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1. Introduction: SF of FC and multi-index Mittag-Leffler functions

The developments in theoretical and applied science have always required a
knowledge of the properties of the “mathematical functions” (in terms of H.
Bateman, [5]), from elementary trigonometric functions to the variety of Spe-
cial Functions (SF), appearing in studies of natural and social phenomena,
in formulation of engineering problems, and numerical simulations. The well
known “Classical SF” (SF of Mathematical Physics, or Named SF) appear as
solutions of differential and integral equations of integer order, mainly of 2nd
order, but also of higher (integer) ones. Most of them are representable as
particular case of the Meijer G-functions (see e.g. [5, Vol.1], [31]).

With the revival of the FC as not only an exotic theory and the recognition
that the fractional order models can describe better the fractal nature or the
world, the solutions of the fractional order differential and integral equations
and systems also gained their important place and became unavoidable tools.
These are the so-called “Special Functions of Fractional Calculus” (SF of FC),
in the general case as Fox H-functions (details in [31], [14], [13], etc.).

Among the SF of FC (see Kiryakova [19]), the basic role have the generalized
Wright hypergeometric functions pΨq,

pΨq

[

(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣

∣

∣

∣

z

]

=
∞
∑

k=0

Γ(a1+kA1) . . .Γ(ap+kAp)

Γ(b1+kB1) . . .Γ(bq+kBq)

zk

k!
(1)

= H1,p
p,q+1

[

−z

∣

∣

∣

∣

(1− a1, A1), . . . , (1 − ap, Ap)
(0, 1), (1 − b1, B1), . . . , (1 − bq, Bq)

]

. (2)

Let us denote: ρ =
p
∏

i=1
A−Ai

i

q
∏

j=1
B

Bj

j , ∆ =
j
∑

k=1

Bj −
p
∑

i=1
Ai. If ∆ > −1, the

pΨq-function is an entire function of z, z ∈ C, and if ∆ = −1, this series
is absolutely convergent in the disk {|z| < ρ}, while for |z| = ρ if ℜ(µ) =

ℜ
{

q
∑

j=1
bj −

p
∑

i=1
ai +

p−q
2

}

>1/2. For more details on special functions (1) and

the Fox H-function, see in [31], [13], [14], etc. In particular, for A1 = · · · =
Ap = 1, B1 = · · · = Bq = 1 in (1) and (2), the Wright g.h.f. reduces to the
more popular generalized hypergeometric pFq-function, which is a “classical”
SF representable as a Meijer’s G-function (for details, see e.g. [5, Vol.1]):

pΨq

[

(a1, 1),. . ., (ap, 1)
(b1, 1),. . ., (bq, 1)

∣

∣

∣

∣

z

]

= c pFq(a1,. . ., ap; b1,. . ., bq; z)

= c

∞
∑

k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!
(3)
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= G1,p
p,q+1

[

−z

∣

∣

∣

∣

1− a1, . . . , 1− ap
0, 1− b1, . . . , 1− bq

]

;

with c =





p
∏

i=1

Γ(ai) /

q
∏

j=1

Γ(bj)



 , (a)k := Γ(a+ k)/Γ(a).

Among the most popular examples of generalized hypergeometric functions
that are not “classical” but SF of FC (with irrational parameters Aj, Bk in
(1)), is the so-called Queen function of FC, the Mittag-Leffler (ML) function Eα

(Mittag-Leffler, 1902-1905), resp. the more general (2-parametric) one Eα,β(z)
(Wiman 1905, Agarwal, 1953), studied later also by Dzrbashjan (1954, 1960):

Eα,β(z) =
∞
∑

0

zk

Γ(αk + β)
, Eα,1(z) := Eα(z), α > 0, β > 0. (4)

This is an entire function of order ρ = 1/α (and the simplest entire one with this
order) and type σ = 1. The ML functions (4) have been almost ignored, for a
long time, in the handbooks on SF and in existing tables of Laplace transforms.
They only appeared shortly in a chapter “Miscellaneous functions” in [5, Vol.3].
Nowadays, with the flourishing of the FC tools and models, there exist a very
vast range of literature on the theory of ML functions and their applications as
solutions of fractional order equations and systems, just to mention a few, as
the books [29], [13], [10], [23], a lot of surveys as [33], [19], etc.

These “fractional exponential functions” are natural extensions of the ex-
ponential and trigonometric functions (α = 1, α = 2), for example of E1(z) =
exp(z) and E2(−z2) = cos z satisfying integer (1st and 2nd) order differential
equations. However, the “true” ML functions (with irrational α) are solutions
of fractional order DEs. Such a simplest example is with the α-exponential
(Rabotnov) function:

Dαy(λz) = λy(λz) with y(z) = zα−1Eα,α(z
α).

Other typical examples where the solutions appear in terms of combinations
of ML functions (4) are the Cauchy problem for R-L fractional differential
equation: Dαy(z)−λy(z) = f(z), with either Riemann-Liuoville Dα or Caputo
CDα fractional derivatives and initial conditions of the corresponding (R-L or
C-) type.

A ML type function with 3 parameters, known as the Prabhakar function
(T.R. Prabhakar, [30]) is also often studied and used as a FC tool, for α, β, τ ∈
C, Reα > 0 and with the Pochhammer symbol (τ)0 = 1, (τ)k = Γ(τ + k)/Γ(τ):

Eτ
α,β(z)=

∞
∑

k=0

(τ)k
Γ(αk + β)

zk

k!
. (5)
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It is again an entire function, of order and type, which are the same as for Eα,β

and Eα. For τ=1 we get the ML function Eα,β, and if also β=1, it is Eα.

These ML type functions are simple cases of the Wright g.h.f. (1) and of
the H-function, namely:

Eα,β(z) = 1Ψ1

[

(1, 1)
(β, α)

∣

∣

∣

∣

z

]

= H1,1
1,2

[

−z

∣

∣

∣

∣

(0, 1)
(0, 1), (1−β, α)

]

,

Eτ
α,β(z) =

1

Γ(γ)
1Ψ1

[

(τ, 1)
(β, α)

∣

∣

∣

∣

z

]

= H1,1
1,2

[

−z

∣

∣

∣

∣

(1−τ, 1)
(0, 1), (1−β, α)

]

.

Here we are focusing first on the multi-index (multi-parametric) Mittag-
Leffler (multi-ML) functions introduced almost simultaneously (1994-1996) by
Luchko et al. [38], [1] and Kiryakova [15], then studied by Kiryakova [16], [17],
[18], Kilbas-Koroleva-Rogosin [12], Paneva-Konovska [23], [24], etc. They form
indeed a very large class of the Wright generalized hypergeometric functions

pΨq, incorporating long list of SF of FC (see e.g. [18], [19]).

Namely, these extensions of the classical ML functions (4), have been in-
troduced by replacing the 2 parameters α and β by 2 sets (vector indices, 2m
indices): (α1, ..., αm) and (β1, ..., βm), αi > 0, βi ∈ R , with integer m ≥ 1.
These multi-index ML functions include many of the SF of FC as particular
cases and appear as solutions of fractional order problems of multi-order (αi)

m
1 ,

m ≥ 1:

E(αi),(βi)(z) :=E
(m)
(αi),(βi)

(z) =

∞
∑

k=0

zk

Γ(α1k+β1) . . .Γ(αmk+βm)
(6)

= 1Ψm

[

(1, 1)m1
(βi, αi)

m
1

∣

∣

∣

∣

z

]

=H1,1
1,m+1

[

−z

∣

∣

∣

∣

(0, 1)m1
(0, 1)m1 , (1−βi, αi)

m
1

]

.

Later, Paneva-Konovska [24], [23] extended (6) to multi-index analogues
of the Prabhakar function (5), by 3m parameters, with additional (τ1, ..., τm)
instead of τ :

E
(τi),m
(αi),(βi)

(z) =

∞
∑

k=0

(τ1)k...(τm)k
Γ(α1k + β1)...Γ(αmk + βm)

zk

(k!)m
(7)

=
1

A
mΨ2m−1

[

(τi, 1)
m
1

(βi, αi)
m
1 , (1, 1), ..., (1, 1)

∣

∣

∣

∣

z

]

=
1

A
H1,m

m,2m(−z),

where (τi)k = Γ(τi+k)/Γ(τi) are the Pochhammer symbols, A =

[

m
∏

i=1
Γ(τi)

]

.

Evidently, the case ∀ τi = 1, i = 1, ...,m, leads to the above 2m parameter ML
type function (6), while for m = 1 we get the Prabhakar function (5).



MULTI-INDEX LE ROY FUNCTIONS OF... 749

We note also that Kilbas-Rogosin-Koroleva [12] extended the 2m index ML

functions E
(m)
(αi),(βi)

(z) with all αi > 0 to the case when all αi, i = 1, ...,m can
be real and different from zero, even negative.

The studies on multi-index (vector) ML functions have also a trend includ-
ing a multivariable case (with β > 0, αi > 0, integers li ≥ 0, i = 1, ...,m),
introduced by Luchko et al. (see e.g. [38]) for the purposes of operational cal-
culus; and later applied in many other works to present solutions of BVPs for
fractional order PDEs:

E(α1,...,αm),β(z1, ..., zm) =
∞
∑

k=0

∑

l1+...+lm=k

(k; l1, ..., lm)

∏m
i=1 z

li
i

Γ(β +
∑m

i=1 αili)
.

Here (k; l1, ..., lm) = k!/(l1)!...(lm!) are the multinomial coefficients.

Some short facts of the basic theory of the multi-index ML functions (6)
and (7), from Kiryakova [16], [17], [18], Paneva-Konovska [24], [23], [25] and
Paneva-Konovska and Kiryakova [27], include the following.

Theorem 1. The multi-index ML functions (6) and (7) (with real param-
eters αi > 0) are entire functions of order ρ with

1

ρ
= α1 + ...+ αm, (8)

and type σ:

1/σ = (ρα1)
ρα1 . . . (ραm)ραm (σ > 1 for m > 1) . (9)

Moreover, for each ε > 0 we have an asymptotic estimate, as:

|E(αi),(βi)(z)| ≤ exp ((σ + ε)|z|ρ) , |z| ≥ r0 > 0,

with ρ, σ as above, r0(ε) sufficiently large.

We have shown that the multi-ML (2m-parametric) functions (6) are eigen-
functions of the Gelfond-Leontiev (G-L, 1951) operators of generalized differen-
tiation that we generated by means of the coefficients of these entire functions.
In fact, this was the inspiring idea to introduce this class of special functions
in Kiryakova [15]. Namely, the multi-index ML function E(αi),(βi)(z) satisfies a
differential equation of multi-order (α1 > 0, ..., αm > 0) of a general form as:

D(αi),(βi)E(αi),(βi)(λz) = λE(αi),(βi)(λz), λ 6= 0,

see [16], etc. We note that the G-L operator of generalized differentiation
D(αi),(βi) with respect to (generated by) E(αi),(βi)(z) is practically a generalized
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fractional derivative of the form z−1D
(βi−αi−1),(αi)
(1/αi),m

(in sense of Kiryakova [14]),
and also a fractional order extension of the hyper-Bessel operators of Dimovski
(see [3], [14, Ch.3]).

Other useful properties of the multi-ML functions, aside from their repre-
sentations in terms of the Wright g.h.f. and H-functions (6), (7) (see Kiryakova
[18], Paneva-Konovska [24], Paneva-Konovska and Kiryakova [27] for proofs and
conditions on the parameters), include results related to Mellin-Barnes type in-
tegral representation and Mellin transform, namely:

Lemma 1. The following Mellin-Barnes type integral representation holds,
z 6= 0:

E
(τi),m
(αi),(βi)

(z) =
1

2πi
m
∏

i=1
Γ(τi)

∫

L

Γ(s)
m
∏

i=1
Γ(τi − s)

[Γ(1− s)]m−1
m
∏

i=1
Γ(βi − sαi)

(−z)−sds, (10)

where the path L is suitably chosen to separate all the poles of the Gamma-
functions in denominator. This is based on the Mellin transforms of the multi-
index ML functions, see [13, p.48], [18], and in the general 3m-case, [27], for
0 < ℜ(s) < min τi:

M
{

E
(τi),m
(αi),(βi)

(−z); s
}

=
1

m
∏

i=1
Γ(τi)

Γ(s)
m
∏

i=1
Γ(τi − s)

[Γ(1 − s)]m−1
m
∏

i=1
Γ(βi − sαi)

. (11)

Note that the choice of the contour L and the inclusion of the additional
“Pochhammer parameters” τi, i = 1, ...,m cause the difference observed in the
same kind of formulas for the 2m-parametric case (6) in Kiryakova [17], [18],
as well as in the recent work by Rogosin-Dubatovskaya [34] on multi-index
Mittag-Leffler analogues of Le Roy type.

Many of the elementary and special functions are particular cases of Eα,β,

Eτ
α,β, and much more – of the multi-index ML functions E(αi),(βi)(z) and E

(τi),m
(αi),(βi)

.
All details and long lists of examples can be found in the mentioned our previous
works.
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2. Mittag-Leffler functions of Le Roy type

However, recently, there appeared several works on further extensions of the
Mittag-Leffler type functions, as “fractional indices” analogues of the Le Roy
function [21], [22]. These special functions have been introduced almost simul-
taneously by Gerhold [9], Garra-Polito [7], and are referred to as “Gerhold”
or “Garra-Polito” or “Mittag-Leffler type Le Roy functions” (abbr. MLR-
functions). Extensive studies on the basic properties of the MLR-functions
and some of their applications are presented next also by Garrappa-Rogosin-
Mainardi [8], Tomovski-Mehrez [36], Garra-Orsingher-Polito [6], Pogany [28],
Gorska-Horzela-Garrappa [11], Kolokoltsov [20], Simon [35], etc.

Namely, Gerhold [9] and Garra–Polito [7] have introduced a new function
related to the special functions of the Mittag-Leffler family, as a generalization
of the function

Fγ(z) =

∞
∑

k=0

zk

(k!)γ
=

∞
∑

k=0

zk

[Γ(k + 1)]γ
, γ > 0, (12)

studied by É. Le Roy in the period 1895-1905 ([21], [22]) in connection with
the problem of analytic continuation of power series with a finite radius of
convergence. In the mentioned recent works [9], [7], [8], the so-called Mittag-
Leffler type Le Roy function has been introduced and studied:

F
(γ)
α,β(z) =

∞
∑

k=0

zk

[Γ(αk + β)]γ
, z ∈ C, α, β, γ ∈ C. (13)

These authors have proved that (13) is an entire function for all ℜα > 0, β ∈
R, γ > 0 and studied some properties, then some next deeper results on (13)
have been extended also in [6], [11], [35].

While developing the idea and some results on the special functions (16)
from the next section, and revising this final version, we have been informed by
private communication for a next step done towards a multi-index extension of
Le Roy function (13) in the sense of multi-index Mittag-Leffler functions (6).
Namely, in [34], Rogosin and Dubatovskaya considered the following function
(we may refer to it shortly as multi-MLR function):

F
(γ)m
(α,β)m

(z) =

∞
∑

k=0

zk

m
∏

j=1
[Γ(αjk + βj)]

γj
, z ∈ C, (14)

with vector parameters (multi-indices) (α, β)m =(α1, β1), ..., (αm, βm), (γ)m =
(γ1, ..., γm), supposing ∀j : αj 6= 0, and some other conditions are specified
along with their study. As expected, it is proven that (14) is an entire function
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and its order ρ and type σ are evaluated. Supposing ℜ(αj · γj) > 0, βj ∈ C,
j = 1, 2, ...,m, the results in [34] read as:

1/ρ =

m
∑

j=1

ℜ(αj · γj), 1/σ = ρ · exp







ρ

m
∑

j=1

ℜ(αj · γj · logαj)







. (15)

Some particular cases clarifying the nature of these multi-MLR functions
and Mellin-Barnes type integral representations are also provided in [34].

3. Multi-index analogues of

Mittag-Leffler-Prabhakar functions of Le Roy type

Now we consider the following extension of the functions (13) (as well as of (14)),
to combine the multi-index Mittag-Leffler functions (6) (with 2m parameters
instead of the two: α and β), their Prabhakar variant (7) (with 3m parameters,
replacing τ by m-set), and the fractional Le Roy type functions (by taking m
different parameters γi instead of the γ in (13)).

Definition. We introduce the following class of multi-index Mittag-Leffler-
Prabhakar functions of Le Roy type (abbrev. as multi-MLPR):

Fm(z) := F
γi;m
αi,βi;τi

(z)

=
∞
∑

k=0

(τ1)k . . . (τm)k
(k!)m

· zk

[Γ(α1k + β1)]
γ1 . . . [Γ(αmk + βm)]γm

(16)

=

∞
∑

k=0

ck z
k, with ck =

m
∏

i=1

{

Γ(k + τi)

Γ(k + 1)
· 1

Γ(τi)
· 1

[Γ(αik + βi)]
γi

}

,

with 4m different parameters. For simplicity of expressions, in this paper we
suppose ∀i = 1, ...,m: αi > 0, βi > 0, γi > 0, τi > 0, although a case for
ℜ(αi) > 0,ℜ(τi) > 0, βi ∈ C can be also considered.

As already mentioned, almost in parallel, Rogosin and Dubatovskaya [34]
have studied the functions (14), that can be considered as the above functions
(16) when ∀i = 1, ...,m : τi = 1.

3.1. Basic properties of the multi-MLPR functions

Theorem 2. The multi-index MLPR-function (16) is an entire function
of the complex variable z of order ρ and type σ, evaluated as follows:
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ρ =
1

α1γ1 + · · ·+ αmγm
,

1

ρ
= α1γ1 + · · ·+ αmγm, (17)

and

σ =
1

ρ

(

m
∏

i=1

(αi)
−αiγi

)ρ

,
1

σ
=

m
∏

i=1

((ραi)
ραi)γi , (18)

that is,

σ =
α1γ1 + · · ·+ αmγm

(αα1γ1
1 · · ·ααmγm

m )
1/(α1γ1+···+αmγm)

, (19)

1

σ
=

(αα1γ1
1 · · ·ααmγm

m )
1/(α1γ1+···+αmγm)

α1γ1 + · · ·+ αmγm
.

Moreover, for each positive ε the asymptotic estimate

| Fm(z) |< exp ((σ + ε)|z|ρ) , |z| ≥ r0 > 0, (20)

holds, with ρ and σ like in (17) and (19), for |z| ≥ r0(ε), and r0(ε) being
sufficiently large.

Let us remind that for simplicity, here we have limited ourselves to the case
of real positive parameters αi, βi, τi, γi, i = 1, 2, ...,m.

Proof. Since the proof goes analogously to this one for the Prabhakar func-
tion of Le Roy type in Paneva-Konovska [26], only the idea is given here. The
details are omitted and will be exposed elsewhere, also for not so restrictive
conditions on the parameters.

The theorem is proved using mainly Stirling’s asymptotic formula for the
Γ-function along with Γ-functions quotient property (see e.g. [23, Remark 6.5]).
By the Cauchy-Hadamard formula, the radius of convergence of the series (16)
is obtained to be ∞, i.e. the function (16) is an entire function. The order ρ
and type σ are obtained by the formulae

ρ = lim sup
k→∞

k ln k

ln(1/|ck |)
and (σeρ)1/ρ = lim sup

k→∞

(

k1/ρ|ck|1/k
)

, (21)

taking the coefficients ck from (16).

The asymptotic estimate (20) follows from the definitions of order and type
of an entire function.
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3.2. Integral representations

In the previous section we have discussed that the multi-index MLPR-function
Fm(z) = F

γi;m
αi,βi;τi

(z), defined by (16), is an entire function, and its order and type
have been given. Separating our considerations in two cases, we begin with this
one, when the parameters γi are all positive integers, i.e. γi ∈ N = {1, 2, . . . },
for i = 1, . . . ,m. Then, all the functions Γ(βi − sαi) are meromorphic with
simple poles si,k = (βi + k)/αi (k ∈ N0 = {0, 1, 2, . . . }). Further, an integral
representation of (16) is given by means of Mellin–Barnes integral, extending
the integral formula obtained by Paneva-Konovska [26].

For this purpose, we first consider the sets

Sl = {s : s = −k (k ∈ N0)},

and

Sr = {s : s = l + τi, l ∈ N0, τi > 0 (i = 1, . . . ,m)}.

Remark 1. The intersection of the sets Sl and Sr is empty, i.e. Sl∩Sr = ∅.
Moreover, the set Sl lies on the left hand side of the strip

S = {s : s ∈ C, 0 < ℜ(s) < min
i=1÷m

(τi)}, (22)

while the set Sr lies on its right.

Theorem 3. Let αi > 0, βi > 0, τi > 0 and γi ∈ N, i = 1, ...,m. Then the
multi-index MLPR-function (16) is expressed by the following Mellin–Barnes-
type contour integral representation:

Fm(z) =
1

2πiA

∫

L

Hm(−s)(−z)−sds, A =
m
∏

i=1

Γ(τi), |arg(−z)| < π, (23)

where

Hm(−s) = Hγi;m
αi,βi;τi

(−s) =

Γ(s)
m
∏

i=1
Γ(τi − s)

[Γ(1− s)]m−1
m
∏

i=1
[Γ(βi − sαi)]γi

, (24)

and L is an arbitrary contour in C running from −i∞ to +i∞ in a way that
the poles s = −k (k ∈ N0) of Γ(s) lie to the left of L and the poles s = l + τi
(l ∈ N0) of Γ(τi − s) to the right of it.
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Proof. According to Remark 1, none of the poles of Γ(s) and Γ(τi − s) are
in the strip S, defined by (22). Moreover, the poles s = −k (k ∈ N0) of Γ(s) lie
to the left of this strip and the poles s = l+ τi (l ∈ N0) of Γ(τi − s) to its right.

Let us consider the right hand side of (23)

I(z) =
1

2πiA

∫

L

Hm(−s)(−z)−sds. (25)

Taking into account the asymptotic formula (see e.g. [5, Vol.1, 1.1.(8)]):

Γ(s) =
(−1)k

k!(s + k)
[1 +O(s+ k)] (s → −k; k = 0, 1, 2, . . . ), (26)

and calculating the residues of the integrand of (25) at the simple poles sk = −k,
k = 0, 1, 2, . . . , we have

I(z) =
1

A

∞
∑

k=0

Ress=−k

{

Hm(−s)(−z)−s
}

=
1

A

∞
∑

k=0

lim
s→−k

{

(s+ k)Hm(−s)(−z)−s
}

=
1

A

∞
∑

k=0

(−1)k(−z)k
m
∏

i=1
Γ(τi + k)

k! [Γ(k + 1)]m−1[Γ(βi + kαi)]γi

=

∞
∑

k=0

m
∏

i=1
(τi)k

m
∏

i=1
[Γ(βi + kαi)]γi

zk

(k!)m
,

that proves (23).

Remark 2. Let us note that in the particular case m = 1 and τ1 = τ = 1,
Theorem 3 gives the result referring to Le Roy type functions (13) from the
mentioned articles, and for arbitrary τ it is the result from Paneva-Konovska
[26]. If additionally γ = 1, the result obtained is related to the Mittag-Leffler
function Eτ

α,β, see for example [13]. The case ∀τi = γi = 1 leads to the result,
obtained in Kiryakova [17] for E(αi),(βi)(z), (6).

The Mellin transform of a function f(t) of a real variable t ∈ R
+ = (0,∞)

is defined by



756 V. Kiryakova, J. Paneva-Konovska

(Mf)(s) = M[f(t)](s) = F (s) =

∞
∫

0

f(t)ts−1dt (s ∈ S ⊂ C), (27)

S is a suitable vertical strip (see, for example, the book by Titchmarsh [37]),
and the inverse Mellin transform is given for t ∈ R

+ by the formula (ν = Re(s)):

(M−1F )(t) = M−1[F (s)](t) =
1

2πi

ν+i∞
∫

ν−i∞

F (s)t−sds, 0 < t < ∞, (28)

where the integral is understood in the sense of the Cauchy principal value. For
more detailed information on the Mellin integral transform, its properties and
applications, we refer the reader to the classical books with tables of integral
transforms.

In what follows we use the results of Theorem 3. By setting −z = t and
having in mind that 0 < t < ∞, we see that | arg(−z)| = | arg(t)| = 0 < π.
That is why the representation (23) holds true with −z = t.

In this way, we can formulate the results for the Mellin transform image of
the Le Roy-type function (16).

Theorem 4. Let the parameters αi, βi, and τi be positive, and let γi be
positive integers, i.e. γi ∈ N, for i = 1, 2, . . . ,m. Then the Mellin transform of
the multi-index MLPR-function (16) is expressed as follows

M[Fm(−t)](s) =
Hm(−s)

A
(0 < ℜ(s) < min

i=1÷m
(τi)), (29)

with t > 0.

Proof. In particular, if L is the straight line Re(s) = ν, lying down the
stripe (22), and taking −z = t ∈ (0,∞), then the relation (23) leads to

Fm(−t) =
1

2πi

ν+i∞
∫

ν−i∞

Hm(−s)

A
t−sds, 0 < t < ∞. (30)

The relation (30) means that the function Fm(−t) is the inverse Mellin trans-

form of the function Hm(−s)
A . Therefore the direct Mellin transform of the

function Fm(−t) is given by (29), which is the desired result.

Remark 3. Let us note that in the particular case when all γi = 1,
Theorem 4 gives the result for the multi-index Mittag-Leffler function of Prab-

hakar type E
(τi),m
(αi),(βi)

(z). If additionally, all τi = 1, this result concerns the
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2m-parametric function E(αi),(βi)(z). Both results are presented in [27]. In the
case m = 1, Theorem 4 gives the result for the Prabhakar function of Le Roy
type (35), obtained recently in [26].

Now, we consider the other case, when at least one γi is not necessarily
an integer. Then we establish two more integral representations, using the
above techniques. For the sake of simplicity, further in this section we consider
again the parameters αi, βi, γi, τi to be positive. In this case the function
Γ(αis + βi) is a meromorphic function of the complex variable s with simple
poles at the points s = −βi+k

αi
(k = 0, 1, 2, . . . ). When γi is not integer, the

function [Γ(αis + βi)]
γi is a multi-valued function of s. We fix its principal

branch by drawing the cut along the negative semi-axis, starting from −βi/αi,
ending at −∞, and supposing that [Γ(αiξ+βi)]

γi is positive for all the positive

values of ξ. The principal branch of

m
∏

i=1

[Γ(αiξ + βi)]
γi is chosen by cutting along

the negative semi-axis, starting from −min
γi /∈N

(βi/αi) to the −∞, and supposing

that [Γ(αiξ + βi)]
γi are all positive for the positive values of ξ.

Theorem 5. Let αi, βi, τi, γi > 0 for i = 1, ...,m, and let γ1, . . . , γi0 /∈ N

(i0 ∈ {1, . . . ,m}). Let additionally [Γ(αis + βi)]
γi be the described branches

of these multi-valued functions (i = 1, ..., i0). Then the multi-index MLPR-
function (16) can be expressed by the following L+∞-contour integral represen-
tation:

Fm(z) =
1

2πiA

∫

L

Hm(s)(−z)sds +
1

m
∏

i=1
[Γ(βi)]γi

, |arg(−z)| < π, (31)

with A =
m
∏

i=1
Γ(τi),

Hm(s) = Hγi;m
αi,βi;τi

(s) =

Γ(−s)
m
∏

i=1
Γ(τi + s)

[Γ(1 + s)]m−1
m
∏

i=1
[Γ(βi + sαi)]γi

, (32)

and where L+∞ is a right loop lying in a horizontal stripe, starting at the point
+∞ + iϕ1, terminating at the point +∞ + iϕ2 (−∞ < ϕ1 < 0 < ϕ2 < +∞),
and crossing the real line at a point c, 0 < c < 1.

Proof. The chosen contour L+∞ is negatively oriented. It separates the
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poles s = k (k ∈ N) of the function Γ(−s) from the poles si,l = −τi − l
(i = 1, . . . ,m, l ∈ N) of the functions Γ(τi + s), along with the pole s = 0 of
the function Γ(−s). Let us consider the integral of the right hand side of (31),
denoting for convenience

I(z) =
1

2πiA

∫

L

Hm(s)(−z)sds. (33)

Calculating the residues of the integrand of (32) at the simple poles sk = k,
k = 0, 1, 2, . . . , and taking into account the asymptotic formula (26), applied
for Γ(−s):

Γ(−s) =
(−1)k

k!(−s+ k)
[1 +O(−s+ k)] (s → k; k = 0, 1, 2, . . . ),

we have

I(z) =
−1

A

∞
∑

k=1

Ress=k {Hm(s)(−z)s}

=
−1

A

∞
∑

k=1

lim
s→k

{(s − k)Hm(s)(−z)s}

=
1

A

∞
∑

k=1

(−1)k(−z)k
m
∏

i=1
Γ(τi + k)

k! [Γ(k + 1)]m−1[Γ(βi + kαi)]γi

=

∞
∑

k=1

m
∏

i=1
(τi)k

m
∏

i=1
[Γ(βi + kαi)]γi

zk

(k!)m
,

that proves (31).

Now we get another form of the representation of the Le Roy type function
(16). We consider the multi-valued function [Γ(αi(−s) + βi)]

γi and fix its
principal branch by drawing the cut along the positive semi-axis, starting from
βi/αi, ending at +∞, and supposing that [Γ(αi(−ξ) + βi)]

γi is positive for all

the negative values of ξ. The principal branch of
m
∏

i=1

[Γ(αi(−ξ) + βi)]
γi is chosen

by cutting along the positive semi-axis, starting from min
γi /∈N

(βi/αi) to the +∞,

and supposing that [Γ(αi(−ξ)+ βi)]
γi are all positive for the negative values of

ξ.
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Theorem 6. Let αi, βi, τi, γi > 0 for i = 1, ...,m, and let γ1, . . . , γi0 /∈ N

(i0 ∈ {1, . . . ,m}). Let additionally [Γ(βi − αis)]
γi be the described branches

of these multi-valued functions (i = 1, ..., i0). Then the multi-index MLPR-
function (16) can be expressed by the following L−∞-contour integral represen-
tation:

Fm(z) =
1

2πiA

∫

L

Hm(−s)(−z)−sds +
1

m
∏

i=1
[Γ(βi)]γi

, |arg(−z)| < π, (34)

with A =
m
∏

i=1
Γ(τi), Hm(s) defined by (32), and where L−∞ is a left loop lying

in a horizontal stripe, starting at the point −∞+ iϕ1, terminating at the point
−∞+ iϕ2 (−∞ < ϕ1 < 0 < ϕ2 < +∞), and crossing the real line at a point c,
−1 < c < 0.

Proof. It follows the lines of the previous one. The details are omitted.

Remark 4. Let us note that in both representations (31) and (34), we
cannot include the term corresponding to the pole at s = 0, since in this case
either L−∞ or L+∞ should cross the branch cut of the corresponding multi-
valued function.

Several open problems can be further handled for the multi-MLPR functions
(16), concerning for example, conditions of complete monotonicity, and other
properties similar to that of the multi-index ML, multi-index ML-Prabhakar

functions (m > 1) and the generalized ML functions of Le Roy type as F
(γ)
α,β

and F
(γ)
α,β;τ (m = 1).

Let us note that on contrary to the cases of the Mittag-Leffler type func-
tions (4), (5) (and all their particular cases) and multi-index Mittag-Leffler
functions (6), (7), the recently introduced Le Roy functions of Mittag-Leffler
type (13) and the multi-MLPR functions (14) cannot be presented in terms of
Wright generalized hypergeometric functions pΨq nor either as cases of the Fox
H-functions. Nevertheless, we may consider these Le Roy type functions as
members of the family of Special Functions of Fractional Calculus.
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4. Examples of the multi-index MLPR-function

• Let us take m = 1 in (16). A case of such MLPR type special function of the
form

F τ ;1
α,β;γ(z) =

∞
∑

k=0

(τ)k
[Γ(αk + β)]γ

, (35)

has been mentioned in Tomovski and Mehrez [36]. This function has been
studied in details by Paneva-Konovska [26]. There, it is proved that (35) has
the order ρ = 1/αγ, and type σ = γ, that do not depend on “Prabhakar” index
τ .

For τ = 1, it is the Mittag-Leffler function of Le Roy type (13), F
(γ)
α,β(z),

introduced and studied in the mentioned works [9], [7], [8], [36], [6], [28], [11],
[35], as entire function with order ρ and type σ that are in agreement with the
more general results (17)-(18), namely:

ρ =
1

αγ
, σ = γ.

Naturally, if m = 1, α1 = β1 = τ1 = 1, γ1 = γ > 0, the original Roy function
(12) appears:

F
(γ)
1,1 (z) = Fγ(z) =

∞
∑

k=0

zk

(k!)γ

with order ρ = 1/γ and type σ = γ.
And, for m = 1, if γ1 = τ1 = 1, it is the famous Mittag-Leffler function

Eα,β of order ρ = 1/α and type σ = 1; while for τ1 = τ we have the Prabhakar
function Eτ

α,β. We skip the comments for their important role as SF of FC and
all long lists of particular cases, presented in [29, pp.17-20], [18]-[19], [33], [10].

• The case m = 2. In the paper [28] Pogany mentioned as an example only,
a special function of the form (we keep the denotations from [28]):

Fα,β
(p,q;r,s)(z) =

∞
∑

k=0

zk

[Γ(pk + q)]α [Γ(rk + s)]β
.

This function illustrates the case m = 2 of the new special functions we consider
here, namely it can be written as:

F
(1,1);2
(p,r),(q,s);(α,β) =

∞
∑

k=0

(1)k(1)k zk

(k!)2 [Γ(pk + q)]α [Γ(rk + s)]β
.

So, in this case, we obtain that this is an entire function with:

ρ =
1

pα+ rβ
, σ =

pα+ rβ

(ppα · rrβ)1/(pα+rβ)
,
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and as expected, the order and type do not depend on 2nd parameters q and s
in the Gamma functions.

We may continue the examples for m = 2 with the case of the not enough
popular ML type function of Dzrbashjan [4] (1960, in Russian only), with 2× 2
indices, which he denoted alternatively by (below we may set 1/ρi := αi, µi :=
βi, i = 1, 2):

Φρ1,ρ2(z;µ1, µ2) =
∞
∑

k=0

zk

Γ(µ1 +
k
ρ1
)Γ(µ2 +

k
ρ2
)

:= E( 1

ρ1
, 1

ρ2
),(µ1,µ2)

(z) = E(α1,α2),(β1,β2)(z).

(36)

Dzrbashjan found the order and type of this entire function, claimed on few
simple particular cases, and considered some integral relations between (36)
and Mellin transforms on a set of axes. Then, he developed a theory of integral
transforms in the class L2, involving kernel close to functions (36) and further,
proposed approximations of entire functions in L2 for an arbitrary finite system
of axes in complex plane starting from the origin. The 2 × 2-indices ML type
functions (36) are studied in details also by Luchko in recent works (as one of
2020). He allows the parameters ρ1, ρ2 to be also negative or zero, and called
them “4-parameters Wright functions of second kind”.

Simple cases of (36) as mentioned by Dzrbashjan himself, were: the ML
function (itself): E 1

ρ
,µ(z) = E( 1

ρ
,0),(µ,1)(z) = Φρ,∞(z;µ, 1); also:

1

1− z
= E(0,0),(1,1)(z) = Φ∞,∞(z; 1, 1);

the Bessel function:

Jν(z)=
(z

2

)ν
E(1,1),(ν+1,1)

(

−z2

4

)

=
(z

2

)ν
Φ1,1

(

−z2

4
; 1, ν+1

)

.

To these examples, we have added ([18], [19]) also: the Struve and Lommel
functions:

sµ,ν(z) =
1

4
zµ+1 E(1,1),((3−ν+µ)/2,(3+ν+µ)/2)

(

−z2

4

)

,

Hν(z) =
1

π2ν−1(1/2)ν
sν,ν(z).

The (classical) Wright function studied by Fox (1928), Wright (1933), Hum-
bert and Agarwal (1953), is also a case of the multi-index M-L function with
m = 2:
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ϕ(α, β; z)=

∞
∑

k=0

1

Γ(αk+β)

zk

k!
=0Ψ1

[

−
(β, α)

∣

∣

∣

∣

z

]

=E
(2)
(α,1),(β,1)(z), (37)

and thus, it also falls in the case of multi-index (m = 2) ML functions of Le
Roy type!

The Wright function ϕ(α, β; z) plays important role in the solution of linear
PFDEs as the fractional diffusion-wave equation studied by Nigmatullin (1984-
1986, to describe the diffusion process in media with fractal geometry, 0 < α <
1) and by Mainardi et al. (1994 -), for propagation of mechanical diffusive waves
in viscoelastic media, 1 < α < 2). In the form M(z;β) = ϕ(−β, 1−β;−z), β :=
α/2, it is called also as the Mainardi function. In our denotations, this is:

M(z;β) = E
(2)
(−β,1),(1−β)(−z), m = 2 and has its examples like: M(z; 1/2) =

1/
√
π exp(−z2/4) and the Airy function: M(z; 1/3) = 32/3 Ai(z/31/3). In other

form and denotation, the same Wright function (37) is known as Wright-Bessel,
or misnamed as Bessel-Maitland function:

Jµ
ν (z) = ϕ(µ, ν + 1;−z) = 0Ψ1

[

−
(ν + 1, µ)

∣

∣

∣

∣

− z

]

=
∞
∑

k=0

(−z)k

Γ(ν + kµ+ 1) k!
= E

(2)
(1/µ,1),(ν+1,1)(−z) , (38)

again as an example of the Dzrbashjan function. But it is an obvious “frac-
tional index” analogue of the classical Bessel function Jν(z), and example of
multi-index M-L function of Le Roy type. Several other “fractional-indices”
generalizations of Jν(z) have been also exploited as SF of FC, and we can
present them as multi-index M-L functions and as Le Roy type functions (16):
the generalized Wright-Bessel-Lommel functions (Pathak, 1966-1967); the gen-
eralized Lommel-Wright function with 4 indices, introduced by de Oteiza, Kalla
and Conde (1986), etc. (see in [18], [19]).

• The case of arbitrary m ≥ 2.

As mentioned, while this work was in progress, we have been informed by
Rogosin and Dubatovskaya about their studies on a kind of multi-index Mittag-
Leffler functions of Le Roy type, defined by (14),

F
(γ)m
(α,β)m

(z) =
∞
∑

k=0

zk

m
∏

j=1
[Γ(αjk + βj)]

γj
, z ∈ C.
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In [34] they have provided the order and type of these entire functions as in (15),
Mellin-Barnes type integral representations, some interpretations and particular
cases. Evidently, (14) appear as functions (16) with ∀τi = 1, i = 1, ...,m.

For the case of ∀γi = 1, τi = 1, i = 1, ...,m, we have the 2m multi-index
M-L functions (6), and if ∀γi = 1, but τi are chosen arbitrary, these are the 3m
multi-index ML functions (7), and our formulas (17) and (18) give their order
and type.

• Some other special cases, that are examples of multi-index ML functions
and so, also of the multi-index MLPR-functions (for more examples, see in
[18],[19]):

Consider the case m ≥ 2, with ∀αi = 1, i = 1, . . . ,m. Then:

E
(m)
(1,...,1),(βi+1)

(z)=1Ψm

[

(1, 1)
(βi, 1)

m
1

∣

∣

∣

∣

z

]

=const 1Fm (1;µ1, µ2, ..., µm; z)

reduces to 1Fm, and also to a Meijer’s G1,1
1,m+1-function. Denote βi = νi+1, i=

1, . . . ,m, and let additionally one of the βi to be 1, e.g.: βm =1, i.e. νm =0.
Then the multi-index ML function becomes a hyper-Bessel function of Delerue
([2], [14, Ch.3]):

J (m−1)
νi,...,νm−1

(z)=
( z

m

)

m−1∑

i=1

νi
E

(m)
(1,1,...,1),(ν1+1,ν2+1,...,νm−1+1,1)

(

−(
z

m
)m
)

. (39)

In view of the above relation, the multi-index ML functions with arbitrary
(α1, . . . , αm) 6= (1, . . . , 1) can be seen as fractional-indices analogues of the
hyper-Bessel functions. The hyper-Bessel functions (39) themselves are multi-
index analogues of the Bessel function. These are closely related to the theory
of the hyper-Bessel differential operators of Dimovski [3]

Bf(t) = tα0
d

dt
tα1

d

dt
· · · tαm−1

d

dt
tαmf(t) = t−β Pm

(

t
d

dt

)

f(t)

= t−β
m
∏

k=1

(

t
d

dt
+ βνk

)

f(t), t > 0, (40)

and form a fundamental system of solutions of the differential equations of
the form By(z) = λ y(z) (see Kiryakova [14, Th.3.4.3]). For example, if β =
m, ν1 < ν2 < ... < νm = 0 < ν1 + 1 in (40), the solution of the Cauchy
problem By(z) = −y(z), y(0) = 1, y(j)(0) = 0, j = 1, ...,m−1, is given by

the normalized hyper-Bessel function: y(z) = j
(m−1)
ν1,..,νm−1

(−z), related to the
Bessel-Clifford function of m-th order:
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Cν1,...,νm(z)=
∞
∑

k=0

(−1)kzk

Γ(ν1+k+1) . . .Γ(νm+k+1) k!

= E
(m+1)
(1,...,1),(ν1+1,...,νm+1,1)(−z).

Now, let us mention the special functions appearing in some recent pa-
pers by Ricci (say, in [32]). He considers the so-called Laguerre derivative

DL =
d

dz
z
d

dz
and its iterates DmL =

d

dz
z
d

dz
z...

d

dz
z. But these are the

same as the particular hyper-Bessel differential operators considered in oper-
ational calculus by Ditkin and Prudnikov (1963). Then, the L-exponentials
e1(z), e2(z), ..., em(z), ... which are eigenfunctions ofDmL, that is,DmL em(λz) =

λ em(λz), are shown to have the form em(z)=
∞
∑

k=0

zk

(k!)m+1
. Observe that these

are exactly Le Roy functions with integer γ = m+1 and can be seen also to be

em(z)=0Fm(−; 1, 1, ..., 1; z)=1Ψm+1

[

(1, 1)
(1, 1), (1, 1), ..., (1, 1)

∣

∣

∣

∣

z

]

.

Thus, these are examples of both hyper-Bessel functions and multi-index M-L

functions E
(m+1)
(1,...,1),(1,...,1)(z). Ricci applied these SF and the related Laguerre-

type generalized hypergeometric functions as solutions in population dynamics.
Namely, again in a recent work, Ricci considered some Laguerre-type (L-) Bessel
functions, L-type Gauss hypergeometric functions, and the Laguerre-type gen-
eralized hypergeometric functions LpFq which can be shown to be representable
by pFq+1:

LpFq(a1, .., ap; b1, ..., bq ; z)=
∞
∑

k=0

a
(k)
1 ...a

(k)
p

b
(k)
1 ...b

(k)
q

· zk

(k!)2

=
∞
∑

k=0

a
(k)
1 ...a

(k)
p

b
(k)
1 ...b

(k)
q (1)(k)

· z
k

k!
=pFq+1(a1, ..., ap; b1, ..., bq , 1; z).

(41)

These special functions fall again as examples of the hyper-Bessel, multi-index
ML and multi-index MLPR-functions.

Finally, one may consider multi-index analogues of the Rabotnov (α-expo-
nential function), with all αi = βi = α > 0, i = 1, ...,m:

y(m)
α (z)=zα−1E

(m)
(α,...,α),(α,...,α)(z

α)=zα−1
∞
∑

k=0

zαk

[Γ(α+αk)]m
, (42)

and for α = 1 we have the original Le Roy function:
∞
∑

k=0

zk

[k!]m
.
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