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Abstract: Accurate indoor localization estimation has important social and commercial values, such
as indoor location services and pedestrian retention times. Acoustic-based methods can achieve high
localization accuracies in specific scenarios with special equipment; however, it is a challenge to obtain
accurate localization with general equipment in indoor environments. To solve this problem, we
propose a novel fusion CHAN and the improved pedestrian dead reckoning (PDR) indoor localization
system (CHAN-IPDR-ILS). In this system, we propose a step length estimation method that adds the
previous two steps for extracting more accurate information to estimate the current step length. The
maximum influence factor is set for the previous two steps to ensure the importance of the current
step length. We also propose a heading direction correction method to mitigate the errors in sensor
data. Finally, pedestrian localization is achieved using a motion model with acoustic estimation and
dynamic improved PDR estimation. In the fusion localization, the threshold and confidence level
of the distance between estimation base-acoustic and improved PDR estimation are set to mitigate
accidental and cumulative errors. The experiments were performed at trial sites with different users,
devices, and scenarios, and experimental results demonstrate that the proposed method can achieve a
higher accuracy compared with the state-of-the-art methods. The proposed fusion localization system
manages equipment heterogeneity and provides generality and flexibility with different devices and
scenarios at a low cost.

Keywords: indoor localization; pedestrian dead reckoning; step length estimation; heading direction
estimation; equipment heterogeneity

1. Introduction

Location-based services (LBS) have received increasing attention, have many market
application scenarios, and have social and commercial values due to the rapid growth
of wireless technology and social requirements. Example applications include smart
homes; currently widely important epidemic prevention and treatment; car searching
in underground garages; underwater target detection and tracking; store positioning in
shopping malls; etc. [1]. Although the global navigation satellite system (GNSS) can
meet all weather-positioning requirements in outdoor environments, it is difficult to meet
requirements in indoor environments due to weak signals that are blocked by buildings.
Indoor localization has thus become a challenging and hot research topic in recent years.

Researchers have conducted a series of studies on ultra-wideband (UWB) [2–4] po-
sitioning, WIFI positioning [5,6], infrared positioning [7], radio frequency identification
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(RFID) positioning [8–12], Bluetooth positioning [13,14], geomagnetic positioning [15,16],
visual positioning [17], and ultrasonic positioning [18,19]. The indoor positioning method
based on ultrawideband can achieve high positioning accuracy and good stability. The liter-
ature [20] proposed a new collaborative pedestrian synchronous localization and mapping
algorithm but requires special infrastructure. The approach, based on infrared technology,
requires a lot of power and is blocked by indoor walls or obstacles; therefore, it is used only
in some special scenarios [21]. The approaches based on Wi-Fi and Bluetooth are low-cost
and easy to promote; however, data acquisition typically requires a long time [18]. The
indoor localization method based on RFID achieves high accuracies but has additional
infrastructure costs [10–12,22]. Geomagnetic sequences are strongly affected by surround-
ing ferromagnetic materials, making it difficult to establish a fingerprint database with
huge human power and update it occasionally [23]. Vision-based positioning has good
visibility [24]; however, localization performance is limited by light conditions and cannot
be permitted in numerous situations because of privacy and security issues.

Of all localization signals, the ultrasonic signal is compatible with mobile equipment,
and the data transmission and reception can be obtained using only mobile equipment.
Ultrasonic-based localization has good adaptability for scenes without additional infrastruc-
ture and high adaptability, and sufficient accuracy for low propagation speed. Localization
is achieved by time correlations with low computational complexities, making the local-
ization approach based on ultrasound one of the most competitive indoor localization
technologies [1,10–12]. However, due to reflection, refraction, obstruction, and the interfer-
ence of other frequency signals when the acoustic signal propagates indoors, accidental
errors will occur in the localization process and result in the deterioration of the localization
accuracy in some cases [25].

Pedestrian dead reckoning (PDR) is a localization method that estimates a user’s
location according to the user’s walking characteristics. In addition, the pedestrian mo-
tion information is captured by motion sensors such as accelerometers, gyroscopes, and
magnetometers installed in smartphones. Pedestrian dead reckoning achieves good local-
ization accuracy in a short time, which is suitable for the real-time localization tracking of
fast-moving users. However, the PDR algorithm relies on other positioning techniques to
provide an accurate initial location, and there are cumulative positioning errors for long-
term localization. Therefore, PDR technology is generally integrated with other indoor
localization technologies [26].

Overall, it is difficult to trade off compatibility, cost, and accuracy for indoor local-
ization. Most current localization systems are infrastructure-based, which makes them
impossible to implement on a large-scale application. More efforts must be made to
determine how to achieve localization accuracy, compatibility with smartphones, cost,
and real-time performance in indoor localization systems. These issues also create more
challenges with regard to positioning, which can be summarized as follows:

• How can the tradeoff of cost and precision be mitigated in indoor environments? High
precision often requires high costs, but in real applications users typically hope to
achieve high precision performance at low cost. Therefore, low cost and high precision
are the core key research topics in localization.

• How can heterogeneous equipment be achieved? The application scope of indoor
localization is related to the requirements for device heterogeneity. A good method
must be developed for different devices. Therefore, device heterogeneity remains a
great challenge.

• How can the generality of indoor localization be achieved? Both environments and
human behaviors have a strong influence on positioning. Therefore, eliminating this
interference remains a challenge for localization.

In localization methods, research has focused on scene analysis algorithms and trian-
gulation algorithms. Scene analysis algorithms include the offline stage and online stage.
In the offline stage, a fingerprint database is constructed in the whole scene in advance. In
the online stage, localization is achieved to find the location of the maximum probability
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by matching the fingerprint database. Aqilah Binti Mazlan et al. [27,28] proposed KD-
CNN-IPS and TAKD-CNN-IPS to achieve good performance, respectively. However, the
fingerprint database needs to update once the scene changes, it requires large manpower.
The triangulation algorithm includes the time of arrival (ToA) [29,30], angle of arrival
(AoA) [31,32], and time difference of arrival (TDoA) [33,34]. The time of arrival requires
accurate timing synchronization at the beacons and the target; it brings a great challenge
for the high-cost and real-time localization performance. The angle of arrival estimation is
achieved through the angles at which the signal arrives from the target to the beacons; it
requires large antenna arrays and has a high-cost [10–12]. The time difference of arrival
estimates the time differences at the beacons; the target location is the intersection of many
hyperbolic curves from the time differences. It has low calculation complexity and low cost;
no time synchronization is required. Among TDOA-based location algorithms, the CHAN
algorithm [35,36] does not need an initial value and can reach the lower limit of Cramero.

To address these challenges, we propose a low-cost and high-precision indoor pedes-
trian tracking method based on the compatibility of ultrasonic signals and smartphones.
In this method, we fuse the localization approach based on ultrasonic signals and the
improved PDR method. Data transmission and reception are achieved using smartphones,
and ultrasonic localization is implemented using the CHAN algorithm. The proposed
method mitigates the accidental errors in ultrasonic localization and the cumulative errors
of PDR. The primary contributions of study paper are as follows:

• A dynamic improved PDR method. In this article, we propose a dynamic improved
PDR method. In this method, we add the previous two steps to estimate the current
step length. We also introduce a compensation factor due to some errors from the
sensors themselves when collecting sensor data. The maximum influence factor is set
for the previous two steps to ensure the importance of the step length estimation at
the current time. The experiments show that the proposed method can provide more
location information and achieve better performance than the traditional method.

• An error correction method for heading direction. During improved PDR estima-
tion, to mitigate equipment heterogeneity, we propose a heading direction correction
method. The experimental results demonstrate that issues of equipment heterogeneity
have been solved.

• Fusion localization framework-based acoustic signal. Considering compatibility with
ultrasonic signals, we propose a fusion CHAN and the improved PDR indoor local-
ization system (CHAN-IPDR-ILS). We developed some experiments with different
devices and pedestrians at the two sites. The experimental results demonstrate that
the fusion localization system can achieve comparable performance, generality, and
flexibility for application.

The remainder of this paper is organized as follows: Section 2 describes the related
work. Section 3 presents the workflow of the proposed localization system. Section 4
describes the localization architecture. Section 5 provides experimental verification and
analysis. Section 6 summarizes the results of this paper.

2. Related Work

Indoor localization technology has been widely researched for decades. Relevant
research at home and abroad can be divided into the following two categories. First,
indoor positioning technology is based on wireless networks, such as ultrasonic [18,19],
ultrawideband [4,37], Bluetooth [13,38,39], and Wi-Fi [6,40]. The second category includes
indoor positioning technology based on inertial devices, pedestrian inertial navigation
systems (PINS), and PDR.

The localization approach ultrasonic-base promotes the development of positioning
technology due to its compatibility with smartphones. Liu, K. [41] first proposed the
GuoGuo positioning system with a smartphone, in which an acoustic signal between 15 and
20 kHz is used and achieves 6–25 cm positioning performance. Luo, X. et al. [42] proposed a
new ultrasonic positioning method based on the receiver array optimization scheme, which
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can effectively improve the accuracy of indoor positioning. The literature [43] analyzed
the localization effect of the CHAN and Taylor algorithms and demonstrated that the
CHAN algorithm achieves better localization than the Taylor algorithm. The acoustic signal
is susceptible to environmental interference, and accidental errors inevitably affect the
localization performance.

Pedestrian location in PDR estimation can be determined via step accumulation
during walking. The literature [14] proposed the BtPDR localization method, which
integrated the PDR method with Bluetooth. The localization accuracy is improved by 42.6%
compared with the traditional PDR method. Lee, Gang Toe et al. [44] proposed an indoor
localization method that combined the UWB method with the PDR method. The proposed
fusion algorithm improved the localization accuracy and solved the errors for non-line-
of-sight environments in the UWB estimation. The literature [45,46] proposed the fuse
localization method, which combines ultrasonic signals with PDR estimation and achieved
high-precision performance in the indoor environment. The literature [47,48] proposed an
indoor positioning method based on the Wi-Fi, Bluetooth, and PDR methods. The fusion
method solved the Wi-Fi signal instability and cumulative error in PDR localization.

In research, many achievements in indoor localization have been made. However,
low cost, high accuracy, and compatibility with different smartphones cannot be uniformly
satisfied in different scenarios with the existing methods. Thus, inspired by existing
localization technologies, we propose a fusion localization method that combines the
CHAN algorithm and the improved PDR algorithm. The experiments demonstrate that the
proposed method can solve abnormal points in acoustic signal localization, and effectively
alleviate cumulative errors over time caused by the PDR algorithm. Also, the proposed
method can use different scenes and different devices.

3. System Workflow

In this part, the overall scheme of the multi-information localization system is pre-
sented, as shown in Figure 1.
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In this scheme, the acoustic signal and inertial measurement unit (IMU) data are
first captured by a smartphone. We recruited volunteers to collect data with different
equipment and scenes. The volunteers held smartphones that were preinstalled with
the client application and were asked to move at a constant speed. These collected data
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are automatically saved as formatted *.txt and sent to the server intermission. In the
location solution terminal, the target location estimation acoustic base was determined
using the CHAN method, and in the inertial measurement unit-based localization, the
data from acceleration, gyroscope, and magnetometer were extracted from the server and
preprocessed. Afterward, a dynamic improved PDR method was used to determine the
pedestrians’ locations. Finally, localization was achieved via the motion model with CHAN
estimation and dynamic improved PDR estimation.

4. Fusion Localization Architecture

We introduce the multi-information localization overview in Section 4.1. After that,
the acoustic approach based on the CHAN algorithm is demonstrated in Section 4.2.
In Section 4.3, step-counting detection is introduced and the improved adaptive step
length estimation is described in Section 4.4. Heading direction estimation is illustrated in
Section 4.5. Finally, the fusion localization is presented in Section 4.6.

4.1. Overview

In this section, we show how the multi-information localization system operates. The
motion model diagram of the target in the localization system is shown in Figure 2, which
considers only the two dimensions. Therefore, the motion equation is expressed as follows:[

xm
ym

]
=

[
xm−1
ym−1

]
+ sm ∗

[
sinβm
cosβm

]
(1)

βm = βmeas + βdh + βstatic (2)

where (xm, ym) and (xm−1, ym−1) denote the location of the pedestrian at times m and
m − 1, sm is the step length of the m-th step, and βm denotes the heading direction of
the m-th step after correction. βmeas is the data measured by the smartphone, βdh is the
correction angle for different devices, and βstatic is the compensation error measured when
the smartphone is stationary.
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Figure 2. Motion model diagram of the target, where Ti, i = 1, 2, 3, . . . is the trajectory of the target.

The pedestrian location can be deduced using (1) and (2). The localization is built on
an improved dynamic PDR method and CHAN estimation. The dynamic PDR localization
method is primarily based on the pedestrian characteristics that are achieved from the ac-
celeration, gyroscope, and magnetometer sensors during walking. The overall localization
method is depicted in Algorithm 1.
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Algorithm 1: Procedure of fusion localization

Input: The acoustic signal and IMU data from smartphone.
Output: The target location Um.
1: Access data from smartphone.
2: Calculate the location Uc

m of the CHAN estimation as Section 4.2.
3: Peak and valley detection as Section 4.3.
4: Threshold judgment as Section 4.3.
5: Time interval detection as Section 4.3.
6: Estimate the step counting.
7: for each step do
8: Estimate the step length sm as Section 4.4.
9: Calculate heading direction estimation β as Section 4.5.
10: Calculate the location Up

m of the PDR estimation at time m.
11: end for
12: The fusion localization as Section 4.6.
13: If the CHAN estimation > threshold then
14: Discard the CHAN estimation, the location at time m − 1 is Um−1.
15: else
16: The location at time m − 1 is Uc

m−1.
17: end if
18: Location determination and heading by motion model as (26).
19: Return step 2.

4.2. Location Initialization

The transmission and reception of acoustic signals is achieved by chirp modulation.
The chirp signal is a pulse compression signal, which has good autocorrelation character-
istics and can be extracted from severe signal fading. The chirp signal is characterized
as follows:

m(t) = ej2π( f0t+ 1
2 k0t2), tε[0, T] (3)

where f0 is the initial frequency, k0 is the modulation rate, and T is the duration time.
In this paper, the frequency range of the chirp signal is between 17.5 and 19.5 kHz,

and 40 ms per frame is shown in Figure 3. We installed the beacons with microphones
and speakers at the trial scenes. The target passively listens to the beacons and saves the
messages. The server terminal calculates the target location with the CHAN algorithm. The
initial location of the target is achieved by ultrasonic-base estimation.
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The CHAN algorithm is a non-recursive hyperbolic solution that has high localiza-
tion accuracy and low computational complexity. This algorithm can reach the lower
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limit of Calimero in the line-of-sight environment and has been widely used in practical
engineering.

Assuming a target location T(x, y), and beacon locations Ai(xi, yi), i = 1, 2, 3, . . .,
the spatial position with three beacons and the target T are shown in Figure 4.
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The distance difference di1 between the i-th beacon and the target can be calculated
as follows: √

(xi − x)2 + (yi − y)2 −
√
(x1 − x)2 + (y1 − y)2 = di1, (4)

Expanding (4), we can obtain:

di1
2 + 2di1d1 = xi

2 + yi
2 − x1

2 − y1
2 − 2x(xi − x1)− 2y(yi − y1) (5)

Assuming that ri = xi
2 + yi

2, xi1 = xi − x1, yi1 = yi − y1, Equation (5) can be
simplified as follows:

xi1x + yi1y + di1d1 =
1
2

(
ri − r1 − di1

2
)

(6)

Equation (6) can be expressed using a matrix as follows:

h = gaF (7)

where h = 1
2

r2 − r1 − d21
2

...
rn − r1 − dn1

2

, ga =

x21 y21 d21
...

...
...

xn1 yn1 dn1

, F = [x y d1]
T .

Due to observation noise, the error vector can be expressed as:

e = h− gaF (8)

The covariance matrix of the error vector e is

Σ = Cov(e, e) = E
(

eeT
)
= c 2RqR (9)

where R = diag(d2, d3, . . . , dn) and q is the covariance matrix.
The location estimation can be obtained through weighted least squares:

F̂ =
(

ga
T pga

)−1
ga

T ph (10)
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where p is the inverse of the covariance matrix Σ.
After obtaining the localization for the first time, we can obtain the equation:

e′ = h′ − ga
′F′ (11)

with the constraint: 
F1 = x0 + ∂1;
F2 = y0 + ∂2;
F3 = d1

0 + ∂3.
(12)

where ∂1, ∂2, ∂3 are the estimation F̂. F′ =

[
(x− x1)

2

(y− y1)
2

]
, h′ =

(F1 − x1)
2

(F2 − y1)
2

F3
2

, ga
′ =

1 0
0 1
1 1

.

We obtain:
F̂′ =

(
ga
′T p′ga

′
)−1

ga
′T p′h′ (13)

where 
p′ = Σ′−1 = (4R′Cov(F)R′)−1;

R′ = diag
{

x0 − x1, y0 − y1, d1
0}

cov(F) = (
(

ga)T pga
)−1.

(14)

The localization of the target T is

Uc
m = ±

√
F′ + (x1, y1)

T (15)

4.3. Step-Counting Detection

The peak and valley are used to calculate the pedestrian’s step counting. To guarantee
the validity of these peaks and valleys, we define four thresholds Apl

acc, Avu
acc, Tu

time, and Tl
time

for the peak and valley determination, where Apl
acc is the lower bound of the acceleration

peak value; Avu
acc is the upper bound of the acceleration valley; and Tu

time and Tl
time are the

upper bound and lower bound of the time interval between two adjacent peak or valley
values. The step-counting detection method is characterized in detail as follows:

1. Peak and Valley Detection;

If A(m) > A(m− 1) and A(m) > A(m + 1), then A(m) is the peak.
If A(m) < A(m− 1) and A(m) < A(m + 1), then A(m) is the valley
where A(m), A(m− 1), and A(m + 1) are the acceleration values at times m, m − 1,
and m + 1, respectively.

2. Threshold Judgment:

All detected peaks must be greater than Apl
acc; otherwise, they are discarded.

All detected valleys are less than the preset valley threshold Avu
acc; otherwise, they

are discarded.

3. Time Interval Detection:

If
(

TA(m) − TAstep(m−1)

)
∈
(

Tu
time, Tl

time

)
, then the acceleration at time m is peak or

valley; otherwise, the acceleration is discarded.

The peak and valley values at time m are determined when conditions one to three are
satisfied. The step counting can be obtained from the peak and valley.

4.4. Improved Adaptive Step Length Estimation

The step length estimation is the key algorithm in PDR localization. Researchers
have developed multiple mathematical models to perform related research, including
the Weinberg [49], Scarlet [50], and Kim models [51], which are established through the
relationship between acceleration and step length during walking:
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Scarlet method:

sm = K ∗
∑N

i=1|Ai |
N − Avalley

m

Apeak
m − Avalley

m
(16)

Kim method:

sm = K ∗ 3

√
∑N

i=1|Ai|
N

(17)

Weinberg method:

sm = K ∗ 4
√

Apeak
m − Avalley

m (18)

where sm is the step length of the m-th step; Apeak
m and Avalley

m are the peak and valley values
of acceleration in the m-th step, respectively; Ai is the i-th acceleration value; and N is the
number of accelerations.

These models have been widely used for step length estimation. However, we must
extract more accurate information during high precision localization. The models cannot
satisfy the requirements of application. During movement, the pedestrian state in the
current time is correlated with the current and previous states. Therefore, during step
length estimation, we must consider the pedestrian states at the current and previous times.
Different devices also have different errors.

Inspired by the three models [50–53], we propose a nonlinear adaptive step length
estimation model, which is characterized as follows:

sm = b1 ∗ sm−2 + b2 ∗ sm−1 + b3 ∗ K ∗ 4
√

Apeak
m − Avalley

m + Bias + Comp (19)

where sm−2, sm−1 are the step length of the (m − 2)-th and (m − 1)-th steps, respectively;
[b1, b2, b3] is the weight vector; Bias is the offset error, which is measured in the stationary
state; and Comp is the accelerometer compensation of different devices.

In addition, the previous two steps have some influence on the current situation
during walking. However, in the step estimation, the influence factor is sometimes too
large. In this paper, the maximum weight factor Bmax is set to ensure the importance of the
step length in the current state. If the weight factor b1 is greater than Bmax, we assume that
the weight W is equal to the difference of the weight factor minus the maximum weight
factor; thus, W = b1 − Bmax. Then, the weight vector [b1, b2, b3] updates as follows:

b1 = Bmax
b2 = b2 + W/2
b3 = b3 + W/2

(20)

4.5. Improved Heading Direction Estimation

Popularized smartphones are equipped with general gyroscopes, accelerometers, and
magnetometers. Therefore, to obtain reliable and accurate localization, we must develop a
method to extract more accurate heading direction information from the sensors.

In the traditional PDR method, the heading direction is calculated directly using the
measured value from the IMU sensors. However, different smartphones produce different
errors in the collected data. To address these issues, we propose a heading direction
correction method:

βm = βmeas + βdh + βstatic (21)

where we add the correction angle βdh for different devices and compensation error βstatic
measured when the smartphone is stationary. Therefore, the method can solve equip-
ment heterogeneity.

To validate the performance of the proposed method, we conducted experiments with
VivoY85a and Honor60 smartphones, as shown in Figure 5. These results demonstrate
that the proposed method is more accurate than the PDR method because the proposed
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method can extract more accurate information and effectively mitigate the errors caused by
different devices.
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4.6. Fusion Localization

In this part, we propose the fusion scheme to achieve better performance. In the
proposed scheme, the initial location is set using CHAN estimation. We thus set a threshold
Dth, where generally Dth = 2 ∗ sm−1, to avoid outliers in localization processing.

At time m − 1, the CHAN estimation is Uc
m−1

(
xc

m−1, yc
m−1

)
, and the location estima-

tion of the proposed method is Up
m−1

(
xp

m−1, yp
m−1

)
. Two cases can occur:

Case 1: When the distance between CHAN estimation at time m – 1 and the location at
m – 2 is greater than the preset threshold Dth, CHAN estimation is discarded as an outlier.
Then, the location at time m – 1 is used, where (xm−1, ym−1) = Um−1.

Case 2: When the distance between estimation at time m – 1 and the location at m – 2
is less than the preset threshold Dth, the location (xm−1, ym−1) is achieved by the distance
confidence level between CHAN estimation and the proposed method Um−1.

The distance confidence level is defined as follows:

Con fC =
1

‖Um−2 −Uc
m−1‖2

(22)

Con fp =
1

‖Um−2 −Up
m−1‖2

(23)

The normalized distance confidence level for time m − 1 can be described by:

Con fC =
Con fC

Con fC + Con fp
(24)

Con fp =
Con fp

Con fC + Con fp
(25)

with the constraint:
Con fp + Con fC = 1 (26)

After determining the distance confidence level, we can obtain the location Um−1. The
localization at time m can be achieved from the following equation:

Um = Um−1 + sm ∗
[

sinβm
cosβm

]
(27)
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5. Experimental Verification and Analysis

In this section, we describe the experimental setup in Section 4.1. Then, Section 4.2
provides a discussion and analysis of the proposed method. Finally, the localization results
are reported in Section 4.3.

We conducted experiments at two trial sites, which included a 12 × 8 × 3 m3 area
and 16 × 14 × 3 m3 area. The first scene covered approximately 96 m2 and the second
scene covered approximately 224 m2. The floor plans of the experimental sites are shown
in Figure 6.
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Figure 6. Trial experimental site floor plans. (a) Scenario 1. (b) Scenario 2.

5.1. Experimental Setup

We exploited the localization system based on acoustic and inertial data, which con-
tained a client terminal and a backend server terminal.

Smartphones with IMU sensors were preinstalled in the client program. The pedestrian
carried the smartphone in their hands to collect accelerometer, gyroscope, and magnetome-
ter data as they walked along a designated route. While collecting data, time stamps and
acoustic signals were collected from the beacons installed at the trial sites.

A 64-bit computer with the Windows 10 operating system operated as the server
terminal. The computer with GPU GT730 and 8 GB RAM has Intel i7-7700 CPU with the
frequency of 3.6 GHz. The sever terminal stored the received data and ran the localization
program. Localization estimation was performed using the proposed method based on
acoustic and inertial sequences.

Ten beacons in the first experimental scene and fourteen beacons in the second scene
transmit ultrasonic signals periodically. The smartphone that was preinstalled with the
client application was used as the target.

We recruited two volunteers to capture acoustic and IMU data who came from the
local university. One female volunteer (height 155 cm, number #1) and one male volunteer
(height 180 cm, number #2) each held a VivoY85a and Honor60 device to move along
the survey path at each scene. At the trial scenes, we asked the volunteers to collect
the data several times. The mobile phone technical information of the experiment is
shown in Table 1.
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Table 1. Mobile phone technical information.

Technical Information VivoY85a Honor60

Operating system Android 8.1.0 Android 11
CPU Snapdragon 450 Snapdragon 778

RAM + ROM 4 G + 64 G 8 G + 256 G
Screen 6.26 inch 6.67 inch

Image resolution 2280 × 1080 2400 × 1080
Battery capacity 3260 mAh 4800 mAh

5.2. Discussion and Analysis
5.2.1. Step-Counting Detection

To validate the performance of step-counting estimation for different pedestrians with
different devices, the two volunteers collect the acoustic signal and inertial data along
each planned path at normal speed with VivoY85a and Honor60 devices. Figure 7 shows
the results of the peak and valley detection for two volunteers in the first experimental
scenario. The peak and valley of the pedestrian acceleration are marked with red and green
circles, respectively, in the figure. Figure 7 shows that the peaks and valleys can be detected
accurately for pedestrians of different heights. Figure 7a–d show that good performance
is achieved when counting steps with both devices. These results are primarily achieved
because the threshold can identify invalid peaks and valleys.
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Figure 8 shows the peak and valley detection results for the two volunteers in the
second scene. Peaks and valleys can be detected accurately with different devices and
different heights. Once the precise peaks and valleys are obtained, steps can be counted.
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Therefore, step counting achieves good performance with different devices in different
scenes and good universality without device heterogeneity.
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5.2.2. Step Length Estimation

To evaluate the proposed step length method, we performed experiments with the
Scarlet, Kim, Weinberg, and proposed models. Figure 9 demonstrates the results of step
length estimation at the first experimental site when the pedestrian walks at a speed of 0.6
m/step. Figure 9 shows that the proposed method achieves better performance than the
Scarlet, Kim, and Weinberg models with different user heights and different devices. These
results primarily occur because the proposed model can identify more accurate information
to calculate the step length for each time step.

Table 2 shows the step length estimation with the VivoY85a and Honor60 smartphones
in the first scene with the various models. The step length estimation of the proposed model
is more accurate than the other models. Comparing these methods, the proposed method
achieves performances near the true value for different persons. Equipment heterogeneity
can thus be managed effectively.

For the second scenario, Figure 10 demonstrates the step length estimation results
when the different pedestrians with VivoY85a and Honor60 smartphones walk with a speed
of 0.6 m/step. These results illustrate that the proposed model achieves a higher accuracy
than the other models in the second scenario. Whether there is equipment heterogeneity or
different users, the proposed method achieves good performance.
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Table 2. Step length estimation with Honor60, VivoY85a, and two different height pedestrians in the
first scene.

Method Volunteer #1 (m) Volunteer #2 (m)

Scarlet (VivoY85a) 0.6621 0.6453
Scarlet (Honor60) 0.6190 0.5619
Kim (VivoY85a) 0.5375 0.5238
Kim (Honor60) 0.5418 0.4859

Weinberg (VivoY85a) 0.5532 0.5514
Weinberg (Honor60) 0.5608 0.5494

Proposed method (VivoY85a) 0.6078 0.5956
Proposed method (Honor60) 0.6066 0.5952

Table 3 shows the step length estimation with the VivoY85a and Honor60 smartphones
in the second scene with the various models. Results illustrate that the proposed model
achieves a higher accuracy primarily because the proposed model can consider more
information than the other models. Additionally, the adaptive computation of attention at
each step allows for the prediction of more accurate pedestrian states.

In addition, we conducted some experiments to estimate step length with different
distances at the trial site. We recruited three volunteers to capture the data with the corridor
totaling 15 m, 24 m, and 33 m. Five sets of data from the inertial sensors were collected
every time. Table 4 shows the distance estimation and absolute errors for each volunteer,
which demonstrate that errors increase with longer distances. However, our method is
more accurate than the Weinberg method. The errors of the proposed model are less than
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1.5% primarily because the proposed method considers more accurate information when
estimating the distances.
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Figure 10. Step length estimation results with Honor60, VivoY85a, and two different height pedes-
trians in the second scene. (a) Volunteer #1 with a VivoY85a cell phone. (b) Volunteer #2 with a
VivoY85a cell phone. (c) Volunteer #1 with an Honor60 cell phone. (d) Volunteer #2 with an Honor60
cell phone.

Table 3. Step length estimation with Honor60, VivoY85a, and two different height pedestrians in the
second scene.

Method Volunteer #1 (m) Volunteer #2 (m)

Scarlet (VivoY85a) 0.6245 0.6490
Scarlet (Honor60) 0.6280 0.6018
Kim (VivoY85a) 0.5351 0.5466
Kim (Honor60) 0.5422 0.5272

Weinberg (VivoY85a) 0.5602 0.5583
Weinberg (Honor60) 0.5576 0.5548

Proposed method (VivoY85a) 0.6013 0.6075
Proposed method (Honor60) 0.6009 0.5992

Table 4. Distance estimation and absolute error results between the Weinberg model and the proposed
model with different pedestrians and distances (m).

Distance Number
Weinberg Method Proposed Method

Distance
Estimation

Absolute
Error

Distance
Estimation

Absolute
Error

15 m
1 14.1103 0.8897 15.1936 0.1936
2 13.9190 1.0810 14.7965 0.2035
3 13.8630 1.1370 15.0210 0.0210

24 m
1 22.1598 1.8402 23.9690 0.0310
2 22.4331 1.5669 24.2047 0.2047
3 22.3525 1.6475 23.8515 0.1485

33 m
1 30.8524 2.1476 33.0497 0.0497
2 30.5610 2.4390 33.0742 0.0742
3 30.8507 2.1493 33.4002 0.4002
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5.2.3. Improved Dynamic PDR Results

To evaluate the generality of the improved PDR method to different devices, users,
and environments, we conducted experiments with VivoY85a and Honor60 smartphones
and two volunteers in the two trial sites. Figures 11 and 12 show the cumulative density
function (CDF) of the localization error with different devices, users, and environments.
The experimental results show that the improved PDR method has a lower localization
error and better performance than the traditional PDR method. These results primarily
occur because step length estimation and heading direction compensation were calculated
based on more accurate information, thus reducing the effects of device heterogeneity and
achieving comparable localization error with different users (height 155 cm and 180 cm) in
different environments.
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Figure 11. The CDF of localization errors between our PDR and PDR algorithms in the first scene.
(a) Volunteer #1 with a VivoY85a cell phone. (b) Volunteer #2 with a VivoY85a cell phone. (c) Volunteer
#1 with an Honor60 cell phone. (d) Volunteer #2 with an Honor60 cell phone.

5.3. Localization Performance

We performed several experiments of localization performance on the global region at
the two trial sites. Figure 13 shows the localization results using CHAN, PDR, improved
PDR, and the proposed method at the two trial sites. These results show that the localization
of the CHAN algorithm and the PDR algorithm is affected by the environment. Some
abnormities occur in the acoustic localization, and cumulative errors occur over time in
the PDR algorithm. However, the improved PDR algorithm and proposed algorithm can
achieve better accuracy and effectively suppress the abnormity and cumulative errors. This
result is attributed to the following reasons. First, the proposed PDR method can effectively
extract accurate information to estimate location. In addition, we proposed error judgment
criteria to eliminate anomalous values. The proposed method thus exhibits good generality
for different environments.
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Figure 12. The CDF of localization errors between our PDR and PDR algorithms in the second
scene. (a) Volunteer #1 with a VivoY85a cell phone. (b) Volunteer #2 with a VivoY85a cell phone.
(c) Volunteer #1 with an Honor60 cell phone. (d) Volunteer #2 with an Honor60 cell phone.
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Figure 13. Localization path results among CHAN, PDR, dynamic improved PDR, and the pro-
posed algorithm at the two scenes. (a) Volunteer #1 with a VivoY85a cell phone in the first scene.
(b) Volunteer #2 with a VivoY85a cell phone in the second scene.

Figure 14 shows the localization results using CHAN, PDR, improved PDR, and the
proposed method with different devices at the trial sites and demonstrates that there is
equipment heterogeneity in the CHAN and PDR estimation. The proposed method can
achieve comparable localization performance in the survey path primarily because the
proposed method can effectively compensate for the equipment difference and suppress
the errors. The proposed method thus achieves better performance with different devices
compared to the other tested methods.
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Figure 14. Localization path results among CHAN, PDR, improved PDR, and the proposed algorithm
using the VivoY85a and Honor60 smartphones in the first scene. (a) Volunteer #2 with a VivoY85a
cell phone in the first scene. (b) Volunteer #2 with an Honor60 cell phone in the first scene.

Figure 15 shows the localization results using CHAN, PDR, improved PDR, and the
proposed method with different height pedestrians at the trial sites. These results show
that different heights cause different errors in the estimation algorithms. However, the
proposed method achieves good accuracies with different user heights along the survey
path because the proposed method can effectively compensate for the errors that different
user heights create.
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Figure 15. Localization path results among CHAN, PDR, improved PDR, and the proposed algorithm
with two different height pedestrians. (a) Volunteer #1 (height 155 cm). (b) Volunteer #2 (height
180 cm).

Figure 16 demonstrates the mean localization errors between CHAN, PDR, dynamic
improved PDR, and the proposed method for different devices, scenes, and step counting.
These results show that the proposed method achieves comparable localization accuracy
with different length paths, devices, and pedestrians. The proposed method achieves the
best localization performance compared to CHAN, PDR, and dynamic improved PDR
because the proposed threshold scheme suppresses outliers caused by the environment in
the base-acoustic estimation and the cumulative errors caused by PDR estimation over time.
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Figure 16. Mean localization errors among CHAN, PDR, improved PDR, and the proposed algorithm
with different step counts. (a) Volunteer #2 with a VivoY85a cell phone (scene 1). (b) Volunteer #2 with
a VivoY85a cell phone (scene 2). (c) Volunteer #1 with a VivoY85a cell phone (scene 2). (d) Volunteer
#1 with an Honor60 cell phone (scene 2).

We show the CDFs of the localization errors in the first scenario shown in Figure 17.
The experiments demonstrate our proposed method achieves sufficient accuracy compared
to the CHAN, PDR, and the improved PDR estimation in different devices and different
pedestrians. This result occurs because the generation of weight values can accurately
calculate the importance between the CHAN and improved PDR estimation, and the
localization scheme can detect invalid estimation.
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Figure 17. The CDFs of the localization errors among the CHAN algorithm, PDR algorithm, improved
PDR algorithm, and the proposed algorithm in the first scene. (a) Volunteer #1 with a VivoY85a cell
phone (scene 1). (b) Volunteer #2 with a VivoY85a cell phone (scene 1). (c) Volunteer #1 with an
Honor60 cell phone (scene 1). (d) Volunteer #1 with an Honor60 cell phone (scene 1).
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We compare the CDFs of the localization error in the second scenario in Figure 18.
The experiments show that our proposed algorithm in a larger environment also achieves
higher accuracy than the CHAN, PDR, and improved PDR estimation in different devices
and different pedestrians. These results occur because the generation of weight values can
obtain the importance in the CHAN and the improved PDR estimations.
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Figure 18. The CDFs of the localization errors among the CHAN algorithm, PDR algorithm, improved
PDR algorithm, and the proposed algorithm in the second scene. (a) Volunteer #1 with a VivoY85a
cell phone (scene 2). (b) Volunteer #2 with a VivoY85a cell phone (scene 2). (c) Volunteer #1 with an
Honor60 cell phone (scene 2). (d) Volunteer #2 with an Honor60 cell phone (scene 2).

Tables 5 and 6 show the localization errors of the 90th percentile in the two scenes for
different pedestrians and different devices. The experiments show that the localization
accuracy of the proposed method has greater improvement than the CHAN, PDR, and
the improved PDR method. Our method thus achieves good generality and flexibility in
different pedestrians, devices, and scenes.

Table 5. The CDF of localization error with Honor60, VivoY85a, and two different height pedestrians
in the first scene (m).

Method 90th Percentile (Volunteer
#1)

90th Percentile (Volunteer
#2)

CHAN (VivoY85a) 0.7405 1.0800
CHAN (Honor60) 0.4742 0.6856
PDR (VivoY85a) 2.2100 1.9215
PDR (Honor60) 1.6223 1.5540

Improved PDR (VivoY85a) 0.1556 0.5968
Improved PDR (Honor60) 0.8085 0.7678

Proposed method (VivoY85a) 0.1337 0.1597
Proposed method (Honor60) 0.2852 0.2956
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Table 6. The CDF of localization error with Honor60, VivoY85a, and two different height pedestrians
in the second scene (m).

Method 90th Percentile (Volunteer #1) 90th Percentile (Volunteer #2)

CHAN (VivoY85a) 0.1745 0.3967
CHAN (Honor60) 0.2443 0.4873
PDR (VivoY85a) 2.0231 3.8940
PDR (Honor60) 3.5036 2.0372

Improved PDR (VivoY85a) 0.2014 0.4758
Improved PDR (Honor60) 0.8283 0.4026

Proposed method (VivoY85a) 0.0861 0.1387
Proposed method (Honor60) 0.1305 0.2571

We present that the mean errors and root mean squared errors (RMSE) of the CHAN,
PDR, improved PDR, and the proposed method in the trial scenes in Tables 7 and 8. For the
two scenes, the experiments demonstrate that our method markedly improves localization
performance with different equipment, users, and scenes. The proposed method effectively
eliminates errors generated by environments, devices, and human behaviors.

Table 7. Localization error results between CHAN, PDR, improved PDR, and the proposed method
with Honor60, VivoY85a, and two different height pedestrians in the first scene (m).

Volunteer #1 Method Mean Error RMS Error

CHAN (VivoY85a) 0.4563 1.8913
CHAN (Honor60) 0.4050 1.8565
PDR (VivoY85a) 1.0417 1.2482
PDR (Honor60) 0.9708 1.1240

Improved PDR (VivoY85a) 0.0921 0.1083
Improved PDR (Honor60) 0.3755 0.4822

Proposed method (VivoY85a) 0.0432 0.0632
Proposed method (Honor60) 0.0904 0.1574

Volunteer #2

CHAN (VivoY85a) 0.4780 1.3898
CHAN (Honor60) 0.4195 1.5492
PDR (VivoY85a) 1.2213 1.3730
PDR (Honor60) 0.6565 0.8382

Improved PDR (VivoY85a) 0.2681 0.3416
Improved PDR (Honor60) 0.4304 0.5097

Proposed method (VivoY85a) 0.0670 0.1112
Proposed method (Honor60) 0.1054 0.1956

Table 8. Localization error results between CHAN, PDR, improved PDR, and the proposed method
with Honor60, VivoY85a, and two different height pedestrians in the second scene (m).

Volunteer #1 Method Mean Error RMS Error

CHAN (VivoY85a) 0.2400 1.4719
CHAN (Honor60) 0.2586 1.4613
PDR (VivoY85a) 1.2592 1.3911
PDR (Honor60) 1.4259 1.9098

Improved PDR (VivoY85a) 0.0937 0.1322
Improved PDR (Honor60) 0.3030 0.4273

Proposed method (VivoY85a) 0.0390 0.0580
Proposed method (Honor60) 0.0643 0.1406

Volunteer #2

CHAN (VivoY85a) 0.2391 1.2526
CHAN (Honor60) 0.2543 1.2768
PDR (VivoY85a) 1.8299 2.1867
PDR (Honor60) 0.9014 1.1565

Improved PDR (VivoY85a) 0.1942 0.3075
Improved PDR (Honor60) 0.2479 0.3193

Proposed method (VivoY85a) 0.0610 0.1227
Proposed method (Honor60) 0.0615 0.1176
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In addition, we compare the calculation complexity between our proposed algorithm
and CHAN algorithm in two scenes. In the first scene, totaled 48 times, it ran 13.0944 s using
the CHAN algorithm and 13.8225 s using the proposed method, respectively. In the second
scene, totaled 60 times, it consumed 14.0062 s using the CHAN algorithm and 15.0488 s
using the proposed method. The experiments show that our method is comparable with
the CHAN method and has better localization performance.

6. Conclusions

In this paper, we propose a CHAN-IPDR-ILS indoor localization system that incorpo-
rates CHAN estimation and an improved PDR method. In the CHAN-IPDR-ILS, ultrasonic
localization is implemented using the CHAN algorithm. In the localization system, we
propose a step length estimation model that estimates location using the previous two steps
and current accelerations. To ensure the importance of the current state, the maximum
importance for the previous step length is set. In addition, we propose a heading direction
correction method that adds a correction angle and a compensation error. The proposed
method can correct the heading direction and mitigate issues of equipment heterogene-
ity. Finally, in the fusion localization, the distance threshold is set to mitigate accidental
errors during acoustic localization. Pedestrian localization is then determined based on
the distance confidence level with acoustic estimation and improved PDR estimation. We
conducted experiments at two trial sites in which the first scene covered approximately 96
m2 and the second scene covered approximately 224 m2. Two different height volunteers
with a VivoY85a smartphone and an Honor60 smartphone captured data along the survey
path at each scene, respectively. The experimental results demonstrate that the proposed
method can achieve a higher location accuracy compared to existing methods using differ-
ent smart devices. In addition, we compared the computational complexity of the proposed
CHAN-IPDR-ILS in two scenes. The CHAN-IPDR-ILS has comparable performance with
the CHAN estimation. The proposed localization system satisfies the public demand. The
proposed CHAN-IPDR-ILS provides high generality and flexibility for different devices and
scenarios and is compatible with smartphones in terms of low cost and high accuracy. With
excellent localization performance, low cost, and short execution time, it can be concluded
that the proposed CHAN-IPDR-ILS is a charming indoor localization method for practical
deployment. Future research directions include more complex environments, such as more
shadows and reflections. The smartphone is hung for answering calls, and is carried in the
pocket, waist, etc. Inspired by deep learning, another direction may be considered based
on a lightweight deep learning method.
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Abbreviations

The following abbreviations are used in this manuscript:
Symbol Quantity
sm Data Step length of the m-th step
βm Heading direction of the m-th step after correction
βmeas Measured heading direction using smartphone
βstatic Compensation error of heading direction
dij Distance difference between beacons Ai and Aj on the target
di Distance between beacon Ai and target M
e Error vector
Σ Covariance matrix
Y Ordinary least squares
Uc

m Ultrasonic-base localization estimation
xi1 Difference between the horizontal coordinates of the i-th beacon and the first beacon
yi1 Difference between the vertical coordinates of the i-th beacon and the first beacon
ri Sum of the squares of the horizontal and vertical coordinates of point i
K Model parameter
bi Weight vector
Um Location estimation at time m
Up

m Location estimation using PDR method at time m
Con fC Distance confidence level for ultrasonic-base estimation
Con fP Distance confidence level for improved PDR estimation
Dth Distance threshold
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