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Abstract

In this paper, we formalizemulti-instance multi-label learning, where each train-
ing example is associated with not only multiple instances but also multiple class
labels. Such a problem can occur in many real-world tasks, e.g. an image usually
contains multiple patches each of which can be described by afeature vector, and
the image can belong to multiple categories since its semantics can be recognized
in different ways. We analyze the relationship between multi-instance multi-label
learning and the learning frameworks oftraditional supervised learning, multi-
instance learningandmulti-label learning. Then, we propose the MIML BOOST
and MIML SVM algorithms which achieve good performance in an application to
scene classification.

1 Introduction

In traditional supervised learning, an object is represented by an instance (or feature vector)and
associated with a class label. Formally, letX denote the instance space (or feature space) andY
the set of class labels. Then the task is to learn a functionf : X → Y from a given data set
{(x1, y1), (x2, y2), · · · , (xm, ym)}, wherexi ∈ X is an instance andyi ∈ Y the known label ofxi.

Although the above formalization is prevailing and successful, there are many real-world problems
which do not fit this framework well, where a real-world object may be associated with a number of
instances and a number of labels simultaneously. For example, an image usually contains multiple
patches each can be represented by an instance, while in image classification such an image can
belong to several classes simultaneously, e.g. an image canbelong tomountainsas well asAfrica.
Another example is text categorization, where a document usually contains multiple sections each of
which can be represented as an instance, and the document canbe regarded as belonging to different
categories if it was viewed from different aspects, e.g. a document can be categorized asscientific
novel, Jules Verne’s writingor evenbooks on travelling. Web mining is a further example, where
each of the links can be regarded as an instance while the web page itself can be recognized asnews
page, sports page, soccer page, etc.

In order to deal with such problems, in this paper we formalize multi-instance multi-label learning
(abbreviated as MIML ). In this learning framework, a training example is described by multiple
instances and associated with multiple class labels. Formally, let X denote the instance space and
Y the set of class labels. Then the task is to learn a functionfMIML : 2X → 2Y from a given data
set{(X1, Y1), (X2, Y2), · · · , (Xm, Ym)}, whereXi ⊆ X is a set of instances{x(i)
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After analyzing the relationship between MIML and the frameworks of traditional supervised learn-
ing, multi-instance learningandmulti-label learning, we propose two MIML algorithms, MIML -



BOOST and MIML SVM . Application to scene classification shows that, solving some real-world
problems in the MIML framework can achieve better performance than solving themin existing
frameworks such as multi-instance learning and multi-label learning.

2 Multi-Instance Multi-Label Learning

We start by investigating the relationship between MIML and the frameworks of traditional super-
vised learning, multi-instance learning and multi-label learning, and then we develop some solutions.

Multi-instance learning [4] studies the problem where a real-world object described by a number of
instances is associated with one class label. Formally, thetask is to learn a functionfMIL : 2X →
{−1,+1} from a given data set{(X1, y1), (X2, y2), · · · , (Xm, ym)}, whereXi ⊆ X is a set of
instances{x(i)
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Multi-instance learning techniques have been successfully applied to diverse applications including
scene classification [3, 7].

Multi-label learning [8] studies the problem where a real-world object described by one instance is
associated with a number of class labels. Formally, the taskis to learn a functionfMLL : X → 2Y

from a given data set{(x1, Y1), (x2, Y2), · · · , (xm, Ym)}, wherexi ∈ X is an instance andYi ⊆ Y
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k ∈ Y (k = 1, 2, · · · , li).2 Multi-label learning techniques

have also been successfully applied to scene classification[1].

In fact, themulti- learning frameworks result from the ambiguity in representing real-world objects.
Multi-instance learning studies the ambiguity in the inputspace (or instance space), where an object
has many alternative input descriptions, i.e. instances; multi-label learning studies the ambiguity
in the output space (or label space), where an object has manyalternative output descriptions, i.e.
labels; while MIML considers the ambiguity in the input and output spaces simultaneously. We
illustrate the differences among these learning frameworks in Figure 1.

(a) Traditional supervised learning (b) Multi-instance learning

(c) Multi-label learning (d) Multi-instance multi-label learning

Figure 1: Four different learning frameworks

Traditional supervised learning is evidently a degenerated version of multi-instance learning as well
as a degenerated version of multi-label learning, while traditional supervised learning, multi-instance
learning and multi-label learning are all degenerated versions of MIML . Thus, we can tackle MIML
by identifying its equivalence in the traditional supervised learning framework, using multi-instance
learning or multi-label learning as the bridge.

1According to notions used in multi-instance learning,(Xi, yi) is a labeledbagwhile Xi an unlabeled bag.
2Although most works on multi-label learning assume that an instance can be associated with multiple valid

labels, there are also works assuming that only one of the labels associated with an instance is correct [6]. We
adopt the former assumption in this paper.



Solution 1: Using multi-instance learning as the bridge: We can transform a MIML learning task,
i.e. to learn a functionfMIML : 2X → 2Y , into a multi-instance learning task, i.e. to learn a
function fMIL : 2X × Y → {−1,+1}. For anyy ∈ Y, fMIL(Xi, y) = +1 if y ∈ Yi and
−1 otherwise. The proper labels for a new exampleX∗ can be determined according toY ∗ =
{y| argy∈Y [fMIL(X∗, y) = +1]}. We can transform this multi-instance learning task further into
a traditional supervised learning task, i.e. to learn a function fSISL : X × Y → {−1,+1}, under
a constraint specifying how to derivefMIL(Xi, y) from fSISL(x
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y ∈ Y, fSISL(x
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j , y) = +1 if y ∈ Yi and−1 otherwise. Here the constraint can befMIL(Xi, y) =

sign[
∑ni

j=1 fSISL(x
(i)
j , y)] which has been used in transforming multi-instance learning tasks into

traditional supervised learning tasks [9].3 Note that other kinds of constraint can also be used here.

Solution 2: Using multi-label learning as the bridge: We can also transform a MIML learning task,
i.e. to learn a functionfMIML : 2X → 2Y , into a multi-label learning task, i.e. to learn a function
fMLL : Z → 2Y . For anyzi ∈ Z, fMLL(zi) = fMIML(Xi) if zi = φ(Xi), φ : 2X → Z.
The proper labels for a new exampleX∗ can be determined according toY ∗ = fMLL(φ(X∗)). We
can transform this multi-label learning task further into atraditional supervised learning task, i.e. to
learn a functionfSISL : Z × Y → {−1,+1}. For anyy ∈ Y, fSISL(zi, y) = +1 if y ∈ Yi and
−1 otherwise. That is,fMLL(zi) = {y| argy∈Y [fSISL(zi, y) = +1]}. Here the mappingφ can be
implemented withconstructive clusteringwhich has been used in transforming multi-instance bags
into traditional single-instances [11]. Note that other kinds of mapping can also be used here.

3 Algorithms

In this section, we propose two algorithms for solving MIML problems: MIML BOOSTworks along
the first solution described in Section 2, while MIML SVM works along the second solution.

3.1 MIML BOOST

Given any setΩ, let |Ω| denote its size, i.e. the number of elements inΩ; given any predicateπ, let
[[π]] be 1 if π holds and 0 otherwise; given(Xi, Yi), for anyy ∈ Y, let Ψ(Xi, y) = +1 if y ∈ Yi

and−1 otherwise, whereΨ is a functionΨ : 2X ×Y → {−1,+1}. The MIML BOOSTalgorithm is
presented in Table 1.

In the first step, each MIML example(Xu, Yu) (u = 1, 2, · · · ,m) is transformed into a set of|Y|
number of multi-instance bags, i.e.{[(Xu, y1),Ψ(Xu, y1)], [(Xu, y2),Ψ(Xu, y2)], · · · , [(Xu, y|Y|),
Ψ(Xu, y|Y|)]}. Note that[(Xu, yv),Ψ(Xu, yv)] (v = 1, 2, · · · , |Y|) is a labeled multi-instance

bag where(Xu, yv) is a bag containingnu number of instances, i.e.{(x(u)
1 , yv), (x

(u)
2 , yv), · · · ,

(x
(u)
nu , yv)}, andΨ(Xu, yv) ∈ {+1,−1} is the label of this bag.

Thus, the original MIML data set is transformed into a multi-instance data set containing m × |Y|
number of bags, i.e.{[(X1, y1),Ψ(X1, y1)], · · · , [(X1, y|Y|),Ψ(X1, y|Y|)], [(X2, y1),Ψ(X2, y1)],

· · · , [(Xm, y|Y|), Ψ(Xm, y|Y|)]}. Let [(X(i), y(i)),Ψ(X(i), y(i))] denote theith of thesem × |Y|

number of bags, that is,(X(1), y(1)) denotes(X1, y1), · · · , (X(|Y|), y(|Y|)) denotes(X1, y|Y|), · · · ,

(X(m×|Y|), y(m×|Y|)) denotes(Xm, y|Y|), where(X(i), y(i)) containsni number of instances, i.e.

{(x
(i)
1 , y(i)), (x
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2 , y(i)), · · · , (x

(i)
ni , y(i))}.

Then, from the data set a multi-instance learning functionfMIL can be learned, which can accom-
plish the desired MIML function becausefMIML(X∗) = {y| argy∈Y(sign[fMIL (X∗, y)] = +1)}.
Here we use MIBOOSTING [9] to implementfMIL.

For convenience, let(B, g) denote the bag[(X, y),Ψ(X, y)]. Then, here the goal is to learn a func-
tion F(B) minimizing the bag-level exponential lossEBEG|B[exp(−gF(B))], which ultimately

3This constraint assumes that all instances contribute equally and independently to a bag’s label, which is
different from the standard multi-instance assumption that there is one ‘key’ instance in a bag that triggers
whether the bag’s class label will be positive or negative. Nevertheless, it has been shown that this assumption
is reasonable and effective [9]. Note that the standard multi-instance assumption does not always hold, e.g. the
labelAfrica of an image is usually triggered by several patches jointly instead of by onlyone patch.



Table 1: The MIML BOOSTalgorithm

1 Transform each MIML example(Xu, Yu) (u = 1, 2, · · · , m) into |Y| number of multi-
instance bags{[(Xu, y1), Ψ(Xu, y1)], · · · , [(Xu, y|Y|), Ψ(Xu, y|Y|)]}. Thus, the original
data set is transformed into a multi-instance data set containingm × |Y| number of
multi-instance bags, denoted by{[(X(i), y(i)), Ψ(X(i), y(i))]} (i = 1, 2, · · · , m × |Y|).

2 Initialize weight of each bag toW (i) = 1
m×|Y|

(i = 1, 2, · · · , m × |Y|).

3 Repeat fort = 1, 2, · · · , T iterations:

3a SetW (i)
j = W (i)/ni (i = 1, 2, · · · , m × |Y|), assign the bag’s labelΨ(X(i), y(i))

to each of its instances(x(i)
j , y(i)) (j = 1, 2, · · · , ni), and build an instance-level

predictorht[(x
(i)
j , y(i))] ∈ {−1, +1}.

3b For theith bag, compute the error ratee(i) ∈ [0, 1] by counting the number of

misclassified instances within the bag, i.e.e(i) =

∑

ni

j=1
[[ht[(x

(i)
j

,y(i))] 6=Ψ(X(i),y(i))]]

ni
.

3c If e(i) < 0.5 for all i ∈ {1, 2, · · · , m × |Y|}, go to Step 4.

3d Computect = arg minct

∑m×|Y|

i=1
W (i) exp[(2e(i) − 1)ct].

3e If ct ≤ 0, go to Step 4.

3f SetW (i) = W (i) exp[(2e(i) − 1)ct] (i = 1, 2, · · · , m × |Y|) and re-normalize such
that0 ≤ W (i) ≤ 1 and

∑m×|Y|

i=1
W (i) = 1.

4 ReturnY ∗ = {y| argy∈Y sign
(

∑

j

∑

t
ctht[(x

∗
j , y)]

)

= +1} (x∗
j is X∗’s jth instance).

estimates the bag-level log-odds function1
2 log Pr(g=1|B)

Pr(g=−1|B) . In each boosting round, the aim is to
expandF(B) into F(B) + cf(B), i.e. adding a new weak classifier, so that the exponential loss
is minimized. Assuming all instances in a bag contribute equally and independently to the bag’s
label, f(B) = 1

nB

∑

j h(bj) can be derived, whereh(bj) ∈ {−1,+1} is the prediction of the
instance-level classifierh(·) for thejth instance in bagB, andnB is the number of instances inB.

It has been shown by [9] that the bestf(B) to be added can be achieved by seekingh(·) which
maximizes

∑

i

∑ni

j=1[
1
ni

W (i)g(i)h(b
(i)
j )], given the bag-level weightsW = exp(−gF(B)). By

assigning each instance the label of its bag and the corresponding weightW (i)/ni, h(·) can be
learned by minimizing the weighted instance-level classification error. This actually corresponds to
the Step 3a of MIML BOOST. Whenf(B) is found, the best multiplierc > 0 can be got by directly
optimizing the exponential loss:

EBEG|B[exp(−gF(B) + c(−gf(B)))] =
∑

i
W (i) exp[c

(

−
g(i)

∑

j h(b
(i)
j )

ni

)

]

=
∑

i
W (i) exp[(2e(i) − 1)c]

wheree(i) = 1
ni

∑

j [[(h(b
(i)
j ) 6= g(i))]] (computed in Step 3b). Minimization of this expectation ac-

tually corresponds to Step 3d, where numeric optimization techniques such as quasi-Newton method
can be used. Finally, the bag-level weights are updated in Step 3f according to the additive structure
of F(B).

3.2 MIML SVM

Given (Xi, Yi) andzi = φ(Xi) whereφ : 2X → Z, for anyy ∈ Y, let Φ(zi, y) = +1 if y ∈ Yi

and−1 otherwise, whereΦ is a functionΦ : Z × Y → {−1,+1}. The MIML SVM algorithm is
presented in Table 2.

In the first step, theXu of each MIML example(Xu, Yu) (u = 1, 2, · · · ,m) is collected and put
into a data setΓ. Then, in the second step,k-medoids clustering is performed onΓ. Since each



Table 2: The MIML SVM algorithm

1 For MIML examples(Xu, Yu) (u = 1, 2, · · · , m), Γ = {Xu|u = 1, 2, · · · , m}.

2 Randomly selectk elements fromΓ to initialize the medoidsMt (t = 1, 2, · · · , k),
repeat until allMt do not change:

2a Γt = {Mt} (t = 1, 2, · · · , k).

2b Repeat for eachXu ∈ (Γ − {Mt|t = 1, 2, · · · , k}):

index = arg mint∈{1,···,k} dH(Xu, Mt), Γindex = Γindex ∪ {Xu}.

2c Mt = arg min
A∈Γt

∑

B∈Γt

dH(A, B) (t = 1, 2, · · · , k).

3 Transform(Xu, Yu) into a multi-label example(zu, Yu) (u = 1, 2, · · · , m), where
zu = (zu1, zu2, · · · , zuk) = (dH(Xu, M1), dH(Xu, M2), · · · , dH(Xu, Mk)).

4 For eachy ∈ Y, derive a data setDy = {(zu, Φ(zu, y)) |u = 1, 2, · · · , m}, and then
train an SVM hy = SV MTrain(Dy).

5 ReturnY ∗ = {arg max
y∈Y

hy(z∗)} ∪ {y|hy(z∗) ≥ 0, y ∈ Y}, wherez
∗ = (dH(X∗, M1),

dH(X∗, M2), · · · , dH(X∗, Mk)).

data item inΓ, i.e. Xu, is an unlabeled multi-instance bag instead of a single instance, we employ
Hausdorff distance [5] to measure the distance. In detail, given two bagsA = {a1,a2, · · · ,anA

}
andB = {b1, b2, · · · , bnB

}, the Hausdorff distance betweenA andB is defined as

dH(A,B) = max{max
a∈A

min
b∈B

‖a − b‖,max
b∈B

min
a∈A

‖b − a‖}

where‖a − b‖ measures the distance between the instancesa and b, which takes the form of
Euclidean distance here.

After the clustering process, we divide the data setΓ into k partitions whose medoids areMt (t =
1, 2, · · · , k), respectively. With the help of these medoids, we transformthe original multi-instance
exampleXu into ak-dimensional numerical vectorzu, where theith (i = 1, 2, · · · , k) component
of zu is the distance betweenXu andMi, that is,dH(Xu,Mi). In other words,zui encodes some
structure information of the data, that is, the relationship betweenXu and theith partition ofΓ.
This process reassembles theconstructive clusteringprocess used by [11] in transforming multi-
instance examples into single-instance examples except that in [11] the clustering is executed at the
instance level while here we execute it at the bag level. Thus, the original MIML examples(Xu, Yu)
(u = 1, 2, · · · ,m) have been transformed into multi-label examples(zu, Yu) (u = 1, 2, · · · ,m),
which corresponds to the Step 3 of MIML SVM . Note that this transformation may lose information,
nevertheless the performance of MIML SVM is still good. This suggests that MIML is a powerful
framework which has captured more original information than other learning frameworks.

Then, from the data set a multi-label learning functionfMLL can be learned, which can accom-
plish the desired MIML function becausefMIML(X∗) = fMLL(z∗). Here we use MLSVM [1] to
implementfMLL.

Concretely, MLSVM decomposes the multi-label learning problem into multipleindependent binary
classification problems (one per class), where each exampleassociated with the label setY is re-
garded as a positive example when building SVM for any classy ∈ Y , while regarded as a negative
example when building SVM for any classy /∈ Y , as shown in the Step 4 of MIML SVM . In making
predictions, theT-Criterion [1] is used, which actually corresponds to the Step 5 of the MIML SVM
algorithm. That is, the test example is labeled by all the class labels with positive SVM scores, ex-
cept that when all the SVM scores are negative, the test example is labeled by the classlabel which
is with thetop (least negative) score.

4 Application to Scene Classification

The data set consists of 2,000 natural scene images belonging to the classesdesert, mountains, sea,
sunset, andtrees, as shown in Table 3. Some images were from the COREL image collection while
some were collected from the Internet. Over 22% images belong to multiple classes simultaneously.



Table 3: The image data set (d: desert, m: mountains, s: sea, su: sunset, t: trees)

label # images label # images label # images label # images

d 340 d + m 19 m + su 19 d + m+ su 1
m 268 d + s 5 m + t 106 d + su+ t 3
s 341 d + su 21 s + su 172 m+ s + t 6
su 216 d + t 20 s + t 14 m+ su+ t 1
t 378 m + s 38 su+ t 28 s+ su+ t 4

4.1 Comparison with Multi-Label Learning Algorithms

Since the scene classification task has been successfully tackled by multi-label learning algo-
rithms [1], we compare the MIML algorithms with established multi-label learning algorithms AD-
ABOOST.MH [8] and MLSVM [1]. The former is the core of a successful multi-label learning system
BOOSTEXTER [8], while the latter has achieved excellent performance inscene classification [1].

For MIML BOOST and MIML SVM , each image is represented as a bag of nine instances generated
by the SBN method [7]. Here each instance actually corresponds to an image patch, and better
performance can be expected with better image patch generation method. For ADABOOST.MH and
MLSVM , each image is represented as a feature vector obtained by concatenating the instances of
M IML BOOST or MIML SVM . Gaussian kernel LIBSVM [2] is used to implement MLSVM , where
thecross-trainingstrategy is used to build the classifiers while theT-Criterion is used to label the
images [1]. The MIML SVM algorithm is also realized with a Gaussian kernel, while theparameter
k is set to be 20% of the number of training images.4 Note that the instance-level predictor used in
Step 3a of MIML BOOST is also a Gaussian kernel LIBSVM (with default parameters).

Since ADABOOST.MH and MLSVM make multi-label predictions, here the performance of the
compared algorithms are evaluated according to five multi-label evaluation metrics, as shown in
Tables 4 to 7, where ‘↓’ indicates ‘the smaller the better’ while ‘↑’ indicates ‘the bigger the better’.
Details of these evaluation metrics can be found in [8]. Tenfold cross-validation is performed and
‘mean± std’ is presented in the tables, where the best performance achieved by each algorithm
is bolded. Note that since in each boosting round MIML BOOST performs more operations than
ADABOOST.MH does, for fair comparison, the boosting rounds used by ADABOOST.MH are set to
ten times of that used by MIML BOOSTsuch that the time cost of them are comparable.

Table 4:The performance of MIML BOOSTwith different boosting rounds

boosting evaluation metric

rounds hamm. loss ↓ one-error ↓ coverage ↓ rank. loss ↓ ave. prec. ↑

5 .202±.011 .373±.045 1.026±.093 .208±.028 .764±.027
10 .197±.010 .362±.040 1.013±.109 .191±.027 .770±.026
15 .195±.009 .361±.034 1.004±.101 .186±.025 .772±.023
20 .193±.008 .355±.037 .996±.102 .183±.025 .775±.024
25 .189±.009 .351±.039 .989±.103 .181±.026 .777±.025

Table 5:The performance of ADABOOST.MH with different boosting rounds

boosting evaluation metric

rounds hamm. loss ↓ one-error ↓ coverage ↓ rank. loss ↓ ave. prec. ↑

50 .228±.013 .473±.031 1.299±.099 .263±.022 .695±.022
100 .234±.019 .465±.042 1.292±.138 .259±.030 .698±.033
150 .233±.020 .465±.053 1.279±.140 .255±.032 .700±.033
200 .232±.012 .453±.031 1.269±.107 .253±.022 .706±.020
250 .231±.018 .451±.046 1.258±.137 .250±.031 .708±.030

4In preliminary experiments, several percentage values have been tested ranging from 20% to 100% with an
interval of 20%. The results show that these values do not significantly affect the performance of MIML SVM .



Table 6:The performance of MIML SVM with differentγ used in Gaussian kernel

Gaussian evaluation metric

kernel hamm. loss ↓ one-error ↓ coverage ↓ rank. loss ↓ ave. prec. ↑

γ = .1 .181±.017 .332±.036 1.024±.089 .187±.018 .780±.021
γ = .2 .180±.017 .327±.033 1.022±.085 .187±.018 .783±.020
γ = .3 .188±.016 .344±.032 1.065±.094 .196±.020 .772±.020
γ = .4 .193±.014 .358±.030 1.080±.099 .202±.022 .764±.021
γ = .5 .196±.014 .370±.033 1.109±.101 .209±.023 .757±.023

Table 7:The performance of MLSVM with differentγ used in Gaussian kernel

Gaussian evaluation metric

kernel hamm. loss ↓ one-error ↓ coverage ↓ rank. loss ↓ ave. prec. ↑

γ = 1 .200±.014 .379±.032 1.125±.115 .214±.020 .751±.022
γ = 2 .196±.013 .368±.032 1.115±.122 .211±.023 .756±.022
γ = 3 .195±.015 .370±.034 1.129±.113 .214±.022 .754±.023
γ = 4 .196±.016 .372±.034 1.151±.122 .220±.024 .751±.023
γ = 5 .202±.015 .388±.032 1.181±.128 .229±.026 .741±.023

Comparing Tables 4 to 7 we can find that both MIML BOOSTand MIML SVM are apparently better
than ADABOOST.MH and MLSVM . Impressively, pair-wiset-tests with .05 significance level reveal
that the worst performance of MIML BOOST(with 5 boosting rounds) is even significantly better than
the best performance of ADABOOST.MH (with 250 boosting rounds) on all the evaluation metrics,
and is significantly better than the best performance of MLSVM (with γ = 2) in terms ofcoverage
while comparable on the remaining metrics; the worse performance of MIML SVM (with γ = .5)
is even comparable to the best performance of MLSVM and is significantly better than the best
performance of ADABOOST.MH on all the evaluation metrics. These observations confirm that for-
malizing the scene classification task as a MIML problem to solve by MIML BOOSTor MIML SVM is
better than formalizing it as a multi-label learning problem to solve by ADABOOST.MH or MLSVM .

4.2 Comparison with Multi-Instance Learning Algorithms

Since the scene classification task has been successfully tackled by multi-instance learning algo-
rithms [7], we compare the MIML algorithms with established multi-instance learning algorithms
DIVERSE DENSITY [7] and EM-DD [10]. The former is one of the most influential multi-instance
learning algorithm and has achieved excellent performancein scene classification [7], while the
latter has achieved excellent performance on multi-instance benchmark tests [10].

Here all the compared algorithms use the same input representation. That is, each image is repre-
sented as a bag of nine instances generated by the SBN method [7]. The parameters of DIVERSE
DENSITY and EM-DD are set according to the settings that resulted in the best performance [7, 10].
The MIML BOOSTand MIML SVM algorithms are implemented as described in Section 4.1, with 25
boosting rounds for MIML BOOSTwhile γ = .2 for M IML SVM .

Since DIVERSE DENSITY and EM-DD make single-label predictions, here the performance of the
compared algorithms are evaluated according topredictive accuracy, i.e. classification accuracy
on test set. Note that for MIML BOOST and MIML SVM , the top ranked classis regarded as the
single-label prediction. Tenfold cross-validation is performed and ‘mean± std’ is presented in
Table 8, where the best performance on each image class is bolded. Note that besides the predictive
accuracies on each class, the overall accuracy is also presented, which is denoted by ‘overall’.

We can find from Table 8 that MIML BOOSTachieves the best performance on image classesdesert
andtreeswhile MIML SVM achieves the best performance on the remaining image classes. Overall,
M IML SVM achieves the best performance. Pair-wiset-tests with .05 significance level reveal that
the overall performance of MIML SVM is comparable to that of MIML BOOST, both are significantly
better than that of DIVERSE DENSITY and EM-DD. These observations confirm that formalizing the
scene classification task as a MIML problem to solve by MIML BOOSTor MIML SVM is better than
formalizing it as a multi-instance learning problem to solve by DIVERSE DENSITY or EM-DD.



Table 8:Compare predictive accuracy of MIML BOOST, M IML SVM , DIVERSE DENSITY and EM-DD

Image Compared algorithms

class MIML BOOST M IML SVM DIVERSE DENSITY EM-DD

desert .869±.014 .868±.026 .768±.037 .751±.047
mountains .791±.024 .820±.022 .721±.030 .717±.036
sea .729±.026 .730±.030 .587±.038 .639±.063
sunset .864±.033 .883±.023 .841±.036 .815±.063
trees .801±.015 .798±.017 .781±.028 .632±.060

overall .811±.022 .820±.024 .739±.034 .711±.054

5 Conclusion

In this paper, we formalizemulti-instance multi-label learningwhere an example is associated with
multiple instances and multiple labels simultaneously. Although there were some works investi-
gating the ambiguity of alternative input descriptions or alternative output descriptions associated
with an object, this is the first work studying both these ambiguities simultaneously. We show that
an MIML problem can be solved by identifying its equivalence in the traditional supervised learn-
ing framework, using multi-instance learning or multi-label learning as the bridge. The proposed
algorithms, MIML BOOST and MIML SVM , have achieved good performance in the application to
scene classification. An interesting future issue is to develop MIML versions of other popular ma-
chine learning algorithms. Moreover, it remains an open problem that whether MIML can be tackled
directly, possibly by exploiting the connections between the instances and the labels. It is also in-
teresting to discover the relationship between the instances and labels. By unravelling the mixed
connections, maybe we can get deeper understanding of ambiguity.
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