotheses derived from the i−th hy-

pothesis in the l−th scan. Due to this recalculation of hy-

potheses weights, the hypotheses with the highest weight

may switch as illustrated in Figure 3. Since this retrodic-

tion induced switching event occurs quite frequently, it is

necessary to redraw the subtrack with highest weights for

all retrodicted scans. It is found, however, that retrodiction

more than ' 6 scans backward does not improve the track

smoothness, i.e. older track history may be fixed without

drawbacks.

2.6 Coordinate Transformation

The incoming GMTI-data are given in the World Geode-

tic System 84 (WGS84) format [8], whereas the tracking

system works in local two dimensional cartesian coordi-

nates. Hence the GMTI-measurements are transformed us-

ing the following formulas:

∆L = Lreference − LGMTI

∆B = Breference − BGMTI ,

tk

tk−2
t k−1

tk+2

tk

tk+2

tk+1

highest weights at scantime 

highest weights at scantime 
track of hypotheses with

track of hypotheses with

Figure 3: Switching event of the MHT-subtrack with

highest weight caused by retrodiction

where L means the longitude and B the latitude of the con-

sidered coordinate. With this difference coordinates, the

local coordinates are given as

Xlocal = ∆X = N (Breference) cosBreference ∆L

Ylocal = ∆Y = M (Breference)∆B

with

M (B) =
a(1 − e2)

(1 − e2 sin2B)
3
2

and N (B) =
a

√
1 − e2 sin2B

whereas a = 6378137.0 m and e2 ' 6.69438 · 10−3 given

by the definition of the WGS84 ellipsoid. The backward

transformation may also be easily carried out.

3 EXPERIMENTAL RESULTS

We present tracking results for simulated GMTI sen-

sor data generated from a ground truth of a Kosovo sce-

nario produced at the NC3A for the simulation experiments

SIMEX2003 and TIE2004 in Den Haag.

Recently, the IIES with the experimental tracking

component took part in a technical integration exercise

(TIE2004) at the NC3A in Den Haag. The test plan for TIE

2004 covered several issues concerning the compliance and

technical interoperability of the multi-national system. Test

objectives, among others, were: compliance with NATO

STANAGs, access mechanisms for data dissemination, dis-

tributed simulation, MTI exploitation, and track manage-

ment. The participating SAR and GMTI sensor simulators

were:

1. Airborne Stand-Off Radar (ASTOR), GB

2. Complesso Radar Eliportato di Sorveglianca

(CRESO), IT

3. Hélicoptère d’Observation Radar et d’Investigation

sur Zone (HORIZON), FR



4. Global Hawk, US

5. Radarsat 2, CA

6. U2-AIP, US

7. Virtual Joint Surveillance and Target Attack Radar

System (VSTARS), US

The sensor data were disseminated over an Exploitation

(EX) LAN to various exploitation stations and other C2

systems. In both online and offline modes the access to

the database is provided by CORBA APIs. For visualiza-

tion and interactive processing, the data are send to sev-

eral human computer interfaces (HCI). The MTI data are

also fed into the tracking module which delivers, also via

CORBA APIs, relevant track information back to the data

base and eventually to the visualization and a track manage-

ment HCI. The architecture of the German ground station

IIES including the tracker integration is sketched in Fig. 4.

Besides the U2 and Radarsat sensors, tracks could be ex-

tracted from data of all sensors. In the former cases, the

observation times and number of scans in a given surveil-

lance region were too short to establish meaningful tracks.

For the other sensors, a mission typically consists of 100–

400 scans, separated by a time interval of about 5–30 sec.

The number of MTI detection per scan ranges from zero to

a few hundred. Depending on the data quality, it takes usu-

ally 3-4 scans to confirm a track. The false alarm density is

estimated about pf = 0.1km2, and the detection probability

PD = 0.9. Since the existing MTI DOPPLER measurements

often prove not reliable they are not taken into account for

the tracking. Even for large area scans with many MTI de-

tections, the performance of the tracking module is close to

real time. Here, we present some exemplary tracking re-

sults from a generic sensor simulator. More detailed results

for specific simulated GMTI sensor data as well as for real

HORIZON data from the NATO live exercise Strong Re-

solve (Norway, March 2002) can be found in [9]. Figure 5

depicts the tracks of two groups of road targets, one of it is

leaving the road in the second snapshot. Figure 6 shows a

track of a target with several missing detections. The dis-

placement between road and track is due to road map errors.

Figure 7, finally, shows tracking results generated from the

measurements of simulated railway traffic.

While these first tracking results are quite encouraging,

there is still a lot room for improvements:

1. Targets with strongly different speed and agility are

difficult to track within a single target dynamics

model.

2. The clutter density often is strongly inhomogeneous

leading to unsuitable model parameters in parts of the

surveillance region.

3. Track continuity is hard to establish in case of dense

road traffic.

Figure 4: Scheme of the architecture of the exploitation

station IIES including the MHT-tracking mod-

ule.

4. For target aggregations, e.g. convoys, target number

estimation is desirable.

5. Extended targets (e.g. trains, ships and ferries) pro-

vide a detection cloud, in particular in case of high sen-

sor resolution. Here, estimates of the center of mass

and target extension are desirable.

For all of these issues, there exist suitable approaches

which can be integrated step by step into the MHT tracking

algorithm. [10, 11, 12, 13, 14]

4 CONCLUSION AND OUTLOOK

We have presented techniques and algorithms for track

extraction and track maintenance for GMTI sensor data.

The method at choice is a multi hypothesis tracker which

performs both tasks simultaneously. The algorithm is

adapted to the case of ground targets and has been inte-

grated into the German experimental MTI and SAR ex-

ploitation station IIES. Tracking results using real data

from the NATO exercise Strong Resolve 2002 [9] and from

simulated reconnaissance missions demonstrate successful

tracking of a number of different ground, sea, and low fly-

ing targets in a large area, partly with high clutter density.

The performance is close to real time, even for relatively

large target numbers and high clutter. For a quantitative

evaluation of track precision and track continuity, the addi-

tional knowledge of the ground truth of relevant targets is

necessary. Such information will be available in the near fu-

ture for real data from a flight campaign of the experimental

SAR/MTI system PAMIR (Phased Array Multifunctional

Imaging Radar) developed at FGAN/FHR. [15, 16]

Further improvements of the algorithm will include:



Figure 5: Above: MH Tracks of two target groups with

model parameters (vt=20 m/s, θt=60 s) leads to reasonable

tracks near the roads. Bottom: The same track some scans

later. Error ellipses correspond to a 99.9% convidence level

(3.3σ).

1. Use of road-map and terrain visibility information

provided by topographic maps [17]

2. Realistic modeling of the clutter notch of the MTI

sensors [12, 18]

3. Multiple model approach for different target types

4. Use of Doppler measurements and attribute informa-

tion provided by the sensor

5. Target number detection in case of target aggregations
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Figure 6: Single road target with sparse measurements

Figure 7: Tracks of several railway targets.
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