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Abstract

We consider Bayesian methods for multi-information source optimization (MISO),
in which we seek to optimize an expensive-to-evaluate black-box objective function
while also accessing cheaper but biased and noisy approximations (“information
sources”). We present a novel algorithm that outperforms the state of the art for this
problem by using a Gaussian process covariance kernel better suited to MISO than
those used by previous approaches, and an acquisition function based on a one-step
optimality analysis supported by efficient parallelization. We also provide a novel
technique to guarantee the asymptotic quality of the solution provided by this
algorithm. Experimental evaluations demonstrate that this algorithm consistently
finds designs of higher value at less cost than previous approaches.

1 Introduction

We consider Bayesian multi-information source optimization (MISO), in which we optimize an
expensive-to-evaluate black-box objective function while optionally accessing cheaper biased noisy
approximations, often referred to as “information sources (IS)”. This arises when tuning machine
learning algorithms: instead of using the whole dataset for the hyperparameter optimization, one
may use a small subset or even a smaller related dataset [34, 15, 17]. We also face this problem in
robotics: we can evaluate a parameterized robot control policy in simulation, in a laboratory, or in a
field test [15]. Cheap approximations promise a route to tractability, but bias and noise complicate
their use. An unknown bias arises whenever a computational model incompletely models a real-world
phenomenon, and is pervasive in applications.

We present a novel algorithm for this problem, misoKG, that is tolerant to both noise and bias and
improves substantially over the state of the art. Specifically, our contributions are:

• The algorithm uses a novel acquisition function that maximizes the incremental gain per unit
cost. This acquisition function generalizes and parallelizes previously proposed knowledge-
gradient methods for single-IS Bayesian optimization [7, 8, 28, 26, 37] to MISO.

• We prove that this algorithm provides an asymptotically near-optimal solution. If the search
domain is finite, this result establishes the consistency of misoKG.

We present a novel proof technique that yields an elegant, short argument and is thus of
independent interest.
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Related Work: To our knowledge, MISO was first considered by Swersky, Snoek, and Adams
[34], under the the name multi-task Bayesian optimization. This name was used to suggest problems
in which the auxiliary tasks could meaningfully be solved on their own, while we use the term MISO
to indicate that the IS may be useful only in support of the primary task. Swersky et al. [34] showed
that hyperparameter tuning in classification can be accelerated through evaluation on subsets of the
validation data. They proposed a GP model to jointly model such “auxiliary tasks” and the primary
task, building on previous work on GP regression for multiple tasks in [3, 10, 35]. They choose
points to sample via cost-sensitive entropy search [11, 39], sampling in each iteration a point that
maximally reduces uncertainty in the optimum’s location, normalized by the query cost.

We demonstrate in experiments that our approach improves over the method of Swersky et al. [34],
and we believe this improvement results from two factors: first, our statistical model is more flexible
in its ability to model bias that varies across the domain; second, our acquisition function directly
and maximally reduces simple regret in one step, unlike predictive entropy search which maximally
reduces the maximizer’s entropy in one step and hence only indirectly reduces regret.

Lam, Allaire, and Willcox [18] also consider MISO, under the name non-hierarchical multi-fidelity
optimization. They propose a statistical model that maintains a separate GP for each IS, and fuse
them via the method of Winkler [40]. They apply a modified expected improvement acquisition
function on these surrogates to first decide what design x∗ to evaluate and then select the IS to
query; the latter is decided by a heuristic that aims to balance information gain and query cost. We
demonstrate in experiments that our approach improves over the method of Lam et al. [18], and
we believe this improvement results from two factors: first, their statistical approach assumes an
independent prior on each IS, despite their being linked through modeling a common objective; and
second their acquisition function selects the point to sample and the IS to query separately via a
heuristic rather than jointly using an optimality analysis.

Beyond these two works, the most closely related work is in the related problem of multi-fidelity
optimization. In this problem, IS are supposed to form a strict hierarchy [16, 14, 6, 24, 20, 19, 15].
In addition, most of these models limit the information that can be obtained from sources of lower
fidelity [16, 14, 6, 20, 19]: Given the observation of x at some IS ℓ, one cannot learn more about the
value of x at IS with higher fidelity by querying IS ℓ anywhere else (see Sect. C for details and a
proof). Picheny et al. [24] propose a quantile-based criterion for optimization of stochastic simulators,
supposing that all simulators provide unbiased approximations of the true objective. From this body
of work, we compare against Kandasamy et al. [15], who present an approach for minimizing both
simple and cumulative regret, under the assumption that the maximum bias of an information source
strictly decreases with its fidelity.

An interesting special case of MISO is warm-starting Bayesian optimization. Here information
sources correspond to samples that were taken previously on objective functions related to the current
objective. For example, this scenario occurs when we are to re-optimize whenever parameters of the
objective change or whenever new data becomes available. Poloczek et al. [25] demonstrated that a
variant of the algorithm proposed in this article can reduce the optimization costs significantly by
warm-starting Bayesian optimization, as does the algorithm of Swersky et al. [34].

Outside of both the MISO and multi-fidelity settings, Klein et al. [17] considered hyperparameter
optimization of machine learning algorithms over a large dataset D. Supposing access to subsets
of D of arbitrary sizes, they show how to exploit regularity of performance across dataset sizes to
significantly speed up the optimization process for support vector machines and neural networks.

Our acquisition function is a generalization of the knowledge-gradient policy of Frazier, Powell, and
Dayanik [8] to the MISO setting. This generalization requires extending the one-step optimality
analysis used to derive the KG policy in the single-IS setting to account for the impact of sampling
a cheap approximation on the marginal GP posterior on the primary task. From this literature, we
leverage an idea for computing the expectation of the maximum of a collection of linear functions
of a normal random variable, and propose a parallel algorithm to identify and compute the required
components.

The class of GP covariance kernels we propose are a subset of the class of linear models of coregion-
alization kernels [10, 2], with a restricted form derived from a generative model particular to MISO.
Focusing on a restricted class of kernels designed for our application supports accurate inference with
less data, which is important when optimizing expensive-to-evaluate functions.
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Our work also extends the knowledge-gradient acquisition function to the variable cost setting.
Similar extensions of expected improvement to the variable cost setting can be found in Snoek et al.
[32] (the EI per second criterion) and in Le Gratiet and Cannamela [19].

We now formalize the problem we consider in Sect. 2, describe our statistical analysis in Sect. 3.1,
specify our acquisition function and parallel computation method in Sects. 3.2 and 3.3, provide a
theoretical guarantee in Sect. 3.4, present numerical experiments in Sect. 4, and conclude in Sect. 5.

2 Problem Formulation

Given a continuous objective function g : D → R on a compact set D ⊂ R
d of feasible designs, our

goal is to find a design with objective value close to maxx∈D g(x). We have access to M possibly
biased and/or noisy IS indexed by ℓ ∈ [M ]0. (Here, for any a ∈ Z

+ we use [a] as a shorthand for
the set {1, 2, . . . , a}, and further define [a]0 = {0, 1, 2, . . . , a}.) Observing IS ℓ at design x provides
independent, conditional on f(ℓ, x), and normally distributed observations with mean f(ℓ, x) and
finite variance λℓ(x). In [34], IS ℓ ∈ [M ]0 are called “auxiliary tasks” and g the primary task. These
sources are thought of as approximating g, with variable bias. We suppose that g can be observed
directly without bias (but possibly with noise) and set f(0, x) = g(x). The bias f(ℓ, x)− g(x) is also
referred to as “model discrepancy” in the engineering and simulation literature [1, 4]. Each IS ℓ is
also associated with a query cost function cℓ(x) : D → R

+. We assume that the cost function cℓ(x)
and the variance function λℓ(x) are both known and continuously differentiable (over D). In practice,
these functions may either be provided by domain experts or may be estimated along with other
model parameters from data (see Sect. 4 and B.2, and [27]).

3 The misoKG Algorithm

We now present the misoKG algorithm and describe its two components: a MISO-focused statistical
model in Sect. 3.1; and its acquisition function and parallel computation in Sect. 3.2. Sect. 3.3
summarizes the algorithm and Sect. 3.4 provides a theoretical performance guarantee. Extensions of
the algorithm are discussed in Sect. D.

3.1 Statistical Model

We now describe a generative model for f that results in a Gaussian process prior on f with a
parameterized class of mean functions µ : [M ]×D 7→ R and covariance kernels Σ : ([M ]×D)2 7→ R.
This allows us to use standard tools for Gaussian process inference — first finding the MLE estimate
of the parameters indexing this class, and then performing Gaussian process regression using the
selected mean function and covariance kernel — while also providing better estimates for MISO than
would a generic multi-output GP regression kernel that does not consider the MISO application.

We construct our generative model as follows. For each ℓ > 0 suppose that a function δℓ : D 7→ R for
each ℓ > 0 was drawn from a separate independent GP, δℓ ∼ GP (µℓ,Σℓ), and let δ0 be identically 0.
In our generative model δℓ will be the bias f(ℓ, x)− g(x) for IS ℓ. We additionally set µℓ(x) = 0
to encode a lack of a strong belief on the direction of the bias. (If one had a strong belief that
an IS is consistently biased in one direction, one may instead set µℓ to a constant estimated using
maximum a posteriori estimation.) Next, within our generative model, we suppose that g : D 7→ R

was drawn from its own independent GP, g ∼ GP (µ0,Σ0), for some given µ0 and Σ0, and suppose
f(ℓ, x) = f(0, x) + δℓ(x) for each ℓ. We assume that µ0 and Σℓ with ℓ ≥ 0 belong to one of
the standard parameterized classes of mean functions and covariance kernels, e.g., constant µ0 and
Matérn Σℓ.

With this construction, f is a GP: given any finite collection of points ℓi ∈ [M ], xi ∈ D with
i = 1, . . . , I , (f(ℓi, xi) : i = 1, . . . , I) is a sum of independent multivariate normal random vectors,
and thus is itself multivariate normal. Moreover, we compute the mean function and covariance
kernel of f : for ℓ,m ∈ [M ]0 and x, x′ ∈ D,

µ(ℓ, x) = E [f(ℓ, x)] = E [g(x)] + E [δℓ(x)] = µ0(x)

Σ ((ℓ, x), (m,x′)) = Cov(g(x) + δℓ(x), g(x
′) + δm(x′)) = Σ0(x, x

′) + ✶ℓ,m · Σℓ(x, x
′),

where ✶ℓ,m denotes Kronecker’s delta, and where we have used independence of δℓ, δm, and g. We
refer the reader to https://github.com/misoKG/ for an illustration of the model.
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This generative model draws model discrepancies δℓ independently across IS. This is appropriate
when IS are different in kind and share no relationship except that they model a common objective.
In the supplement (Sect. B) we generalize this generative model to model correlation between model
discrepancies, which is appropriate when IS can be partitioned into groups, such that IS within one
group tend to agree more amongst themselves than they do with IS in other groups. Sect. B also
discusses the estimation of the hyperparameters in µ0 and Σℓ.

3.2 Acquisition Function

Our optimization algorithm proceeds in rounds, selecting a design x ∈ D and an information
source ℓ ∈ [M ]0 in each. The value of the information obtained by sampling IS ℓ at x is the expected
gain in the quality of the best design that can be selected using the available information. That is, this
value is the difference in the expected quality of the estimated optimum before and after the sample.
We then normalize this expected gain by the cost cℓ(x) associated with the respective query, and
sample the IS and design with the largest normalized gain. Without normalization we would always
query the true objective, since no other IS provides more information about g than g itself.

We formalize this idea. Suppose that we have already sampled n points Xn and made the observa-
tions Yn. Denote by En the expected value according to the posterior distribution given Xn, Yn, and

let µ(n) (ℓ, x) := En [f(ℓ, x)]. The best expected objective value across the designs, as estimated by

our statistical model, is maxx′∈D µ(n) (0, x′). Similarly, if we take an additional sample of IS ℓ(n+1)

at design x(n+1) and compute our new posterior mean, the new best expected objective value across

the designs is maxx′∈D µ(n+1) (0, x′), whose distribution depends on what IS we sample, and where
sample it. Thus, the expected value of sampling at (ℓ, x) normalized by the cost is

MKGn(ℓ, x) = En

[

maxx′∈D µ(n+1)(0, x′)−maxx′∈D µ(n)(0, x′)

cℓ(x)

∣

∣ ℓ(n+1) = ℓ, x(n+1) = x

]

,

(1)
which we refer to as the misoKG factor of the pair (ℓ, x). The misoKG policy then samples at the

pair (ℓ, x) that maximizes MKGn(ℓ, x), i.e., (ℓ(n+1), x(n+1)) ∈ argmaxℓ∈[M ]0,x∈D MKGn(ℓ, x),
which is a nested optimization problem.

To make this nested optimization problem tractable, we first replace the search domain D in Eq. (1)
by a discrete set A ⊂ D of points, for example selected by a Latin Hypercube design. We may then
compute MKGn(ℓ, x) exactly. Toward that end, note that

En

[

max
x′∈A

µ(n+1)(0, x′)
∣

∣ ℓ(n+1) = ℓ, x(n+1) = x

]

= En

[

max
x′∈A

{µ(n)(0, x′) + σ̄n
x′(ℓ, x) · Z}

∣

∣ ℓ(n+1) = ℓ, x(n+1) = x

]

, (2)

where Z ∼ N (0, 1) and σ̄n
x′(ℓ, x) = Σn((0, x′), (ℓ, x))/ [λℓ(x) + Σn((ℓ, x), (ℓ, x))]

1
2 . Here Σn is

the posterior covariance matrix of f given Xn, Yn.

We parallelize the computation of MKGn(ℓ, x) for fixed ℓ, x, enabling it to utilize multiple cores.

Then (ℓ(n+1), x(n+1)) is obtained by computing MKGn(ℓ, x) for all (ℓ, x) ∈ [M ]0 ×A, a task that
can be parallelized over multiple machines in a cluster. We begin by sorting the points in A in parallel
by increasing value of σ̄n

x′(ℓ, x) (for fixed ℓ, x). Thereby we remove some points easily identified as

dominated. A point xj is dominated if maxi µ
(n)(0, xi) + σ̄n

xi
(ℓ, x)Z is unchanged for all Z if the

maximum is taken excluding xj . Note that a point xj is dominated by xk if σ̄n
xj
(ℓ, x) = σ̄n

xk
(ℓ, x)

and µ(n)(0, xj) ≤ µ(n)(0, xk), since xk has a higher expected value than xj for any realization of Z.
Let S be the sorted sequence without such dominated points. We will remove more dominated points
later.

Since cℓ(x) is a constant for fixed ℓ, x, we may express the conditional expectation in Eq. (1) as

En

[

maxi{ai+biZ}−maxi ai

cℓ(x)

]

= En[maxi{ai+biZ}−maxi ai]
cℓ(x)

, where ai = µ(n)(0, xi) and bi = σ̄n
xi
(ℓ, x)

for xi ∈ S. We split S into consecutive sequences S1, S2, . . . , SC , where C is the number of
cores used for computing MKGn(ℓ, x) and Si, Si+1 overlap in one element: that is, for Sj =
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{xj1 , . . . , xjk}, x(j−1)k
= xj1 and xjk = x(j+1)

1
hold. Each xji ∈ Sj specifies a linear func-

tion aji+bjiZ (ordered by increasing slopes in S). We are interested in the realizations of Z for
which aji+bjiZ ≥ ai′+bi′Z for any i′ and hence compute the intersections of these functions.
The functions for xji and xji+1

intersect in dji = (aji−aji+1
)/(bji+1

−bji). Observe if dji ≤ dji−1
,

then aji+bjiZ ≤ max{aji−1
+bji−1

Z, aji+1
+bji+1

Z} for all Z: xji is dominated and hence dropped
from Sj . In this case we compute the intersection of the affine functions associated with xj−1 and xj+1

and iterate the process.

Points in Sj may be dominated by the rightmost (non-dominated) point in Sj−1. Thus, we compute
the intersection of the rightmost point of Sj−1 and the leftmost point of Sj , iteratively dropping
all dominated points of Sj . If all points of Sj are dominated, we continue the scan with Sj+1 and
so on. Observe that we may stop this scan once there is a point that is not dominated, since the
points in any sequence Sj have non-decreasing d-values. If some of the remaining points in Sj are
dominated by a point in Sj′ with j′ < j − 1, then this will be determined when the scan initiated
by Sj′ reaches Sj . Subsequently, we check the other direction, i.e. whether xj1 dominates elements
of Sj−1, starting with the rightmost element of Sj−1. These checks for dominance are performed in
parallel for neighboring sequences.

[8] showed how to compute sequentially the expected maximum of a collection of affine
functions. In particular, their Eq. (14) [8, p. 605] gives En [maxi{ai+biZ} −maxi ai] =
∑C

j=1

∑k−1
h=1(bjh+1

−bjh)u(−|djh |), where u is defined as u(z) = zΦ(z) + φ(z) for the CDF and

PDF of the normal distribution. We compute the inner sums simultaneously; the computation of the
outer sum could be parallelized by recursively adding pairs of inner sums, although we do not do so
to avoid communication overhead. We summarize the parallel algorithm below.

The Parallel Algorithm to compute (ℓ(n+1), x(n+1)):

1. Scatter the pairs (ℓ, x) ∈ [M ]0 ×A among the machines.

2. Each computes MKGn(ℓ, x) for its pairs. To compute MKGn(ℓ, x) in parallel:

a. Sort the points in A by ascending σ̄n
x′(ℓ, x) in parallel, thereby removing dominated points.

Let S be the sorted sequence.

b. Split S into sequences S1, . . . , SC , where C is the number of cores used to com-
pute MKGn(ℓ, x). Each core computes

∑

xi∈SC
(bi+1 − bi)u(−|di|) in parallel, then the

partial sums are added to obtain En [maxi{ai + biZ} −maxi ai].

3. Determine (ℓ(n+1), x(n+1)) ∈ argmaxℓ∈[M ]0,x∈D MKGn(ℓ, x) in parallel.

3.3 Summary of the misoKG Algorithm.

1. Using samples from all information sources, estimate hyperparameters of the Gaussian
process prior as described in Sect. B.2.

Then calculate the posterior on f based on the prior and samples.

2. Until the budget for samples is exhausted do:

Determine the information source ℓ∈[M ]0 and the design x∈D that maximize the misoKG
factor proposed in Eq. (1) and observe IS ℓ(x).

Update the posterior distribution with the new observation.

3. Return argmaxx′∈A µ(n)(0, x′).

3.4 Provable Performance Guarantees.

The misoKG chooses an IS and an x such that the expected gain normalized by the query cost is
maximized. Thus, misoKG is one-step Bayes optimal in this respect, by construction.

We establish an additive bound on the difference between misoKG’s solution and the unknown
optimum, as the number of queries N → ∞. For this argument we suppose that µ(ℓ, x)=0 ∀ℓ, x
and Σ0 is either the squared exponential kernel or a four times differentiable Matérn kernel. Moreover,
let xOPT∈ argmaxx′∈D f(0, x′), and d = maxx′∈D minx′′∈A dist(x′, x′′).
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Theorem 1. Let x∗
N ∈ A be the point that misoKG recommends in iteration N . For each p ∈ [0, 1)

there is a constant Kp such that with probability p

lim
N→∞

f(0, x∗
N ) ≥ f(0, xOPT)−Kp · d.

We point out that Frazier, Powell, and Dayanik [8] showed in their seminal work an analogous result
for the case of a single information source with uniform query cost (Theorem 4 in [8]).

In Sect. A we prove the statement for the MISO setting that allows multiple information sources that
each have query costs cℓ(x) varying over the search domain D. This proof is simple and short. Also
note that Theorem 3 establishes consistency of misoKG for the special case that D is finite, since
then d = 0. Interestingly, we can compute Kp given Σ and p. Therefore, we can control the additive
error Kp · d by increasing the density of A, leveraging the scalability of our parallel algorithm.

4 Numerical Experiments

We now compare misoKG to other state-of-the-art MISO algorithms. We implemented misoKG’s
statistical model and acquisition function in Python 2.7 and C++ leveraging functionality from
the Metrics Optimization Engine [23]. We used a gradient-based optimizer [28] that first

finds an optimizer via multiple restarts for each IS ℓ separately and then picks (ℓ(n+1), x(n+1))
with maximum misoKG factor among these. An implementation of our method is available at
https://github.com/misoKG/.

We compare to misoEI of Lam et al. [18] and to MTBO+, an improved version of Multi-Task Bayesian
Optimization proposed by Swersky et al. [34]. Following a recommendation of Snoek 2016, our im-
plementation of MTBO+ uses an improved formulation of the acquisition function given by Hernández-
Lobato et al. [12], Snoek and et al. [31], but otherwise is identical to MTBO; in particular, it uses the
statistical model of [34]. Sect. E provides detailed descriptions of these algorithms.

Experimental Setup. We conduct experiments on the following test problems: (1) the 2-
dimensional Rosenbrock function modified to fit the MISO setting by Lam et al. [18]; (2) a MISO
benchmark proposed by Swersky et al. [34] in which we optimize the 4 hyperparameters of a machine
learning algorithm, using a small, related set of smaller images as cheap IS; (3) an assemble-to-order
problem from Hong and Nelson [13] in which we optimize an 8-dimensional target stock vector to
maximize the expected daily profit of a company as estimated by a simulator.

In MISO settings the amount of initial data that one can use to inform the methods about each
information source is typically dictated by the application, in particular by resource constraints and
the availability of the respective source. In our experiments all methods were given identical initial
datasets for each information source in every replication; these sets were drawn randomly via Latin
Hypercube designs. For the sake of simplicity, we provided the same number of points for each
IS, set to 2.5 points per dimension of the design space D. Regarding the kernel and mean function,
MTBO+ uses the settings provided in [31]. The other algorithms used the squared exponential kernel
and a constant mean function set to the average of a random sample.

We report the “gain” over the best initial solution, that is the true objective value of the respective
design that a method would return at each iteration minus the best value in the initial data set. If
the true objective value is not known for a given design, we report the value obtained from the
information source of highest fidelity. This gain is plotted as a function of the total cost, that is the
cumulative cost for invoking the information sources plus the fixed cost for the initial data; this metric
naturally generalizes the number of function evaluations prevalent in Bayesian optimization. Note
that the computational overhead of choosing the next information source and sample is omitted, as
it is negligible compared to invoking an information source in real-world applications. Error bars
are shown at the mean ± 2 standard errors averaged over at least 100 runs of each algorithm. For
deterministic sources a jitter of 10−6 is added to avoid numerical issues during matrix inversion.

4.1 The Rosenbrock Benchmarks

We consider the design space D = [−2, 2]2, and M = 2 information sources. IS 0 is the Rosenbrock
function g(x) = (1 − x1)

2 + 100 · (x2 − x2
1)

2 plus optional Gaussian noise u · ε. IS 1 returns
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Figure 1: (l) The Rosenbrock benchmark with the parameter setting of [18]: misoKG offers an
excellent gain-to-cost ratio and outperforms its competitors substantially. (r) The Rosenbrock
benchmark with the alternative setup.

g(x)+v ·sin(10·x1+5·x2), where the additional oscillatory component serves as model discrepancy.
We assume a cost of 1000 for each query to IS 0 and a cost of 1 for IS 1.

Since all methods converged to good solutions within few queries, we investigate the ratio of gain to
cost: Fig. 1 (l) displays the gain of each method over the best initial solution as a function of the total
cost inflicted by querying information sources. The new method misoKG offers a significantly better
gain per unit cost and finds an almost optimal solution typically within 5− 10 samples. Interestingly,
misoKG relies only on cheap samples, proving its ability to successfully handle uncertainty. MTBO+,
on the other hand, struggles initially but then eventually obtains a near-optimal solution, too. To this
end, it makes usually one or two queries of the expensive truth source after about 40 steps. misoEI
shows a odd behavior: it takes several queries, one of them to IS 0, before it improves over the best
initial design for the first time. Then it jumps to a very good solution and subsequently samples only
the cheap IS.

For the second setup, we set u = 1, v = 2, and suppose for IS 0 uniform noise of λ0(x) = 1
and query cost c0(x) = 50. Now the difference in costs is much smaller, while the variance is
considerably bigger. The results are displayed in Fig. 1 (r): as for the first configuration, misoKG
outperforms the other methods from the start. Interestingly, misoEI’s performance is drastically
decreased compared to the first setup, since it only queries the expensive truth. Looking closer, we
see that misoKG initially queries only the cheap information source IS 1 until it comes close to an
optimal value after about five samples. It starts to query IS 0 occasionally later.

4.2 The Image Classification Benchmark

This classification problem was introduced by Swersky et al. [34] to demonstrate that MTBO can reduce
the cost of hyperparameter optimization by leveraging a small dataset as information source. The
goal is to optimize four hyperparameters of the logistic regression algorithm [36] using a stochastic
gradient method with mini-batches (the learning rate, the L2-regularization parameter, the batch size,
and the number of epochs) to minimize the classification error on the MNIST dataset [21]. This
dataset contains 70,000 images of handwritten digits: each image has 784 pixels. IS 1 uses the USPS
dataset [38] of about 9000 images with 256 pixels each. The query costs are 4.5 for IS 1 and 43.69
for IS 0. A closer examination shows that IS 1 is subject to considerable bias with respect to IS 0,
making it a challenge for MISO algorithms.

Fig.2 (l) summarizes performance: initially, misoKG and MTBO+ are on par. Both clearly outper-
form misoEI that therefore was stopped after 50 iterations. misoKG and MTBO+ continued for 150
steps (with a lower number of replications). misoKG usually achieves an optimal test error of
about 7.1% on the MNIST testset after about 80 queries, matching the classification performance
of the best setting reported by Swersky et al. [34]. Moreover, misoKG achieves better solutions than
MTBO+ at the same costs. Note that the results in [34] show that MTBO+ will also converge to the
optimum eventually.
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Figure 2: (l) The performance on the image classification benchmark of [34]. misoKG achieves better
test errors after about 80 steps and converges to the global optimum. (r) misoKG outperforms the
other algorithms on the assemble-to-order benchmark that has significant model discrepancy.

4.3 The Assemble-To-Order Benchmark

The assemble-to-order (ATO) benchmark is a reinforcement learning problem from a business
application where the goal is to optimize an 8-dimensional target level vector over [0, 20]8 (see
Sect. G for details). We set up three information sources: IS 0 and 2 use the discrete event simulator
of Xie et al. [42], whereas the cheapest source IS 1 invokes the implementation of Hong and Nelson.
IS 0 models the truth.

The two simulators differ subtly in the model of the inventory system. However, the effect in estimated
objective value is significant: on average the outputs of both simulators at the same target vector differ
by about 5% of the score of the global optimum, which is about 120, whereas the largest observed
bias out of 1000 random samples was 31.8. Thus, we are witnessing a significant model discrepancy.

Fig. 2 (r) summarizes the performances. misoKG outperforms the other algorithms from the start:
misoKG averages at a gain of 26.1, but inflicts only an average query cost of 54.6 to the information
sources. This is only 6.3% of the query cost that misoEI requires to achieve a comparable score.
Interestingly, misoKG and MTBO+ utilize mostly the cheap biased IS, and therefore are able to
obtain significantly better gain to cost ratios than misoEI. misoKG’s typically first calls IS 2 after
about 60− 80 steps. In total, misoKG queries IS 2 about ten times within the first 150 steps; in some
replications misoKG makes one late call to IS 0 when it has already converged. Our interpretation is
that misoKG exploits the cheap, biased IS 1 to zoom in on the global optimum and switches to the
unbiased but noisy IS 2 to identify the optimal solution exactly. This is the expected (and desired)
behavior for misoKG when the uncertainty of f(0, x∗) is not expected to be reduced sufficiently by
queries to IS 1. MTBO+ trades off the gain versus cost differently: it queries IS 0 once or twice after 100
steps and directs all other queries to IS 1, which might explain the observed lower performance.
misoEI, which employs a two-step heuristic for trading off predicted gain and query cost, almost
always chose to evaluate the most expensive IS.

5 Conclusion

We have presented a novel algorithm for MISO that uses a mean function and covariance matrix
motivated by a MISO-specific generative model. We have proposed a novel acquisition function
that extends the knowledge gradient to the MISO setting and comes with a fast parallel method for
computing it. Moreover, we have provided a theoretical guarantee on the solution quality delivered
by this algorithm, and demonstrated through numerical experiments that it improves significantly
over the state of the art.
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