
Multi-Instance Tree Learning

Hendrik Blockeel hendrik.blockeel@cs.kuleuven.be

Katholieke Universiteit Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven, Belgium

David Page page@biostat.wisc.edu

Dept. of Biostatistics and Medical Informatics and Dept. of Computer Sciences,
University of Wisconsin, Madison, WI, USA

Ashwin Srinivasan ashwin.srinivasan@in.ibm.com

IBM India Research Laboratory, Block 1, Indian Institute of Technology, Hauz Khas, New Delhi, 110 016, India.

Abstract

We introduce a novel algorithm for decision
tree learning in the multi-instance setting as
originally defined by Dietterich et al. It dif-
fers from existing multi-instance tree learners
in a few crucial, well-motivated details. Ex-
periments on synthetic and real-life datasets
confirm the beneficial effect of these differ-
ences and show that the resulting system out-
performs the existing multi-instance decision
tree learners.

1. Introduction

In standard supervised concept learning, the train-
ing data set consists of a number of examples, each
of which is classified as belonging to the concept
(“positive”) or not (“negative”). The so-called multi-
instance learning setting differs from this, in that the
data set consists of bags of instances, and it is indi-
cated for each bag whether it contains at least one
positive instance, or not. The classification of indi-
vidual instances is unknown. Dietterich, Lathrop and
Lozano-Pérez (1997) motivate the setting with sev-
eral applications, including the so-called Musk prob-
lem: Molecules are classified into musk and non-musk
molecules, and it is known that there exists some spe-
cific spatial structure that causes the musk property,
but each molecule has multiple possible spatial config-
urations and it is not known which of these contains
the structure that causes the musk property.

In this paper, we tackle the task of upgrading deci-

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

sion tree learning to the multi-instance setting. While
several such attempts have been made before, they ei-
ther work in a setting that is slightly different from
the multi-instance setting originally proposed by Diet-
terich et al, or ignore certain difficulties that arise in
this setting. We present an algorithm that works in
the original setting and is very close to the standard
tree learning algorithms. We motivate our algorithm
with theoretical arguments and study its performance
experimentally.

2. The multi-instance learning setting

As several researchers have studied relaxed versions of
the multi-instance setting, it is useful to precisely state
the learning problem as originally defined:

Given:

• a set of bags Bi, i = 1, . . . , N , their classifica-
tion c(Bi) ∈ {0, 1}, and the instances eij (j =
1, . . . , ni) belonging to each bag

• the existence of an unknown function f that clas-
sifies individual instances as 1 or 0, and for which
it holds that c(Bi) = 1 if and only if ∃eij ∈ Bi :
f(eij) = 1 (multi-instance constraint, MIC)

Find: the function f .

The task is to find the instance classifier f , not the bag
classifier c. The latter follows, of course, from f ; but if
the learned hypothesis f̂ only approximates f , it is not
guaranteed that the best approximation f̂ , together
with the definition ĉ(Bi) = 1 ⇔ ∃eij ∈ Bi : f̂(eij) = 1,
gives us the best approximation ĉ. For instance, if we
also have information on the probability of a prediction
f̂(eij) being correct, using a noisy or will give us a
better apprimation of ĉ than using the MIC.

Multi-Instance Tree Learning

Not all research on multi-instance learning takes the
viewpoint that f should be approximated. Xu (2003)
presents an excellent overview of approaches to multi-
instance learning and points out that many consider
a relaxed version of multi-instance learning, where the
MIC is not assumed to be true, and the goal is to
approximate c instead of f . These methods usually do
not yield any approximation of f , and hence cannot be
used to reliably classify single instances or gain insight
into f (for instance, in the Musk setting, to detect the
substructure that gives a molecule the Musk property).

Before reviewing prior work on multi-instance tree
learning, we briefly add further multi-instance termi-
nology we need for this discussion. We call a bag pos-
itive or negative according to its given classification.
As the data set does not contain the true classification
of all individual instances, we call an instance “posi-
tive” (between quotes) if it is part of a positive bag.
We call a “positive” example a true positive, if its true
class is positive; and a false positive, if its true class
is negative. All instances in negative bags are called
negative.

We next turn to the specific case of decision tree learn-
ing. We assume the reader is familiar with standard
greedy tree learning algorithms, which recursively par-
tition a data set by choosing split variables and, for
continuous variables, split values. In particular, we
assume the reader is familiar with the notion of an
impure node and standard measures of the impurity
of a node, such as entropy or Gini index. We further
assume the reader is familiar with the gain functions
based on these measures, such as information gain
(Quinlan, 1986) or Gini gain (Breiman et al., 1984),
respectively, and their use to choose splits.

3. Existing approaches to decision tree
learning in a multi-instance setting

Dietterich et al. showed experimentally that the
“strawman” approach of ignoring the MIC when train-
ing (assigning to each instance its bag’s class and ap-
plying a standard tree learner) does not work well.
This is not surprising: many negative instances are
assigned a positive class in this way, so it introduces a
lot of (one-sided) class noise.

Blockeel and De Raedt (1998) pointed out that the
multi-instance learning is a special case of inductive
logic programming (ILP). ILP systems typically use a
declarative language bias that allows the user to (syn-
tactically or otherwise) constrain the kind of hypothe-
ses it can return. Blockeel and De Raedt showed how
the inductive logic programming system Tilde, a de-

D

+ −

C

−

+

A

+

−−

c(X)

−

+

+ −

B

C+ D

−−

a(X)
contains(B,X)

c(X)

d(X)

d(X)

b(X)

Figure 1. A propositional and first order tree. The propo-
sitional tree represents A∧B ∨C ∧D. The first order tree
does not represent ∃x ∈ B : (a(x) ∧ b(x) ∨ c(x) ∧ d(x)),
although that is a valid multi-instance concept. Instead, it
expresses (∃x ∈ B : a(x)∧ b(x))∨ (∃x : a(x)∧ c(x)∧d(x))∨
(� ∃x ∈ B : a(x) ∧ ∃x ∈ B : c(x) ∧ d(x)), a concept outside
the space of multi-instance concepts.

cision tree learner, can be given a bias that makes it
learn multi-instance trees. But the bias they propose
does not include all multi-instance concepts, nor only
those. A detailed analysis requires strong familiarity
with Tilde, and is beyond the scope of this paper;
for illustration, Figure 1 shows a tree that can be gen-
erated with Blockeel and De Raedt’s bias and does
not represent a valid multi-instance concept. Using
other biases, it is possible to define a strict super-
set of multi-instance concepts, underconstraining the
learning problem, or to define the correct set by using
Tilde’s lookahead feature and forcing it to build lin-
ear trees, which essentially reduces it to a rule learning
system. Neither is desirable from the point of view of
studying multi-instance tree learning.

Ruffo’s (2000) Relic works in the relaxed setting,
learning concepts such as “contains at least three in-
stances with property P”.

Chevaleyre and Zucker (2001) present a general ap-
proach to upgrading learners to the multi-instance set-
ting, apply it to Ripper (Cohen, 1995) with good re-
sults, and briefly discuss how decision tree learners can
be upgraded in a similar way. Their main point is that
changing the heuristic for choosing the best split in a
node is sufficient. Instead of using a heuristic based
on the class distribution of instances (which is highly
noisy), they propose to use the class distribution of the
bags that have at least one instance in the set under
consideration. In addition, in the case of decision tree
induction, they state that once an instance is predicted
positive by the tree, all its co-instances (instances in
the same bag) should be removed from the data set.
They have implemented this method in the ID3-MI
system, but do not present any empirical evaluation.

Multi-Instance Tree Learning

X1

X2X2

NEG POS

POS

POS

NEG

(a) (b)

Figure 2. Depth-first versus best-first node expansion

4. MIC in Decision Tree Learning

Decision tree learning can be adapted to the multiple
instance case in two different ways. The first kind of
trees handles bags directly. Such a tree takes a bag as
input, the tests in its nodes are defined on bags (typi-
cally of the form “does the bag contain an instance for
which C holds”, with C some condition), and a whole
bag is thus eventually assigned to a leaf and classi-
fied as positive or negative. The second kind are just
standard trees, which take a single instance as input,
contain the standard attribute value tests, and eventu-
ally classify the instance as positive or negative. The
multi-instance aspect is only visible in the use of the
tree to make predictions: each instance of a bag gets
a separate classification by the tree, and the bag is
classified as positive if at least one if its instances is.

The first approach is the one that has been taken by
Tilde, and lead to the problems mentioned above. The
second approach avoids these problems and has the
advantage that a standard decision tree is obtained.
However, this approach causes new difficulties for the
learning algorithm.

A problem with permitting bags to be divided at train-
ing time is that such division removes the ability to
score a split locally. In ordinary decision tree learning,
it can be shown that splitting an impure node on a
variable leads to gain (a decrease in the entropy, Gini
index, or other common measure of impurity) at that
node if and only if it leads to gain for the entire tree.
In fact, a stronger result can be shown: for any given
node, a larger local gain (gain at that node) yields a
larger global gain (gain for the tree). Hence choosing
the best split at a node requires computing only the
local gain for each split, as done by existing greedy
tree learners, rather than computing the global gain
for each split. This property of locality is lost when
we move to the multiple instance setting.

As an illustration, consider the decision tree in Fig-

ure 2a. In ordinary tree learning, if the positive node in
Figure 2a is pure, and the negative node is maximally
impure (consists of equal numbers of positive and neg-
ative instances), then splitting the negative node on
another variable, say x1, where the children of x1 are
nearly pure, will have high local gain and high global
gain. The tree resulting from this split is shown in
Figure 2b. In the multiple instance setting, when we
say the positive node in Figure 2a is pure, we mean it
contains instances from positive bags only. When we
say the negative node is maximally impure, we mean
it has equal numbers of instances from positive and
negative bags. Then splitting the negative node on
x1, where the children of x1 are nearly pure, again
has high local gain but it may have zero or negative
global gain. In other words, the resulting tree in Fig-
ure 2b may have higher entropy than the original tree
in Figure 2a. To see this, suppose that in Figure 2a
the positive instances in the negative node all belong
to bags that also have instances in the positive node.
Then the split on x1 has not decreased the entropy
or Gini index of the tree; indeed, if the positive child
of x1 contains a negative instance, then the split has
increased entropy and Gini, and in fact decreased ac-
curacy. More generally, for any node, the split with
the best local gain is not the split with the best global
gain.

We have seen that the loss of locality means we may
need to score splits differently. One option for a mul-
tiple instance tree learner might be to simply replace
the local scoring function with a global one, such as
the difference in the entropies of the old tree and the
new tree. But the loss of locality has another impli-
cation. Locality implies that splits at different nodes
are independent. Hence the order in which nodes are
expanded in ordinary decision tree learning is unim-
portant; we may consider them in any order. In the
multiple instance setting, the value of a split at one
node can be changed by first performing a split at an-
other node, if the two nodes have instances from com-
mon bags. The order in which nodes are expanded is
critical in this setting. Therefore, simply replacing the
local scoring function of a greedy tree learner with a
global one is likely to be insufficient. We would like to
somehow generate as soon as possible the positive leaf
nodes about which we can be most confident, to set
the stage for scoring other splits throughout the tree.
More generally, we argue in the following that deal-
ing with the loss of locality motivates several design
principles for a multiple instance tree learner:

1. the tree learner should focus on finding pure pos-
itive subsets, not on negative ones

Multi-Instance Tree Learning

2. it should try to find pure positive subsets that are
as large as possible

3. it should try to find the largest pure positive sub-
sets first

4. once it has discovered a positive leaf, it should
disregard instances in other parts of the tree that
belong to a bag that contains an instance covered
by the positive leaf

5. it makes sense to give higher weights to instances
from smaller bags

For ease of argumentation, we assume the data to be
noise-free.

4.1. Focus on the positives.

A first important observation is that when building the
tree, it makes sense to try to form pure positive leaves,
but it does not make sense to try to form pure negative
leaves. Indeed, the MIC implies that a truly positive
instance can only occur in positive bags. Because a
leaf expresses a sufficient condition for an instance to
be positive, the bag-classes of all the instances in that
leaf must be positive.

Negative leaves are assumed to cover only negative in-
stances, which may have both positive and negative
bag-classes. Hence, a set with both “positive” and
negative instances may make a perfectly valid negative
leaf (all the “positives” are then false positives). Try-
ing to obtain pure negative leaves implies that the tree
tries to separate false positives from negatives, which
we know cannot be done using the information in the
instance description. (The reason for an instance be-
ing a false positive lies in some other instance in the
same bag.)

The commonly used heuristics for choosing the best
test in a node (information gain (ratio), Gini index)
are symmetric with respect to the classes, and there-
fore try equally hard to obtain pure negative subsets
as pure positive ones. In the multi-instance setting, we
want an asymmetric heuristic that just aims at creat-
ing pure positive subsets.

4.2. Find large pure-positive leaves

While covering only positive instances is a necessary
condition for a positive leaf to be correct (i.e., cover
only truly positives), it is not a sufficient one: some
false positives may be covered as well. But we have no
way of telling this. Any reason to believe that a node is
a correct positive leaf, necessarily stems from the fact
that it contains only “positive” training instances.

However, the more “positives” are covered by the pure
positive leaf, the more reason we have to believe that
it is correct. Indeed, if a node is not a correct positive
leaf, then the more instances it covers, the higher the
probability that a negative instance slips in, rebutting
the hypothesis that it is a correct positive leaf.

We conclude that our heuristic for choosing a test in a
node should reward the creation of subsets that have a
high chance of leading not just to a pure-positive sub-
set (as stated previously), but to a large pure-positive
subset.

4.3. Identifying a sufficient condition allows us
to remove some class noise

Now assume that we have identified a positive leaf.
This leaf not only explains the class of the instances
that it covers, according to the MIC it also explains
away the bag-class of all the other instances in the bags
to which the covered instances belong.

Therefore, a multi-instance tree learner, once it has
identified a positive leaf, should from that point on-
wards disregard other instances in the bags that con-
tain an instance in the positive leaf. In our algorithmic
description, we will say that these other instances are
deactivated. Note that this deactivation effectively re-
moves false positives from the dataset, which will make
it more feasible to identify correct sufficient conditions
for the remainder of the data.

By introducing this deactivation procedure, the order
in which nodes are split becomes important. When
the possible splits of a node are evaluated, the results
may be different depending on whether this evaluation
is before or after deactivation of certain instances, in
other words, whether it happens before or after cre-
ation of a certain leaf.

Deactivation can have a detrimental effect if an in-
correct pure positive leaf has been found. It is there-
fore important that the leaves that are most likely to
identify a correct sufficient condition (i.e., the largest
pure-positive leaves) are found first. They are most
likely to lead to deactivation of many false positives
and increase the chances of correctly constructing the
remainder of the tree.

We already know that the heuristic should reward
splits that bring the tree close to the identification of a
large pure-positive subset. We can now add that when
several nodes still need to be split, we should first split
the node that is most likely to lead to the largest pure-
positive leaf. In other words, our heuristic should not
only be used to choose the best split of a given node,
but also to choose which node to split next.

Multi-Instance Tree Learning

Q := {root node};
while Q is not empty

remove first node N from Q
if N is a pure positive node
then

make N a positive leaf
deactivate all instances of all bags that are

represented in N
else if N contains no positives
then make N a negative leaf
else

find the best test t for N
split N according to t
add the children of N to Q

sort Q

Figure 3. A multi-instance tree learning algorithm

Clearly, the commonly used depth-first order in which
nodes are split is no longer sufficient. In the multi-
instance case, nodes should be split in a best-first or-
der.

4.4. Some positives are more likely to be noisy
than others

We know that a positive bag of n instances contains
at least one true positive. Hence, the probability of
a single, randomly chosen, “positive” instance being
truly positive is at least 1/n, with n the size of its bag.
It makes sense, then, to give instances from small bags
a higher weight than instances from large bags.

4.5. An Algorithm

Figure 3 presents an algorithm, devised according to
the above reasoning. The algorithm is rather rudimen-
tary: it has no non-trivial stopping criterion and no
pruning mechanism. For our current purposes, how-
ever, it turns out to be sufficient: the conclusions we
will draw further in the paper would only be reinforced
by a more sophisticated implementation.

The algorithm can be seen as a variant of ID3, with
as most important change that it expands the nodes
of the tree in a best-first, instead of depth-first, order.
It keeps an ordered queue Q of nodes that may still
need to be split, and proceeds by repeatedly doing the
following: if the first node in the tree contains only
“positives”, make it a positive leaf, and deactivate all
instances that belong to a bag of which an instance
is covered by this leaf; otherwise, find the best split
for this node, perform the split, creating children for
this node; add those children to Q, keeping Q sorted.

Note that after creation of a leaf node, the evaluation
of any nodes may have changed due to deactivation of
instances; hence Q has to be reordered.

It should be kept in mind that at each point, only in-
stances are considered that have not been deactivated
yet. E.g., the test “N contains no positives” used to
decide whether we create a negative leaf, returns true
also if N originally contained “positive” instances but
all of them have been deactivated by now.

The behaviour of the algorithm is influenced by several
parameters, which we need to discuss in some detail.

Sorting-heuristic determines the order in which
nodes will be expanded. Nodes more likely to lead
to large pure-positive leaves should be expanded first;
the question is then how we trade off the absolute
and relative number of positive instances in a node
to be expanded. We consider three heuristics: unbi-
ased proportion, laplace estimate, tozero estimate. Let
p be the number of “positives” and t the total number
of instances covered by the node. Unbiased propor-
tion is simply p/t, which represents no trade-off: a
small set with proportion 1 is always preferred over a
larger set with proportion 0.9. The Laplace estimate
is often used to counter this effect: it is defined as
(p + 1)/(t + 2). It is an interpolation between p/t and
an a priori estimate of 0.5, getting closer to p/t as t
grows. However, given the asymmetry in our prob-
lem, we may prefer an interpolation between p/t and
0. The tozero estimate does exactly that: it is defined
as p/(t + k), with k a parameter that influences how
strongly the estimate is pulled towards 0. Like the
Laplace estimate, it is a special case of the m-estimate
(Cestnik, 1990). We call all these estimates biased es-
timates for the proportion of positives (bepp’s).

The queue can in principle also be ordered in such a
way that the standard depth-first order is simulated:
it is sufficient to always add children to the front of
the queue. This is the effect of setting the node-
expansion parameter to depthfirst, instead of its de-
fault bestfirst. The sorting heuristics only have effect
in combination with bestfirst. The depthfirst order will
serve as a reference point.

Splitting-heuristic determines the heuristic that is
used to determine the best test for splitting a node.
As mentioned, this heuristic should be asymmetric.

We consider five heuristics: max-bepp, ss-bepp, gini,
acc-bags, bag-entropy. Max-bepp defines the quality of
the split as the maximal bepp among its children; ss-
bepp computes the sum of squared bepps and as such
tries to obtain many children with high bepp; gini is
the standard Gini index as used by CART (Breiman

Multi-Instance Tree Learning

et al., 1984); acc-bags defines the quality as the predic-
tive accuracy of the tree created by adding this split,
when predicting bag classes according to the MIC; bag-
entropy is the class entropy of the bags having repre-
sentatives in the data set, counting each bag only once
(the heuristic proposed by Chevaleyre and Zucker).

Note that ss-bepp can be seen as a one-sided Gini in-
dex; it rewards the creation of close-to-pure-positive
subsets in exactly the same way as Gini rewards the
creation of close-to-pure subsets.

Pos-threshold is the percentage of positives that a
leaf should contain before it makes a positive predic-
tion. This is only relevant if it turns out to be impossi-
ble to obtain pure leaves (i.e., if the node being split is
non-pure but no acceptable best test t can be found).
In single-instance tree learning, the expected predic-
tive accuracy is maximized if this threshold is 0.5 (i.e.,
the majority class is predicted). In the multi-instance
case, one can argue that any leaf that is not 100% pos-
itive cannot possibly be truly positive (in a noise-free
setting), but can easily be negative (if all “positive”
instances are false positives). It would therefore make
sense to increase this threshold. It is not clear, how-
ever, how to compute the threshold’s optimal value.

Instance-weights determines whether instances are
weighted according to their bag size. As explained, in-
stances from small bags can be assumed to carry more
information than instances from large bags, hence we
may want to give them a higher weight. We consider
two options: not using any weights, and inverse bag
size (IBS) weighting, where instances get a weight 1/n
with n the size of the bag they belong to.

The algorithmic description in Figure 3 together with
the settings for these parameters uniquely determines
the algorithm’s behaviour, which should render our
experiments reproducible.

4.6. Algorithm complexity

Decision tree learners generally run in time O(ANd)
with A the number of attributes, N the number of
instances, and d the depth of the tree (Quinlan, 1986).

The multi-instance tree learner has slightly higher
computational complexity. The new heuristics are not
more complex to compute than the usual ones. Deac-
tivation of instances can be done in time linear in the
number of instances covered by the leaf, so this affects
the complexity only with a constant factor. After each
deactivation, nodes in the queue must be re-evaluated
before sorting, which involves recounting the (positive)
instances they cover (now disregarding newly deacti-
vated ones). This is at most linear in N . Sorting the

queue takes time q log q with q the length of the queue.

As re-evaluation and re-sorting need to be done for
each positive leaf, a term O(L(N + q log q)), with L
the number of positive leaves, is introduced in the
complexity formula. This gives a total complexity of
O(ANd+L(N + q log q)). The second term may dom-
inate the first one when the number of nodes grows
linearly in N , behaviour not uncommon for decision
trees when no simple target concept exists. In that
case, both L and q may become linear in N , and we
get a complexity of O(N2 log N). But when the tree
size remains constrained, behaviour linear in the num-
ber of examples can be expected, so it performs as
efficiently as standard tree learners, up to a constant
factor.

5. Experiments

We have implemented the algorithm as described be-
fore (with parameters as mentioned) in a system called
MITI (multi-instance tree inducer). We show in this
section that MITI outperforms Tilde on multiple in-
stance datasets.

We have conducted experiments on synthetic datasets
as well as the Musk and Mutagenesis (Srinivasan et al.,
1996) benchmarks. The synthetic datasets allow us to
control certain properties of the datasets, to gain in-
sight into their effect on the learner’s behaviour. The
experiments with real-life datasets allow us to com-
pare the performance of the system with that of other
systems.

Our synthetic dataset generator uses the following pa-
rameters: A, the number of (non-class) attributes; V ,
a set of values each attribute can take; B, the bag
size; N , the number of bags; T , the target hypothesis.
The A non-class attribute values in a single instance
are generated independently and randomly from a uni-
form distribution. B such instances are independently
generated to form a single bag. The class of the bag
is then determined as positive if at least one of its
instances is positive according to T . N such bags are
generated independently. The experimental procedure
is always as follows: a training set is generated with
parameters A, V,B, T,N ; a tree is learned from this
training set; the tree is evaluated on a test set of 1000
cases that is independently generated from the train-
ing set but with the same parameters.

5.1. Effect of Design Choices

We experimentally compare the behaviour of the sys-
tem when using dept-first node expansion, as ID3
does, and best-first expansion, expanding the node

Multi-Instance Tree Learning

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900

A
cc

ur
ac

y
on

 te
st

 s
et

Number of bags

BF max_ppos
BF ss_ppos

BF gini_tuples
BF acc_bags

BF bag-entropy
DF max_ppos

DF ss_ppos
DF gini_tuples
DF acc_bags

DF bag-entropy

Figure 4. Depth-first versus best-first node expansion

that seems closest to a large pure positive leaf first.

Figure 4 shows learning curves for one particular type
of dataset, with A = 10, B = 10, |V | = 3, T = “A1 =
a∧(A2 = a∧A3 = a∨A4 = a∧A5 = a)′′. Test accuracy
is shown as a function of N , which varies from 100 to
900. The depth-first and best-first strategies are com-
pared for five splitting heuristics (max-bepp, ss-bepp,
gini, acc-bags, bag-entropy). The pos-threshold pa-
rameter is 0.5. Test accuracies reported are always the
average of five runs with different datasets generated
randomly with the parameters just mentioned. The
bepp used for these results is tozero(5), but different
bepp’s yield essentially the same picture.

The curves clearly show that the best-first strategy is
crucial to the success of the method: its accuracy con-
verges to 1 quite fast, whereas the depth-first strat-
egy consistently performs much worse and does not
improve much with a growing number of bags. The
difference between the different splitting heuristics is
negligible compared to the effect of the node expan-
sion strategy, with the possible exception of the bag-
entropy heuristic, which performs worse.

It is also interesting to study the behaviour of MITI on
the Musk benchmark datasets. First, the number of in-
stances per bag varies greatly, which makes it an inter-
esting set to study the effect of IBS weighting. Second,
our trees can represent disjunctive concepts, whereas
the target concept is expected to be conjunctive. As
the Musk data sets contain few examples (92, 102),
and, especially in the case of Musk 2, many instances
per example, there is a concern that the weaker bias of
our method yields worse results. However, there is a
simple way to add a bias towards conjunctive concepts
to the tree learner. If the target concept is conjunc-
tive, all truly positive instances should be in the same
leaf. If there are P positive examples, there must be

p 5 20 100 1000 APR
Musk 1 35 30 22 16 7-18
Musk 1 IBS 20 20 16 11 7-18
Musk 2 37 36 33 24 11-34
Musk 2 IBS 27 25 19 9 11-34

Table 1. Results of MITI, with and without IBS weighting,
and for increasing p, on the Musk datasets. The numbers
indicate the number of incorrect predictions in a tenfold
cross-validation. APR gives the range of errors obtained
by Dietterich et al.’s APR approaches.

at least P truly positive instances, hence any subset
with fewer than P “positive” instances is probably not
a good one, even if it is 100% pure. The heuristic that
trades off the relative and absolute number of “posi-
tives” should give more weight to the absolute number.
This can be achieved by using the tozero(p) heuristic
with a large p.

Table 1 illustrates the effects of (a) instance weighting
and (b) the p parameter in the tozero(p) heuristic.
The table clearly shows that increasing p gives a suffi-
ciently strong bias to the decision tree learner so that
it performs comparably to Dietterich et al.’s APR ap-
proaches, which are also biased towards a conjunctive
concept. Manual inspection of the learned trees con-
firmed that the hypothesis found tends to have sev-
eral small disjuncts for small p, and represents a single
conjunctive concept for sufficiently large p. The table
further confirms that at least in these benchmark data
sets, with bags of highly variable size, IBS instance
weighting has a positive effect on performance.

5.2. Comparison to Other Tree Learners

We compare MITI to Tilde and to ID3-MI’, a version
of MITI tuned to resemble Chevaleyre and Zucker’s
ID3-MI (by making it use depthfirst node expansion
and ID3-MI’s bag-entropy heuristic).

Comparison on synthetic datasets. For six dif-
ferent concepts, Tilde, MITI and ID3-MI’ were run on
the same sequence of training sets of increasing size
(100 to 3000; for the last concept 100 to 20000 be-
cause of a strongly skewed class distribution). Table 2
reports the lowest error obtained on a test set and the
training set size for which it was obtained. The table
shows that MITI typically finds much better theories,
using smaller training sets. While the table only shows
test set errors, also training set errors for Tilde did not
reach 0 except in the first two cases.

Comparison on real-life datasets. Table 3 shows
the accuracies obtained with a tenfold crossvalidation

Multi-Instance Tree Learning

Concept Tilde MITI ID3-MI’
a ∨ b 0 / 100 0 / 2k 0 / 500
abc 0 / 200 0 / 100 0 / 200
ab ∨ cd 128 / 2k 0 / 300 173 / 2k
abc ∨ ade 22 / 3k 0 / 200 198 / 200
ab ∨ cd ∨ ef 152 / 2k 3 / 3k 153 / 2k
a ∨ bc ∨ bde ∨ fg 15 / 10k 3 / 10k 29 / 100

Table 2. Lowest test error / number of training examples
for which it was obtained, for Tilde, MITI and ID3-MI’
learning a variety of target concepts.

Data set Tilde MITI ID3-MI’
Musk 1 0.815 0.837 0.793
Musk 2 0.775 0.882 0.735
Muta 188 0.771 0.787 0.750
Muta 42 0.81 0.81 0.83

Table 3. Test set accuracy obtained on benchmark datasets
by Tilde, MITI and ID3-MI’.

(using the same folds for all systems) on the Mutagene-
sis and Musk benchmark datasets, by Tilde, MITI and
ID3-MI’, all run with default parameter settings (ex-
cept p = 1000 for MITI on Musk). There are theoret-
ical arguments for assuming Musk is MIC-compliant,
though Xu (2003) presents counterarguments. To our
knowledge, there are no theoretical arguments for Mu-
tagenesis being MIC-compliant (though it is a popular
benchmark problem for multi-instance learning).

6. Conclusions

We have introduced a novel decision tree learning al-
gorithm for the multi-instance setting as originally
proposed by Dietterich, Lathrop and Lozano-Pérez
(1997). The algorithm is similar to standard tree
learning algorithm, with as major changes the adop-
tion of a best-first node expansion strategy during tree
learning, and heuristics that are better tuned to the
multi-instance setting by focusing on the creation of
pure positive leaves and by giving higher weights to
examples from smaller bags. An experimental study
shows that especially the best-first node expansion
strategy is crucial in obtaining good performance. In
an experimental comparison with the existing decision
tree learners proposed for the original multi-instance
setting, our approach outperforms them on synthetic
datasets (constructed to fulfill the multi-instance as-
sumptions) and performs equally good or better on
real-life datasets.

The experimental study shows the value of our ap-
proach. However, further optimization is possible: is-
sues such as the stopping criterion, the pruning strat-

egy, and the threshold proportion of positives required
for a leaf to be positive, remain to be investigated.

7. Acknowledgements

H.B. is a post-doctoral fellow of the Fund for Scientific
Research of Flanders, Belgium (FWO-Vlaanderen).

References

Blockeel, H., & De Raedt, L. (1998). Top-down induc-
tion of first order logical decision trees. Artificial
Intelligence, 101, 285–297.

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984). Classification and regression trees. Belmont:
Wadsworth.

Cestnik, B. (1990). Estimating probabilities: A cru-
cial task in machine learning. Proceedings of the 9th
European Conference on Artificial Intelligence (pp.
147–149). London: Pitman.

Chevaleyre, Y., & Zucker, J.-D. (2001). Solving mul-
tiple instance and multiple part learning problems
with decision trees and rule sets. application to the
mutagenesis problem. 14th Canadian Conference on
Artificial Intelligence (pp. 204–214).

Cohen, W. (1995). Fast effective rule induction. Pro-
ceedings of the twelfth International Conference on
Machine Learning (pp. 115–123). Morgan Kauf-
mann.

Dietterich, T. G., Lathrop, R. H., & Lozano-Pérez, T.
(1997). Solving the multiple-instance problem with
axis-parallel rectangles. Artificial Intelligence, 89,
31–71.

Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, 1, 81–106.

Ruffo, G. (2000). Learning single and multiple in-
stance decision trees for computer security applica-
tions. Doctoral dissertation, Department of Com-
puter Science, University of Torino.

Srinivasan, A., Muggleton, S., Sternberg, M., & King,
R. (1996). Theories for mutagenicity: A study in
first-order and feature-based induction. Artificial
Intelligence, 85, 277–299.

Xu, X. (2003). Statistical learning in multiple instance
problems. Master’s thesis, University of Waikato.

