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A multi-input converter (MIC) to process wind-PV power is proposed, designed, analyzed, simulated, and implemented.
eMIC
cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to
step-down/up voltage for charger systems, DC distribution applications, or grid connection.
eMIC comprises an uppermodi�ed
double-ended forward, a lowermodi�ed double-ended forward, a commonoutput inductor, and aDSP-based systemcontroller.
e
two modi�ed double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid
renewable energy under di�erent atmospheric conditions. While the MIC operates at interleaving mode, better performance can
be achieved and volume also is reduced.
e proposed MIC is capable of recycling the energy stored in the leakage inductance and
obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe
method is adopted to achieve maximum power point tracking (MPPT) feature. 
e MIC is constructed, analyzed, simulated, and
tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input
converter.

1. Introduction

Conventionally, electric power is mainly generated from
fossil fuels. However, this kind of energy resources is highly
limited and will be exhausted in the near future. With the
rapid requirement of electricity and the increase of worse and
worse energy crisis, it is of great urgency to replace the fossil
fuels with renewable energy. Among the renewable resources,
solar energy and wind power attract a great deal of interest
owing to their easy acquirement.

In photovoltaic (PV) or wind power generation system, a
power converter is needed so as to process renewable energy.
In literature [1–5] PV converters are presented while wind
power converters are studied in [6–10]. However, these power
converters only handle a single kind of renewable energy,
that is, which cannot deal with multi-input power.
erefore,
some researchers propose multi-input converters for solar-
wind hybrid power generation system. As shown in Figure 1,
a series double-boost converter is presented to process PV
power andwind energy simultaneously [11], inwhich, as com-
pared with single-boost con�guration, power component

only imposes one-half power rating. Even though this boost-
type converter steps up the voltage and is suitable for a
high voltage supply, it cannot be applied to galvanic isolated
applications. Double-input buck-boost converter shown in
Figure 2 is capable of processing high-/low-voltage sources
[12]. Like boost-type converter, this type of con�guration is
still nonisolated electrically. Instead of combining renewable
energy in electricity, the concept of magnetic ux additivity is
proposed to design amulti-input isolated converter, as shown
in Figure 3, but its structure is complex and control low is
complicated [13]. In order to simplify power-stage con�gu-
ration, the forward-derived con�guration is proposed. How-
ever, it cannot trap the energy in the leakage inductor and is
incapable of applying to high output voltage applications [14].

In this paper, a multi-input converter (MIC) is pro-
posed, which can not only deal with PV power and wind-

turbine energy simultaneously/individually but recycles the
leakage-inductance energy and steps up the input voltage.
As compared with the aforementioned isolated double-input
converter, the proposed one has a much simpler structure.
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Figure 1: An illustration of double-boost converter for wind-PV system.
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Figure 2: An illustration of double-input buck-boost converter.
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Figure 3: An illustration of multi-input converter based on magnetic ux additivity.

Furthermore, the proposed MIC removes the third winding
from the conventional forward converter, which releases the
energy stored in the magnetizing inductor to a capacitor
through the second winding. As a result, its output voltage
can be stepped up signi�cantly and the e�ciency is improved.

Simulated and practical results have validated the proposed
PV-wind MIC.

In this paper, system architecture of the proposed MIC
is described in Section 2. Section 3 presents the operational
principle of the converter, while simulations and practical
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Figure 4: A block diagram to represent the con�guration of the proposed MIC.
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Figure 5: 
e proposed multi-input converter to process PV-wind power.

measurements to verify the feasibility of the MIC are shown
in Section 4. Finally, conclusion is given in Section 5.

2. Configuration of the Proposed Converter

Figure 4 illustrates the block diagram of the proposed MIC,
whichmainly includes PV arrays, a wind turbine, a high step-
up multi-input converter, and a system controller. Figure 5
shows the corresponding schematics of the main power stage
of the MIC. In Figure 5, the MIC is composed of an upper

modi�ed double-ended forward, a lower modi�ed double-
ended forward, a common output �lter �mic, and a system
controller. 
e upper modi�ed double-ended forward is in
charge of dealing with wind-turbine energy while the lower
one processes solar power. 
e both modi�ed double-ended
forwards can be operated independently, which expands the
degree of control freedom. 
e active switches in the upper
forward or in the lower one are switched synchronously so
as to trap the leakage energy and to release the magnetizing
inductance energy. 
e capacitors in the secondary wind-
ings, �wind and �pv, will absorb the energy of magnetizing
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Figure 6: Conceptual key waveforms of the proposed MIC.

inductance and then can boost the output voltage. 
e
system controller determines the control signals to perform
output power controlling and maximum power point track-
ing (MPPT). In this paper, perturb-and-observe method is
adopted for MPPT.

3. Operation Principle of
the Proposed Converter

In Figure 5 the two modi�ed double-ended forwards can
operate individually to deal with PV power and wind energy.
To achieve better output performance and to lower the
output �lter volume, the switches SWwind and SWpv are
turned on alternatively with a duty ratio less than 0.5 at
the same switching frequency. Figure 5 shows conceptual
key waveforms. According to the conduction status of the
switches SWwind and SWpv, the operation of the MIC over
one switching period can be mainly divided into four modes.
Corresponding equivalents are presented in Figure 6. Each
operation mode is described in the following.

Mode 1 (Figure 7(a), �0 ≤ � < �1). During the interval ofMode
1, the status of switches SWwind is on but SWpv o�. While
SWwind conducts at �0, this mode begins. 
e active switch
SWpv is in the o�-state, and the magnetizing inductor of the
lower modi�ed forward discharges energy through the path
of �2,pv-�2,pv-�pv. Meanwhile, wind power is forwarded to
output. 
erefore, ��,mic is linearly built and can be described
as

��,mic(�) =
2 ⋅ �wind ⋅ 
wind ⋅ Vwind

�mic

⋅ �wind ⋅
��
2 + ��,mic(�0) ,

(1)

where 
wind is the coupling coe�cient of the transformer in
the upper forward,�wind stands for duty ratio of SWwind, and
�� represents the switching period.
e voltage stresses of the
switch SWpv and diode�2,wind can be found by

V��,pv = Vpv,

V�2,wind = 2 ⋅ �wind ⋅ 
wind ⋅ Vwind.
(2)
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Figure 7: Equivalent circuits of the MIC corresponding to the four operation modes over one switching cycle: (a) Mode 1, (b) Mode 2, (c)
Mode 3, and (d) Mode 4.

As the current of magnetizing inductor ��,pv drops to zero,
this mode ends.

Mode 2 (Figure 7(b), �1 ≤ � < �2). In Mode 2, all the active
switches are in o�-state. At time �1, the switch SWwind is
turned o� and SWpv in the lower forward still stays in the o�-
state. 
e magnetizing inductor in the upper modi�ed for-
ward ��,wind discharges via the path of�2,wind-�2,wind-�wind,
while the energy of leakage inductor ���,wind is trapped.


e voltages across �wind and �pv, V�,wind and V�,pv, are
obtained by

V�,wind = �wind ⋅ 
wind ⋅ Vwind,

V�,pv = �pv ⋅ 
pv ⋅ Vpv,
(3)

respectively, in which 
pv is the coupling coe�cient of the
transformer in the lower forward. In addition, the output
inductor �mic releases the stored energy to the load by
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e waveform of output inductor current.

the path of �mic-�dc,link-�2,wind, of which the current is
linearly decreased and is expressed as

��,mic(�) = ��,mic(�1) −
�dc,link
�mic

⋅ �wind ⋅
��
2 ⋅ (1 − �wind) . (4)

Mode 3 (Figure 7(c), �2 ≤ � < �3). During this mode,
SWpv is in the on-state but SWwind in o�-state. Since the
SWpv is turned on at �2, thus PV energy is dealt with by the
lower modi�ed forward.
e inductor current ��,mic increases
linearly. 
e inductor ��,wind releases the energy to the
capacitor �wind through the path of �2,wind-�2,wind-�wind. In
this interval, the current of output inductor �mic is linearly
built and can be described as

��,mic(�) =
2 ⋅ �pv ⋅ 
pv ⋅ Vpv
�mic

⋅ �pv ⋅
��
2 + ��,mic(�2) , (5)

where�pv denotes the duty ratio of SWpv.
e voltage stresses
of the switch SWpv and diode �2,wind can be expressed as
follows:

V��,wind = Vwind,

V�2,pv = 2 ⋅ �pv ⋅ 
pv ⋅ Vpv.
(6)


is mode ends at the moment the current owing through
��,wind equals zero.

Mode 4 (Figure 7(d), �3 ≤ � < �4). At time �3, the switch
SWpv is turned o� and the operation of the MIC enters into
Mode 4. 
at is, in Mode 4 all active switches are o�. During
this mode, the magnetizing inductor ��,pv releases energy to
capacitor�pv via�2,pv, �2,pv, and�pv. In addition, the energy
stored in leakage inductance is recycled. Meanwhile, the
output inductor discharges and the current ��,mic decreases
linearly, which can be expressed as

��,mic (�) = ��,mic (�3) −
�dc,link
�mic

⋅ �pv ⋅
��
2 ⋅ (1 − �pv) . (7)

A complete switching cycle is terminated at � = �4, at which
SWwind is turned on again.

While the proposedMIC operates in continuous conduc-
tion mode (CCM), the corresponding waveform of output
inductor current is illustrated in Figure 8. 
e �� is the
switching period and can be expressed as

��,wind + ��,pv = ��. (8)

In (8), ��,wind stands for the intervals that the upper modi�ed
forward works, while ��,pv for the lower modi�ed forward. In
the interleaved operation, the following relationship holds:

��,pv = ��,wind =
��
2 .

(9)

Based on volt-second balance criterion, one can obtain the
following identity:

(2 ⋅ �wind ⋅ 
wind ⋅ Vwind − �dc,link) ⋅ �wind ⋅ ��,wind

+ (2 ⋅ �pv ⋅ 
pv ⋅ Vpv − �dc,link) ⋅ �pv ⋅ ��,pv

= (1 − �wind) ⋅ ��,wind ⋅ �dc,link + (1 − �pv) ⋅ ��,pv ⋅ �dc,link.
(10)

Rearranging (10) yields

�dc,link = �wind ⋅ 
wind ⋅ Vwind ⋅ �wind + �pv ⋅ 
pv ⋅ Vpv ⋅ �pv,
(11)

which reveals that the DC-link voltage can be controlled by
the duty ratios of SWwind and SWpv.

In the MIC, perturb-and-observe method is employed
to draw maximum power from wind turbine and PV arrays
since it is easy to carry out.
e perturb-and-observeMPPT is
realized by dsPIC30F4011. 
e related owchart is presented
in Figure 9.

4. Simulations and Practical Measurements

To demonstrate the feasibility of the proposed MIC, a
prototype is constructed, simulated, and tested. Important
parameters are listed as follows:

(i) PV panel voltage: Vpv = 40–56V,

(ii) wind turbine voltage: Vwind = 22–48V,

(iii) dc-link voltage: 200V,
(iv) upper modi�ed double-ended forward: 350W,

(v) lower modi�ed double-ended forward: 350W,

(vi) switching frequency: 50 kHz for all active switches,

(vii) output inductance: �mic = 400�H,

(viii) output capacitance: �dc,link = 400 �F,
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e owchart of perturb-and-observe method to achieve MPPT feature.
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Figure 10: Simulated control signals while wind turbine provides 350W.

(ix) capacitance of upper forward: �wind = 22�F,
(x) capacitance of lower forward: �pv = 22 �F.

In the case of only wind turbine providing 350W, the
simulated active switch signals and corresponding output
inductor current are shown in Figures 10 and 11, respectively,
while Figures 12 and 13 are the practical measurements. With

the perturb-and-observe method for maximum power point
tracking, the measured result is shown in Figure 14, which
has illustrated that the uppermodi�ed double-ended forward
can draw the maximum power from wind turbine. If only
350WPVpower feeds theMIC, simulations of control signals
for active switches and output inductor current are presented
in Figures 15 and 16. In addition, Figures 17 and 18 are the
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Figure 11: Simulated output inductor current while wind turbine provides 350W.
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Figure 12: Practical measurements of control signals while wind turbine provides 350W.
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Figure 13: Measured output inductor current while wind turbine provides 350W.

measured results. For MPPT feature veri�cation, Figure 19 is
the relationship between PV power and the terminal voltage
of PV panel, from which it can be found that the proposed
MIC is able to draw maximum power from PV panel. From
Figures 10–19, it has been demonstrated that the proposed
MIC is capable of dealing with individual renewable power.
As the solar power and wind energy feed the MIC simulta-
neously, Figures 20 and 21 show the simulations of control
signals and output inductor current. 
en, Figures 22 and
23 present the hardware measurements. In addition, switch
currents are also shown in Figure 24, in which the upper
trace and the lower trace are the drain-to-source currents
of SWwind and SWpv, respectively. Figure 25 is the hardware

measurements of the secondary currents �	2,wind and �	2,pv.
All the experimental results correspond with the theoretical
waveforms in Figure 6. From Figures 20–25, it is veri�ed that
theMIC not only can process hybrid wind-PV power but can
operate in interleaved mode for current ripple suppression.
Additionally, in Figures 21 and 23, the ripple of output
inductor current is double the switch frequency, which results
in lower volume requirement for output �lter inductor. 
e
measured e�ciency of the MIC is shown in Figure 26. In the
case of wind turbine shutting down from the hybrid power
generation system, the output power variation of the MIC
is shown in Figure 27. For converse condition, the related
output power curve is shown in Figure 28.
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Figure 15: Simulated control signals while PV panel provides 350W.
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Figure 16: Simulated output inductor current while PV panel provides 350W.
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Figure 17: Practical measurements of control signals while PV panel provides 350W.
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Figure 18: Measured output inductor current while PV panel provides 350W.
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Figure 20: Simulated control signals while hybrid wind-PV power is 700W.
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Figure 21: Simlated output inductor current while hybrid wind-PV power is 700W.
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Figure 22: Measured control signals while hybrid wind-PV power is 700W.
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Figure 23: Measured output inductor current while hybrid wind-PV power is 700W.
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Figure 24: Measured waveforms of switch currents.
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Figure 25: Measured current waveforms of the secondary windings in the MIC.
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e measured e�ciency of the proposed MIC.

(Po : 100 W/div, time: 10 ms/div)

Figure 27: Output power variation while wind turbine shuts down from the hybrid generation system.

5. Conclusions


is paper proposed a galvanic isolatedmulti-input converter
to deal with wind turbine energy and solar power withMPPT
feature. 
e converter integrates two forward converters and

only uses one output inductor. 
erefore, the structure of
the proposed MIC can lower the volume of the converter.
In addition, the MIC can operate in interleaved mode so
that the output current ripple is suppressed signi�cantly. 
e
energy stored in leakage inductor can be recycled, which
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(Po : 100 W/div, time: 10 ms/div)

Figure 28: Output power variation while wind turbine incorporates into the hybrid generation system.

improves e�ciency. In this paper, the proposed MIC is
analyzed, simulated, and tested. Simulations and hardware
measurements have validated the proposed MIC.
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