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Flower grading is a signi�cant task because it is extremely convenient for managing the �owers in greenhouse and market. With
the development of computer vision, �ower grading has become an interdisciplinary focus in both botany and computer vision. A
new dataset named BjfuGloxinia contains three quality grades; each grade consists of 107 samples and 321 images. A multi-input
convolutional neural network is designed for large scale �ower grading. Multi-input CNN achieves a satisfactory accuracy of 89.6%
on the BjfuGloxinia aer data augmentation. Compared with a single-input CNN, the accuracy of multi-input CNN is increased
by 5% on average, demonstrating that multi-input convolutional neural network is a promisingmodel for �ower grading. Although
data augmentation contributes to the model, the accuracy is still limited by lack of samples diversity. Majority of misclassi�cation
is derived from the medium class.�e image processing based bud detection is useful for reducing the misclassi�cation, increasing
the accuracy of �ower grading to approximately 93.9%.

1. Introduction

Flower grading means dividing �owers into several grades
according to the quality based on the appearance. Gloxinia is
a kind of �ower which is bene�cial for mental and physical
health of humans. Our research is focused on the �ower
grading, taking the Gloxinia as an example. Quality grading
of �owers is signi�cant because it is extremely convenient for
greenhouse andmarket. Flower grading has a very important
e�ect in handling andmarketing the �owers aer cultivation.
In addition, it can be used in our house to judge which
grade the �owers belong to, making our daily life more
intelligent. With the development of computer vision, �ower
grading becomes automatic and intelligent based on images
identi�cation.

Flower grading is considered as a challenging task
because the di�erences between each grade are not obvious,
as illustrated in Figure 1. In particular, the shape and color
of medium grade �owers are very similar to high or low
grade �owers. In addition, classifying quality of �owers is a
challenging task also considering the lack of dataset which
contains di�erent quality grades of the �owers.

Many researchers pay attention to the quality grading.
Arakeri and Lakshmana [1] proposed a computer vision

based automatic system for tomato grading using ANN
(arti�cial neural network). Wang et al. [2] also proposed
an automatic grading system of diced potatoes based on
computer vision and near-infrared lighting. Although these
systems are successful, both of them focused on binary
classi�cation. In addition, these researches still need complex
preprocessing such as extracting features from cleaned back-
ground. Al Ohali [3] proposed a date fruit grading system
which classi�es dates into three quality categories using back
propagation neural network (BPNN) algorithm with only
80% accurately.

In computer vision, deep learning has made great break-
through in the last few years, especially the convolutional
neural networks (CNNs). CNNs are very successful in Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
[4]. Several researchers use CNNs to identify plant images.
Lee et al. [5] presented system that utilizes CNN to automat-
ically learn discriminative features from leaf images. Reyes
et al. [6] �ne-tuned a CNN model for plants identi�cation
achieving a great success. References [5, 6] are both based
on the CNN where the architecture was �rstly proposed by
Krizhevsky [7].

�is paper presents a deep learning model for �ower
grading. Each �owermay not be fully described by one image.
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Figure 1: Typical samples of the dataset.

At least, three images are requested. Plants should not be
graded just based on partial regions. �us, traditional CNN
is not appropriate for our research. A new deep learning
model named three-input convolutional neural network is
proposed by us for �ower grading. Di�ering from traditional
CNN, three-input CNN takes three images as the input.
Each sample which is inputted to three-input CNN model
contains three images rather than single image. Empirically,
our method achieves a satisfactory accuracy on the dataset.
A newGloxinia dataset named BjfuGloxinia consisting of 321
Gloxinia samples belonging to three grades is also proposed
by us for training and validating our model.

�e rest of the paper is organized as follows: Section 2
reviews the concept of CNN and then gives an overview of
dataset and approach that we proposed. �e experimental
results are presented in Section 3. Section 4 introduces bud
detection to improve the performance of �ower grading.
Section 5 draws the conclusions.

2. Proposed BjfuGloxinia Dataset and
Multi-Input CNN Model

2.1. �e Gloxinia Grade Dataset. �e BjfuGloxinia (BG)
dataset collected at a greenhouse in Beijing Forestry Univer-
sity, Beijing, China, is employed in the experiment. �is is
the �rst image dataset for �ower grading. It can be down-
loaded from p://iot.bjfu.edu.cn/. �e dataset containing 321
samples of Gloxinia is divided into three grades by expert
according to the relevant rules. In these rules, the plant which
has more than two high-quality �owers belongs to the good
class.�eplantwhich just has buds or only one �ower belongs
to the medium class.�e plant with no �owers belongs to the
bad class. Each grade contains 107 samples and each sample
consists of three images. Typical samples of the BjfuGloxinia
are illustrated in Figure 1. It is obvious that the dataset is

Figure 2: Image acquisition and equipment setup.

challenging because plants from di�erent grades have very
similar appearance, especially the samples in the medium
class which are easily confused with the good or the bad class.

In order to obtain the training set and the testing set,
some equipment andmaterials are needed, including a digital
single lens re�ex (DLSR) camera, a tripod, a timing switch,
and an electric turntable disk. �e datasets are collected
by a series of processes as follows. Put each �ower on the
electric turntable disk and keep the vertical distance between
the bottom of �owerpot and the ground at 49 cm. �e
electric turntable disk is connected to the timing switch. �e
horizontal distance between the center of the turntable and
the center of the tripod is 70 cm.�eDSLR camera is �xed on
the tripod. �e tilt angle is 25 degrees relative to the vertical
direction. �e vertical distance between the tripods to the
ground is 92 cm.�e image acquisition and equipment setup
are depicted in Figure 2. Flowers are rotated by an electric
turntable whose speed is �xed at 30 s a lap. �e disk is set
to rotate every 120 degrees and pause 5 seconds for image
acquisition.

2.2. �ree-Input Convolutional Neural Network. One image
cannot cover the whole plant. Every sample in our research
is described by taking at least three images. �erefore,
traditional single-input CNN architecture is not suitable for
our research. We designed a new CNNmodel to accept three
images as input.

2.2.1. Convolutional Neural Network. Convolutional neural
networks [8, 9], originally proposed by LeCun et al. for
handwritten digit recognition, have been recently succeeded
in image identi�cation, detection, and segmentation tasks
[10–15]. CNN is proved to have a strong ability in large
scale image classi�cation. It is mainly composed of three
types of layers: convolutional layers, pooling layers, and full-
connection layers. Convolutional and pooling layers are the
most important layers. �e convolutional layers are used to
extract features by convolving image regions with multiple
�lters. As the layers increase, the CNN understands an image

ftp://iot.bjfu.edu.cn/
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Figure 3: An architecture of 3-input CNN model for Gloxinia grading. �is architecture has the best e�ect on testing set.
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Figure 4: Extract features by cutting image. (a) �e original image and (b) the cropped image.

progressively. �e pooling layers reduce the size of output
maps from convolutional layers and prevent over�tting.
�rough these two layers, numbers of neurons, parameters,
and connections are much fewer in CNN models. �erefore,
CNNs are more e�cient than BP neural networks with
similarly sized layers.

2.2.2. Architecture of �ree-Input Convolutional Neural Net-
works. Based on the traditional CNN architecture, a new
model named three-input CNN is proposed by us.�emodel
is employed to perform Gloxinia grading and achieve a
preferable result on the dataset. �e full model of our CNN
architecture is depicted in Figure 3. �e convolutional layers
C1–C3 �lter three 300 × 200 × 3 input images with 32 kernels
of size 7 × 7 × 3 with stride of 1 pixel. �e stride of pooling
layer S1 is 2 pixels. �en, the three convolutional layers are

merged into one. C4 has 16 kernels of size 3 × 3 × 3 with stride
of 1 pixel. S2 pools themerged features with a stride of 4. Both
C5 and C6 have 32 kernels with size of 3 × 3 × 3 with stride of
1 pixel. �e dropout is applied to the output of S4 which has
been �attened. �e fully connected layer FC1 has 32 neurons
and FC2 has 3 neurons. �e activation of the output layer is
somax function.

3. Experiments and Results

3.1. Dataset Augmentation. �e performance of models is
limited by mini-scale dataset due to the lack of samples.
To augment the dataset, images are �ipped horizontally
and vertically, shied, and rotated. Besides these traditional
methods for dataset augmentation, the main region which
contains the important features is cut from the whole image.
�e operation is shown in Figure 4.
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3.2. Implementation and Preprocess. 80% of BjfuGloxinia
dataset is randomly selected for training and 20% of the
dataset is for testing. �e model is implemented in “Keras”
which is a high-level neural networks API [16]. All the
experiments were conducted on a Ubuntu Kylin 14.04 server
with a 3.40GHz i7-3770 CPU (16GB memory) and a GTX
1070GPU (8GB memory). Our model is evaluated on Bjfu-
Gloxinia dataset which is detailed in Section 2. �e size of an
original image is 4288× 2848 pixels, which should be reduced
to �t the GPU memory. All the original images are resized
to 300 × 200 pixels and then per-pixel value is divided by
255. �e images should also be normalized and standardized
before being inputted to models for fast convergence. �e
inputted images are shu�ed to avoid themodel in�uenced by
inputting order. Both the sequence of samples and the three
images belonging to each sample should be shu�ed.

3.3. Training Algorithm. Training algorithm of convolutional
neural network is divided into two stages. �e one is forward
propagation and the other is backward propagation.

3.3.1. Forward Propagation. Data are transferred from the
input layer to the output layer by a series of operations
including convolution, pooling, and fully connected. Each
convolutional layer uses trainable kernels to �lter the result
of previous layer followed by an activation function to form
the output feature map. In generally, the operation is shown
as follows:

�ℓ� = � ( ∑
�∈��

�ℓ−1� ∗ �ℓ�� + �ℓ�) , (1)

where 
� represents the set of input maps that we selected, �
is a bias added to every output map, � represents the kernels,

and �ℓ�� is the weight of the row “�” and column “�” in each

kernel. �e operation of pooling layer is downsample which
summarizes the outputs of surrounding neurons by a kernel
map [7]

�ℓ� = � (�ℓ� down (�ℓ−1� ) + �ℓ� ) , (2)

where � is the multiplicative bias and � is an additive bias and
“down” is a subsampling function adopted max-pooling [17].
�e reason why we select max-pooling rather than mean-
pooling is because with the latter it is di�cult to �nd the
important information such as the edge of objects while the
former selects themost active neuronof each region in feature
maps [18]. �erefore, with max-pooling, it is easier to extract
useful features. �e fully connected layer is equal to hidden
layer of multilayer perceptron. �e activation of output layer
is somax function [19] applied for multiclassi�cation, which
is given by

� (�)� = ���∑�	=1 ��� for � = 1, . . . , �, (3)

where � is a �-dimensional vector and in the range (0, 1). In
this paper, � is 3.

3.3.2. Backward Propagation. Backward propagation updates
parameters to minimize the discrepancy between the desired
output and the actual output by stochastic gradient descent
(SGD). �e discrepancy is given by the categorical cross-
entropy loss function:

Loss� = − log( �
��∑� �
� ) for � = 1, 2, 3, (4)

where �� is probability of sample � which is classi�ed to class�. �1 and �2 regularization are adopted to prevent over�tting.�1 is given by

� = �0 + �� ∑
�

|�| , (5)

where �0 is the loss in formula (4). �2 is given by

� = �0 + �2� ∑
�

�2. (6)

In this paper, weight of �1 and �2 regularization is 0.0001.
Dropout [20] is also adopted to prevent over�tting and it is
set to 0.1. SGD algorithm computes the gradients and updates
the coe�cient or weights. It can be expressed as follows:

�� = ��+1 (� (��+1 ⋅ !� + ��+1) ∘ up (��+1)) ,
Δ�� = −% ⋅ ∑

�,�
(�� ∘ down (&�−1)) , (7)

where �� denotes sensitivities of each unit with respect to
perturbations of the bias �, ∘ denotes element-wise multi-
plication, up( ) represents an upsampling operation, down( )
represents subsampling operation, � is the updated weight,
and % represents the learning rate.

3.4. Results and Failure Analysis. Large quantities of exper-
iments are conducted to �nd the best-performing models
for �ower grading. �e architectures of models varied by
changing the size of �lter kernels, number of feature maps,
and convolutional layers.�esemodels are depicted in Tables
1 and 2. As is shown in Table 1, when the number of
convolutional layers aer merging is in the range of one to
two, change the number of layers beforemerging and observe
the e�ect of models. As is shown in Table 2, the number and
the size of �lter kernels of the convolutional layers are varying
when the number of convolutional layers in every branch
before merging is �xed to one.

Top ten best-performing models are selected eventually.
�e accuracy evolution of 10 models on Gloxinia grading is
shown in Figure 5.

�e result of Table 1 shows that 1-2 layers before merging
are better than more. Table 2 shows that 2-3 convolutional
layers aer merging is the best. As the number of layers
increases, the accuracy tends to decline. �e change of
accuracy is not obvious when varying the size of kernels. �e
size of 5 × 5 is slightly better than 3 × 3. M4 is the best model
with the highest accuracy of 0.89 on testing set.
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Table 1: Architecture of models with di�erent number of layers before merging.

Name of models
Convolutional layers

C1∗ C2∗ C3∗ C4∗ C5 C6 FC1 FC2 ACC

M1 3 × 3,16 — — 3 × 3,32 32 3 76.2% ± 0.3
M2 3 × 3,16 — — 3 × 3,32 3 × 3,32 32 3 81.6% ± 0.3
M3 3 × 3,16 3 × 3,16 — — 3 × 3,32 — 32 3 85.5% ± 0.3
M4 3 × 3,16 3 × 3,16 — — 5 × 5,64 5 × 5,32 32 3 84.6% ± 0.3
M5 3 × 3,16 3 × 3,32 — — 3 × 3,64 3 × 3,64 32 3 88.8% ± 0.3
M6 5 × 5,16 5 × 5,16 — — 5 × 5,32 5 × 5,32 32 3 84.7% ± 0.3
M7 3 × 3,16 3 × 3,32 — — 5 × 5,32 5 × 5,32 32 3 80.6% ± 0.3
M8 3 × 3,16 3 × 3,32 3 × 3,32 — 3 × 3,64 — 64 3 82.7% ± 0.3
M9 3 × 3,16 3 × 3,16 3 × 3,32 — 3 × 3,64 3 × 3,64 64 3 82.1% ± 0.3
M10 5 × 5,16 3 × 3,16 3 × 3,32 3 × 3,32 3 × 3,32 — 32 3 81.6% ± 0.3
M11 5 × 5,16 5 × 5,16 3 × 3,32 3 × 3,32 3 × 3,32 3 × 3,32 32 3 80.6% ± 0.3
∗ represents the convolutional layers in each branch beforemerging. Each branch has only one convolutional layer. “3× 3,32” represents the size of �lter kernels
which is 3 × 3 and the number of kernels is 32. All the strides of kernels are set to 1 × 1.

Table 2: Architecture of models with one convolutional layer before merging.

Name of models
Convolutional layers

C1–C3 C4 C5 C6 C7 C8 FC1 FC2 ACC

M12 3 × 3,32 3 × 3,32 3 × 3,32 3 × 3,64 3 × 3,64 3 × 3,64 32 3 33.3% ± 0.3
M13 3 × 3,32 3 × 3,32 3 × 3,32 3 × 3,64 3 × 3,64 — 32 3 68.4% ± 0.3
M14 3 × 3,32 3 × 3,32 3 × 3,32 3 × 3,64 — — 32 3 87.8% ± 0.3
M15 5 × 5,16 3 × 3,32 3 × 3,32 3 × 3,32 — — 32 3 89.6% ± 0.3
M16 7 × 7,16 3 × 3,32 3 × 3,32 3 × 3,32 — — 32 3 83.7% ± 0.3
M17 3 × 3,32 3 × 3,48 3 × 3,48 3 × 3,48 — — 32 3 85.7% ± 0.3
M18 3 × 3,16 3 × 3,32 3 × 3,32 — — — 32 3 81.6% ± 0.3
M19 3 × 3,16 3 × 3,32 3 × 3,16 — — — 16 3 81.6% ± 0.3
M20 5 × 5,16 3 × 3,32 3 × 3,16 — — — 16 3 84.7% ± 0.3
M21 5 × 5,16 3 × 3,64 3 × 3,32 — — — 32 3 87.8% ± 0.3
M22 7 × 7,16 3 × 3,32 3 × 3,16 — — — 16 3 87.8% ± 0.3
M23 3 × 3,16 5 × 5,32 3 × 3,32 — — — 32 3 87.8% ± 0.3
C1–C3 represent the layers in three branches before merging. Pooling layers are ignored in this table. Generally, every convolutional layer is followed by a
pooling layer. All the sizes and strides of pooling layers are set to 2 × 2.
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Figure 5: Average accuracy of top ten models on testing set. It is
obvious that M15 is the best model with the highest accuracy 0.89
on testing set.

�e process of �ower grading by single-input CNN is
divided into two steps. Firstly, each image of a sample is
classi�ed separately. Secondly, the majority of the categories
are selected as a result of sample classi�cation. As is shown
in Table 3, comparing to the single-input CNN, multi-input
CNN is much better than single-input CNN for �ower
grading. �e single-input CNN cannot grade �owers well.
�e probable reason is that when the three image classi�ca-
tion results are inconsistent, it is very di�cult to draw the
conclusion about which grades the sample is belonging to.
For example, a sample contains three images. �e �rst image
is classi�ed to the good class, the second image is classi�ed
to the medium class, and the third image is classi�ed to the
bad class. �erefore, the sample cannot be classi�ed to any
grades without additional rules. In this paper, the sample
is considered to be misclassi�ed in the case of inconsistent
result. Comparing to the single-input CNN, multi-input
CNN not only improves the accuracy, but also reduces the
number of predictions. Multi-input CNN predicts a sample
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Figure 6: Examples of misclassi�ed classes. �is �gure shows four misclassi�ed samples. For example, the �rst sample in this �gure which
belongs to the bad class is misclassi�ed to the medium class by our CNNmodel.

Table 3: Architecture of single-input models.

Name of models
Convolutional layers

C1 C2 C3 C4 C5 FC1 FC2 ACC

M24 3 × 3,32 3 × 3,32 32 3 84.7% ± 0.3
M25 3 × 3,32 3 × 3,32 3 × 3,32 — — 32 3 77.6% ± 0.3
M26 3 × 3,32 3 × 3,32 3 × 3,32 3 × 3,64 — 32 3 75.5% ± 0.3
M27 3 × 3,16 3 × 3,32 3 × 3,32 3 × 3,64 3 × 3,64 32 3 75.5%± 0.3

C1–C3 represent the layers in three branches before merging. Pooling layers are ignored in this table. Generally, every convolutional layer is followed by a
pooling layer. All the sizes and strides of pooling layers are set to 2 × 2.

Table 4: Confusion matrix of our CNNmodel for �ower grading.

Class
Predicted

Bad Medium Good

Actual class

Bad 30 2 0

Medium 7 25 0

Good 0 1 31

just once while single-input CNN needs to predict three
images of a sample. �e confusion matrix is depicted in
Table 4. From the confusion matrix we can observe that
with the model it is easier to classify the good class and the
bad class. It is very di�cult to classify the medium class (7
misclassi�ed). �e error rate of the medium class is near to
0.3.

From our investigation as illustrated in Figure 6, samples
which were misclassi�ed are probably caused by two reasons.

One is that these plants have almost similar appearance to
other classes. �e other is that the proportion of features in
the image is still very small, though the important region
has been cut out from the whole image. For example, the
bud is the most important feature which could distinguish
the medium class from the bad class. But it is very small
and di�cult to be found in the image. It will be worse if the
neurons which contain the bud information are thrown away
aer the dropout operation. Furthermore, due to the shortage
of plants, although the dataset enlarged by several methods,
it is still very small and lack samples diversity, limiting the
accuracy of our models.

4. Bud Detection

Bud detection is based on PlantCV [21] which is an open
source package.�e buds were detected by image processing.
�e main idea of the detection is �nding an appropriate
threshold in training set which can separate the target region
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(a) (b)

Figure 7: Example of bud detection. �is �gure shows the operation of bud detection. �e buds in (b) are marked by aquamarine circle.

Table 5: Select samples for bud detection.

Number Bad class Medium class Good class Selected

1 9.16� − 01 8.08� − 02 2.46� − 03 False

2 9.88� − 01 3.86� − 03 7.65� − 03 False

3 6.92� − 01 3.02� − 01 4.63� − 03 True

4 9.46� − 01 1.39� − 02 3.96� − 02 False

5 4.53� − 01 4.34� − 01 1.10� − 01 True

Number 3 and number 5 are selected for bud detection because 6.92� − 01 is
close to 3.02� − 01 and 4.53� − 01 is close to 4.34� − 01.

of image from others. �e binary threshold is expressed as
follows:

dst (�, ') = {{{
max value if src (�, ') > threshold

0 otherwise, (8)

where the max value is set to 256 and threshold is 190 and
src(�, ') is the : channel value of (�, ') in the image using
RGB color space.

�e result shows that almost all of the errors derived
from the medium class are misclassi�ed to the bad class.
�e most problem probably is di�culty to extract the small
important feature. In order to solve this problem and improve
the accuracy of classifying themedium class, we focus on bud
detection. At �rst, ourmodel is used to predict the probability
that every sample belongs to each class. �e samples whose
probability belonging to the bad class is close to the medium
class are selected for bud detection. Sample selection is shown
in Table 5. A sample is classi�ed to the medium class if it
contains buds. �e accuracy of our model on testing set is
lied to 93.9% aer detection. Bud detection is shown in
Figure 7.

5. Conclusion

�is paper presents a three-input convolutional neural model
for grading every three images of a �ower. �is paper also
presents a new Gloxinia dataset named BjfuGloxinia which
consists of three grades, containing 107 samples and 321
images of each quality grade. Aer dataset augmentation,
the number of plants in dataset are increased to 760 samples
and 2780 images in training set. �e experimental results

show that learning the features through three-input CNN
can make good performance on Gloxinia grading with the
highest accuracy of 89.6% on the testing set aer dataset
augmentation. �is accuracy is increased by 8 percentage
points compared to using the original dataset. �e result
demonstrates that the method of dataset augmentation is
e�ective and three-input CNN is the promising model for
large scale �ower grading. Bud detection is proposed to
improve the accuracy of classifying the medium class. It lis
the accuracy on testing set to 93.9%.

In the future work, BjfuGloxinia will be enlarged bymore
quality grades and more plants. �e performance of the
model should also be improved. Application of the model
will be extended from �ower grading to more plant species
grading even to other �elds, such as plant disease detection
and segmentation.
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