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Abstract

Background: Yttrium-90 (90Y) radioembolization involves the intra-arterial delivery of

radioactive microspheres to treat hepatic malignancies. Though this therapy involves

careful pre-treatment planning and imaging, little is known about the precise

location of the microspheres once they are administered. Recently, there has been

growing interest post-radioembolization imaging using positron-emission

tomography (PET) for quantitative dosimetry and identifying lesions that may benefit

from additional salvage therapy. In this study, we aim to measure the inter-center

variability of 90Y PET measurements as measured on PET/MRI in preparation for a

multi-institutional prospective phase I/II clinical trial.

Eight institutions participated in this study and followed a standardized phantom

filling and imaging protocol. The NEMA NU2-2012 body phantom was filled with

3 GBq of 90Y chloride solution. The phantom was imaged for 30 min in listmode on

a Siemens Biograph mMR non-TOF PET/MRI scanner at five time points across

10 days (0.3–3.0 GBq). Raw PET data were sent to a central site for image

reconstruction and data analysis. Images were reconstructed with optimal

parameters determined from a previous study. Volumes of interest (VOIs) matching

the known sphere diameters were drawn on the vendor-provided attenuation map

and propagated to the PET images. Recovery coefficients (RCs) and coefficient of

variation of the RCs (COV) were calculated from these VOIs for each sphere size and

activity level.

Results: Mean RCs ranged from 14.5 to 75.4%, with the lowest mean RC coming

from the smallest sphere (10 mm) on the last day of imaging (0.16 MBq/ml) and the

highest mean RC coming from the largest sphere (37 mm) on the first day of

imaging (2.16 MBq/ml). The smaller spheres tended to exhibit higher COVs. In

contrast, the larger spheres tended to exhibit lower COVs. COVs from the 37 mm

sphere were < 25.3% in all scans. For scans with ≥ 0.60 MBq/ml, COVs were ≤ 25% in

spheres ≥ 22 mm. However, for all other spheres sizes and activity levels, COVs were

usually > 25%.

Conclusions: Post-radioembolization dosimetry of lesions or other VOIs ≥ 22 mm in

diameter can be consistently obtained (< 25% variability) at a multi-institutional level

using PET/MRI for any clinically significant activity for 90Y radioembolization.
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Background

Yttrium-90 (90Y) radioembolization involves the intra-arterial delivery of radioactive

microspheres to primary or metastatic disease in the liver. 90Y decays primarily

with β− emission (mean 0.937 MeV, 64.2 h half-life, 2.5 mm mean soft tissue pene-

tration, 11 mm max tissue penetration) [1], allowing for high amount of radiation

dose within a well-confined region. The current commercially available micro-

spheres, TheraSpheres (glass microspheres; BTG, London, UK) and SIR-Spheres

(resin microspheres; Sirtex Medical, Sydney, Australia), were first approved in the

USA by the Food and Drug Administration in 1999 and 2002 and received the

European CE mark in 2005 and 2002, respectively [2, 3]. Since then, 90Y micro-

sphere radioembolization has continued to grow as a third-line therapy for patients

with some clinical trials into using this technology as a first-line therapy concur-

rent with FOLFOX-based chemotherapy [4]. While the use of 90Y microspheres to

treat cancer in the liver has been utilized for over 50 years [5], the treatment plan-

ning protocol from pre-treatment imaging to prescription activity calculation is not

well optimized. Standard protocol does not allow for assessing the actual distribu-

tion of the microspheres or for predicting the effectiveness of treatment or possible

toxicity events without waiting for follow-up imaging studies at least 30 days after

treatment [6]. Patients who undergo 90Y radioembolization typically have poor

prognoses and earlier assessment of therapy immediately after injection could guide

optimization of therapy.

Recently, there has been an interest in performing post-radioembolization imaging

and dosimetry to assess the microsphere distribution and predict clinical outcomes.

Early work involved Bremsstrahlung SPECT, utilizing the high Bremsstrahlung flux

from the β− emission of 90Y [7–9]. However, these images suffer from poor spatial

resolution, making it difficult to identify small areas of uptake and the heterogeneous

distribution of the microspheres [10, 11] as well as perform quantitative evaluation.

Early case studies found that the small positron yield (0.0032%) of 90Y was sufficient

for imaging the microsphere distribution by PET [12–14]. Since then, several single-

center studies have reported the ability to predict clinical outcomes using dosimetry

derived from 90Y PET images following radioembolization in both primary liver cancer

[15] and metastatic colorectal cancer [16–18].

Multi-center clinical studies with quantitative end points, typically involves imaging a

standard phantom to test quantitative accuracy and inter-center variability. Fahey et al.

evaluated inter-center reproducibility and variability in a multi-center study involving

fluorine-18 (18F) on PET/CT [19]. Another similar study was performed by Willowson

et al. in the multi-center QUEST phantom study for measuring inter-site variability of
90Y on PET/CT [20].

The purpose of this study is to measure both the inter- and intra-center variabil-

ity of quantitatively measuring 90Y on PET/MR in preparation for a multi-center

phase I/II clinical trial (NCT02611661). Our study mirrors the work that was per-

formed by Willowson et al. in the QUEST study but, due to the difference in scan-

ner designs and electronics, focuses instead on PET/MRI scanners. Furthermore,

this study uses the same PET/MRI system model and identical reconstruction

parameters across all centers, rather than allowing centers to reconstruction their

own data with their own parameters. This was to test the true performance of the
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scanner with 90Y without extra uncertainty introduced by varying choices in recon-

struction parameters.

Methods

A total of eight institutions across four countries participated in this phantom study. All

sites followed a strict protocol for both filling and imaging the phantom. Three NEMA

NU2-2012 image quality (IQ) body phantoms (PTW Freiburg GmbH, Freiburg, Germany)

with vendor-provided foam cradles and positioning devices were shared between the eight

institutions.

Phantom preparation

Before filling the phantom with activity, the volume of the background compartment

was measured by its water weight.

3.6 GBq in 1.4 mL of 90Y chloride solution (PerkinElmer, Waltham, MA) was shipped

to each institution. The supplier’s calibrated activity listed on the shipping document

was used as the “ground truth” for the activity within the vial. Each site recorded the

amount of activity reported by their department’s dose calibrator for comparison

against the reported amount on the shipping label. The manufacturer and model of

each site’s dose calibrator is listed in Table 1.

The entire contents of the vial were completely emptied into 1300 mL of water with

100 mg of either DTPA or EDTA added to prevent binding of 90Y chloride to the walls

of the phantom. Activity was drawn from this solution to fill the six spheres (diameters

37, 28, 22, 17, 13, and 10 mm). Once all spheres were filled, the remaining solution was

emptied into the background compartment of the NEMA IQ phantom, and the

remaining volume of the background compartment was filled with water. This resulted

in an approximately 8:1 sphere-to-background activity concentration ratio. The center

lung insert for the phantom was a solid structure made of polyethylene material. The

total recorded activity in the phantom was the total activity listed on the shipping

document minus any residual activity in the vial and syringe.

Image acquisition and reconstruction

The phantom was imaged at five time points (day 0, day 3, day 5, day 7, and day

10) at each institution on Siemens Biograph mMR non-time-of-flight (non-TOF)

Table 1 Dose calibrator and settings used at each site to measure 90Y activity and verify against

that reported on shipping label

Site number Dose calibrator manufacturer Model Setting for 90Y

1 Capintec CRC-12 Channel 53 × 10

2 Capintec CRC-55 T PET Channel 010

3 Capintec CRC-15R Channel 48 × 10

4 Capintec CRC-15R Channel 56 × 10

5 Capintec 55 t W Channel 48 × 10

6 Veenstra Instruments VIK 2025051 Factor 902, scale 100

7 MED ISOMED 2010 Factor 2.3 (geometry: 3 ml syringe/1.4 ml solution)

8 Capintec CRC-15R Channel 48 × 10
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PET/MRI scanners, representing a range of total activities from 0.3 to 3.0 GBq.

These values correspond to the full range of activities administered to patients

treated with resin microspheres. The phantom was positioned in a foam cradle

with an accompanying positioning device, as described by Ziegler et al. [21], to

center the phantom in the field of view (FOV) and allow for reproducible place-

ment of the phantom between scans and institutions. The phantom was imaged for

30 min in listmode acquisition in a single station. Due to the longer axial FOV of

the Biograph mMR (25.6 cm), we are able to reduce the number of stations

compared to other scanners with a shorter FOV (e.g., 15–16 cm), which typically

require a minimum of two stations [20]. For post-radioembolization patients at our

clinic (WUSM), we acquire PET data in a single station. At one of the sites, three

back-to-back PET acquisitions (same phantom filling) were performed to evaluate

intra-center variability. Another site (Washington University, St. Louis, MO) re-

peated the phantom filling with 54.4 MBq fluorine-18 (18F) and imaged at a single

time point (15 min listmode acquisition) for comparison to a high statistic dataset.

This 18F dataset was also reconstructed into ten smaller datasets, consisting of 3 s

each of listmode data, to contain a similar amount of trues statistics to that seen

in the 90Y PET data. Those same ten data sets were reconstructed with additional

randoms added to the sinograms to obtain a similar randoms fraction as that ob-

served in the 90Y PET data. A detailed description of these methods are described

in [22]. This was to compare measurements from 18F data containing a similar

amount of trues count statistics as that exhibited in 90Y PET data on the highest

activity day of imaging.

All raw PET data were sent via a secure data server (ABX-CRO Advanced Pharmaceutical

Services, Dresden, Germany) to a central site (Washington University, St. Louis,

MO) for reconstruction and analysis by a single investigator (N.M.). All PET

reconstructions were performed using e7tools, the offline research reconstruction

software provided by Siemens, with a vendor-provided, CT-derived attenuation

map of the NEMA 2007/IEC 2008 Body phantom for attenuation correction, as

described by Ziegler et al. [21] The attenuation map was manually inspected and regis-

tered for each PET data set since they were not measured directly from the PET/MRI

scanner. Images were reconstructed with 3D ordinary Poisson ordered subset expectation

maximization (OP-OSEM), with the following parameters determined from a previous

phantom study: 3 iterations, 21 subsets, 5 mm full-width-half-maximum Gaussian post-

reconstruction filter, point spread function (PSF) compensation, and using absolute scat-

ter correction with 4.17 × 4.17 × 2.03 mm3 voxels [23].

Image post-processing and analysis

All image post-processing, including drawing volumes of interest (VOIs) and extracting

statistics from those VOIs, was performed in MIM v6.6.7 (MIM Software, Cleveland,

OH). VOIs were drawn on the attenuation map of the phantom (see Fig. 1). The VOIs on

the spheres were drawn as spherical VOIs with a diameter matching the known sphere

diameter. The VOIs with their corresponding purpose for quantitative assessment,

according to NEMA NU 2-2007 guidelines, are summarized in Table 2. Each PET image

was fused to the corresponding attenuation map for transfer of VOIs.
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The recovery coefficients (RCs) for each of the fillable sphere and respective back-

ground VOIs were calculated to assess accuracy of measurements, especially in regards

to partial volume effects (PVE):

RC %ð Þ ¼
Am

At

� 100 ð1Þ

where Am is the measured mean activity concentration and At is the true activity con-

centration. The coefficient of variation (COV) of RCs for each hot sphere VOI and day

of imaging (8 VOI measurements per COV) was used to quantify both inter- and intra-

center variability:

COVi;n %ð Þ ¼
σ i;n

μ
i;n

� 100 ð2Þ

where σi, n is the standard deviation and μi, n is the mean of RCs for a given sphere size

(i) and day of imaging (n).

Fig. 1 Attenuation map of NEMA 2007/IEC 2008 body phantom with VOIs drawn around each of the six

fillable spheres, 72 VOIs drawn in the background compartment, and a 28-mm diameter VOI drawn in the

cold insert (center, yellow)

Table 2 Quantities for volume of interest (VOI) analysis

VOI and size Measured quantity Purpose

Field of view (FOV) Total activity (GBq) Accuracy in total injected activity
measurement

Fillable spheres: 37, 28, 22, 17, 13,
10 mm

Recovery coefficient of mean
activity concentration (MBq/ml)

Accuracy in VOI measurements
from partial volume effects

Background spheres: 12 of 37-mm
diameters

Recovery coefficient of mean
activity concentration (MBq/ml)

Accuracy in warm background
VOI measurements

Background spheres: 12 each of 37-, 28-,
22-, 17-, 13-, 10-mm diameters

Standard deviation of mean
activity concentration (MBq/ml)

Variability in warm background
measurements (noise)

Insert: 28-mm diameter, 160-mm length Mean activity concentration
(MBq/ml)

Background counts
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Background variability for each sphere size s (BVs) for the highest activity day of im-

aging (12 measurements/site × 8 sites = 96 total VOIs) was calculated using

BVs %ð Þ ¼
σs

μ
s

� 100 ð3Þ

where σs is the standard deviation of the 96 background concentration measurements

for a given sphere size s, and μs is the average of the 96 background concentration mea-

surements for a given sphere size s.

Activity in the cold insert (Ci) was quantified using

Ci %ð Þ ¼
Am;i

At;b

� 100 ð4Þ

where Am, i is the measured activity concentration in the cold insert, and At, b is the

true background activity concentration.

Results

Activities reported by each site’s dose calibrator were on average 3.62% lower than that

reported on the shipping label (median − 4.95%, range − 6.31–0.61%). Figure 2 shows

transaxial PET images through the center of the spheres from the first day of imaging

for each site.

After visual inspection and manual registration between the attenuation maps and the

PET data, adequate registration was obtained in all data sets. Most data sets required ap-

proximately a few centimeters translation in the axial direction to properly align the attenu-

ation map with the PET data. At some sites, the phantom was positioned in a reversed

direction or the center plate containing the spheres was rotated (Fig. 2), in which case a

rotation was required to properly align the attenuation map with the data.

Fig. 2 PET images from first day of imaging (~ 3.0 GBq) for each of the eight sites
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Figure 3a shows the measured activity versus true activity within the whole FOV

along the identity line, averaged across the eight sites, and Fig. 3b shows the percent

differences in total measured activity and true activity. The total activity measured

within the FOV had a median error of − 0.63% across all activity ranges from all sites

(8 sites × 5 days of imaging = 40 measurements) (mean 4.71%, range − 23.9–65.0%). All

average measurements of total activity were within ± 10% of true activity for activities ≥

0.5 GBq. The lowest activity measurements (~ 0.3 GBq) overestimated the total activity

within the FOV on average by 25.8% (range − 20.8–65.0%).

Figure 3c shows the mean measured versus true activity concentration in the 37 mm

VOI in the warm background compartment of the phantom along the identity line, and

Fig. 3d shows the percent deviation in this background activity concentration. Mean

measured activity concentration had a median error of − 1.68% across all activity ranges

from all sites (12 measurements/site × 5 imaging days × 8 sites = 480 measurements)

(mean − 1.43%, range − 31.3–32.1%).
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Fig. 3 a Total measured activity within the FOV compared to the true activity, averaged across the

eight sites. The dashed line represents the identity (i.e., where measured equals true). b Error in

measured activity within the FOV. Each point represents the mean measured activity across the eight

sites. Error bars represent one standard deviation across the eight sites’ measurements. The shaded

region represents ± 10% error. c Mean activity concentration of the 37 mm VOI within the warm

background compartment of the phantom compared to the true activity concentration, averaged

across the eight sites. The dashed line represents the identity (i.e., where measured equals true). d

Deviation of measured activity concentration within warm background. Each point represents the

mean measured activity concentration of the 37 mm VOI across the eight sites. Error bars represent

one standard deviation across the eight sites’ measurements. The shaded region represents

± 10% error
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Figure 4 shows the noise in the PET imaging volumes, quantified by both the back-

ground variability (Eq. 3, Fig. 4a) and the signal intensity in the cold lung insert nor-

malized by the true background activity (Eq. 4, Fig. 4b). The median background

variability ranged from 6.48 to 32.2%, measured from the largest and the smallest

spheres, respectively, across all sphere sizes (total of 576 warm background VOIs), with

a median variability of 16.5% (mean 16.7%). The median cold insert counts (Ci) in-

creased from 33.3 to 75.6% in the lung insert from 0.29 MBq/ml to the lower true ac-

tivity concentrations of 0.02 MBq/ml. The median cold insert counts percentage across

40 PET imaging volumes was 45.3% of the true warm background activity concentra-

tion (mean 48.8%, range 23.9–104%). In comparison, the cold insert counts normalized

to warm background in the 18F phantom image was 26%.

Figure 5 and Table 3 illustrate the RCs and variation of each sphere size averaged

over the different institutions. The inter-center variability of imaging with 90Y,

expressed as the standard deviation on the RC measured at the different sites, is shown

on the graphs as the error bars. A comparative measurement done with the same phan-

tom but with high statistics 18F is indicated as the solid line on the graphs. The median

RC for each hot sphere across all sites and activity concentrations (5 imaging days × 8

sites = 40 measurements per sphere) was 68.7, 52.4, 46.8, 41.8, 27.5, and 22.0% for the

37-, 28-, 22-, 17-, 13-, and 10-mm spheres, respectively. The highest mean RC for any

given activity concentration and sphere size was 75.4%, measured on the 37-mm sphere

at the highest activity (~ 2.16 MBq/ml). In contrast, the lowest mean RC for any given

activity concentration and sphere size was 14.5%, measured from the 10-mm sphere at

the lowest activity level (~ 0.16 MBq/ml). Agreement with 18F measurements was best

for the largest sphere and at the two highest activity levels (1.00 and 2.16 MBq/ml of
90Y), with deviation of − 1.7 and − 1.5%, respectively. Variability in measurements in-

creased with decreasing sphere size and decreasing activity.

Figure 6a–e and Table 4 illustrate the RC variability obtained from one site (Norwegian

University of Science and Technology, Trondheim, Norway) who acquired three consecu-

tive scans for each imaging day. The median RC for each hot sphere across the three scans

and all activity concentrations (5 imaging days × 3 scans = 15 measurements per sphere)

was 74.8, 56.9, 55.6, 47.2, 44.1, and 24.3% for the 37-, 28-, 22-, 17-, 13-, and 10-mm

spheres, respectively. . At the highest activity level, variability between scans for all hot
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Fig. 5 a–e Recovery coefficients as a function of hot sphere size from five different hot sphere activity

concentrations across all sites. Each point represents the mean RC and error bars represent one standard

deviation across the eight sites. The COV for each sphere size and hot sphere activity concentrations are

shown in Table 3. Measurements from one site’s 18F measurements (54.4 MBq) are shown in black

Table 3 Inter-center coefficient of variation (COV) of recovery coefficients (RCs) for each sphere

size and activity concentration

COV (%) (range)

Sphere diameter (mm) 2.16 MBq/ml 1.00 MBq/ml 0.60 MBq/ml 0.36 MBq/ml 0.16 MBq/ml

10 36.2 (14.0–48.6) 86.6 (6.18–99.8) 75.1 (7.79–51.7) 49.5 (9.83–45.1) 64.1 (2.63–26.9)

13 32.2 (23.5–59.8) 55.1 (18.0–68.3) 92.3 (12.5–112) 44.9 (13.6–49.6) 77.5 (3.47–65.5)

17 29.7 (18.9–69.1) 30.4 (30.3–78.0) 36.4 (27.5–75.8) 47.7 (20.5–75.0) 78.8 (14.7–118)

22 22.7 (41.2–84.1) 22.8 (29.6–63.4) 25.0 (32.6–70.0) 23.7 (30.5–56.1) 37.9 (10.4–49.4)

28 24.1 (42.9–88.1) 21.5 (41.7–80.3) 17.8 (38.0–65.3) 26.8 (26.8–69.6) 15.8 (26.8–46.9)

37 18.0 (56.0–95.0) 22.2 (52.0–103) 18.3 (54.9–92.2) 25.3 (46.4–91.4) 21.1 (45.2–81.3)

Values in parentheses represent the range of RCs (min–max)
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Fig. 6 a–e Recovery coefficients as a function of hot sphere size from three consecutive scans at a single

site. Each point represents the mean RC, and error bars represent one standard deviation. The COV for each

sphere size and hot sphere activity concentrations are shown in Table 4. f Measurements from raw 18F data

(black line), 18F data with similar 90Y true count statistics (light blue square), and 18F data with similar true

count statistics and randoms fraction to 90Y. Again, each point represents the mean RC and error bars

represent one standard deviation across the ten 3-s 18F datasets

Table 4 Intra-center coefficient of variation (COV) of recovery coefficients (RCs) for each sphere

size and activity concentration

COV (%) (range)

Sphere diameter (mm) 2.32 MBq/ml 1.06 MBq/ml 0.65 MBq/ml 0.38 MBq/ml 0.17 MBq/ml

10 4.49 (29.7–32.3) 40.2 (20.8–40.2) 59.4 (8.71–24.3) 67.6 (14.4–56.6) 108 (4.42–40.9)

13 7.58 (44.1–51.0) 47.1 (22.6–50.2) 39.7 (27.2–63.3) 32.9 (16.6–30.9) 45.3 (29.1–79.6)

17 12.4 (48.8–60.6) 9.79 (57.5–68.1) 13.4 (40.4–53.0) 34.5 (21.6–43.5) 49.6 (15.6–45.7)

22 5.06 (55.6–61.5) 8.35 (50.2–59.2) 18.2 (43.4–62.0) 36.8 (27.8–57.7) 50.8 (14.5–47.1)

28 6.48 (56.2–63.7) 6.69 (49.9–57.0) 4.89 (58.9–64.3) 23.9 (34.9–56.9) 35.0 (27.2–57.4)

37 1.43 (77.0–79.0) 4.79 (70.1–77.1) 7.52 (66.6–77.0) 16.0 (56.6–77.4) 20.0 (53.9–77.7)

Values in parentheses represent the range of RCs (min–max)
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spheres was < 13% (mean 6.24%, median 5.77%, range 1.42–12.4%). All spheres ≥ 17 mm

with ≥ 0.60 MBq/ml had < 20% variability in their RCs. The 37-mm sphere had a variabil-

ity in measurements ≤ 20% for all activity levels. Again, variability increased with decreas-

ing sphere size and decreasing activity. Table 5 lists the COV and range for these scans for

RC of total activity and background activity concentration and Ci values of the cold lung

insert. Variability tended to increase with decreasing activity for these VOIs as well, with

the exception of total activity, which tended to remain rather stable. Figure 6f shows mea-

surements from the 18F phantom, reconstructed into smaller data sets with both trues

counts statistics and/or randoms fraction typically seen with 90Y PET data from the high-

est activity imaging day. Total trues for these smaller 18F data sets were 2.07 × 106 and

those reported by one site for 90Y were 1.54 × 106. The randoms fraction for typical 18F

datasets was 31% and that for the simulated high-randoms was 77%. The randoms frac-

tion for 90Y was approximately 75%.

Discussion

Despite the low positron yield from 90Y, PET imaging of this isotope has proven both

feasible and useful in previous literature [11–13, 15–17, 23, 24] and is further demon-

strated in this work. The results from this study and that reported by Willowson et al.

in the PET/CT QUEST study [20] also demonstrate the feasibility of performing multi-

institutional clinical studies focused on 90Y PET-based dosimetry.

Even though this multi-institutional phantom study with 90Y PET imaging has been

performed previously on PET/CT [20], there are several key differences between Sie-

mens Biograph PET/CT scanners and Siemens Biograph mMR (PET/MRI) scanners

that motivate the need to perform this study on PET/MRI. First, the Biograph mMR

utilizes avalanche photodiode (APD) detectors instead of typically used photomultiplier

tubes (PMT), to allow for compatibility with the MR magnetic field. However, this

comes at the cost of not having TOF capabilities. Additionally, compared to the

Biograph PET/CT scanners, the mMR exhibits increased sensitivity due to the geomet-

rical arrangement of the detectors: 15.0 kcps/MBq) [25] versus 8.1 kcps/MBq on the

Biograph 40 (non-TOF) PET/CT [26]. As discussed previously, the difference in sensi-

tivities is due to a longer axial FOV and shorter ring diameter on the Biograph mMR

[23]. The tight geometry and wider coincidence timing window in mMR result in

higher random rates, but the smaller block size results in lower singles rate per detector

block in comparison to Siemens PET/CT scanners [23]. All of these factors (i.e., differ-

ence in electronics and higher sensitivity from a different geometry), combined with

low annihilation counts and high randoms rates from Bremsstrahlung radiation, make

Table 5 Intra-center coefficient of variation (COV) between three consecutive scans of recovery

coefficients (RCs) of total activity and background activity concentration and of counts in the cold

lung insert (Ci) on each imaging day

COV (%) (range)

VOI 3.0 GBq 1.4 GBq 0.8 GBq 0.5 GBq 0.2 GBq

Total activity 0.80 (96.7–98.2) 0.47 (102–102) 0.78 (106–107) 0.79 (114–115) 0.80 (139–141)

Background 16.8 (46.5–147) 26.9 (33.6–209) 27.9 (32.8–179) 34.6 (32.8–254) 50.4 (30.5–423)

Lung insert 4.51 (31.5–34.5) 5.99 (39.6–44.6) 2.82 (37.4–39.1) 5.05 (39.9–44.5) 10.2 (61.1–74.1)

Numbers in parentheses represent the range of RCs for total activity and background activity concentration and Ci for

the lung insert (min–max)
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the similarity of the convergence properties of OSEM imaging reconstruction different

between Biograph PET/CT and Biograph PET/MRI scanners. This was demonstrated in

our previous phantom study, where we found that the optimal reconstruction parame-

ters, using the same number of subsets, post-reconstruction filter size, and resolution

recovery, were at three iterations on the mMR instead of two iterations for Biograph

PET/CT scanners, as suggested by Willowson et al. [20]. Therefore, it is necessary to

demonstrate the quantitative accuracy and test the variability between scanners on

mMR, especially since this has not been done.
90Y has high randoms rates (due to a high flux of Bremsstrahlung radiation) and low

trues statistics (due to low annihilation counts); therefore, a careful handling of the

randoms in the reconstruction proves essential in iterative reconstruction algo-

rithms. In previous generations of OSEM, the pre-subtraction of randoms and

scatter results in significant bias [27, 28]. Siemens mMR uses 3D OP-OSEM with

PROMPTS+RANDOMS data acquisition, as done in Biograph mMR and mCT,

there is no pre-subtraction of scatter or randoms estimates, and therefore the

algorithm bias is reduced [29]. However, in situations of very low counts such with
90Y imaging, the convergence properties of the algorithm may be such that more

iterations are needed at the expense of increased noise. In our phantom evaluation

[23], we limited the noise in the images by stopping after three 3D OP-OSEM iter-

ations (with 21 subsets resulting in 63 updates) and applying a 5 mm Gaussian

post-reconstruction filter. As shown in [23], images reconstructed with more itera-

tions and sharper filter resulted in unacceptably noisy images. The low count sta-

tistics and high randoms fraction for 90Y PET imaging are likely the cause of lower

count recovery compared to higher statistics 18F PET imaging. Evidence of this is

shown in Fig. 6f. Optimized image reconstruction algorithms, with extremely low

count statistics and high random counts, have yet to be resolved [20, 23, 30]. This

is an area of future research.

Recovery of the total activity within the whole FOV was consistent among sites, with

most measurements within ± 10% of the true values, especially above 0.5 GBq. These

values are consistent with those reported by Willowson et al. in the PET/CT QUEST

study for 19 Siemens Biograph TOF PET/CT scanners [20], though our reported stand-

ard deviation on the Biograph mMR at 0.5 GBq was slightly higher, likely due to a

smaller number of sites. Our total activity results were closer in agreement with the

expected activity than those reported for Siemens Biograph non-TOF PET/CT scanners

in the same QUEST study, where mean error in the FOV at 0.5 GBq was approximately

+ 20% and standard deviation in this error was approximately ± 60% [20]. Our study

performed an extra scan at a lower activity level (0.3 GBq) that was not performed in

the PET/CT QUEST study. The extra scan at a lower activity level represents the subset

of patients who are administered the lowest activity available for resin microsphere

treatment. Total activity measurements in this range were, on average, overestimated

by > 20%, with a standard deviation reaching beyond ± 20%. This trend in overesti-

mation of total activity with decreasing activity has been reported in previous studies

using both TOF and non-TOF Siemens Biograph PET/CT scanners [20, 24]. A possible

explanation could be extremely low count statistics resulting in higher noise, uncer-

tainty in scatter correction, or artificial peaks in the data resulting in measured activity

higher than the true activity. This effect may be less prominent in TOF reconstructions,
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since it is known that TOF reduces noise by reducing noise propagation in both for-

ward- and back-projections at each iteration [31].

Activity measurements in the warm background compartment of the phantom

were excellent, with the mean error consistently < 10%. These values are consistent

with those reported in the QUEST study for both the Siemens Biograph TOF (> 1

iteration, no post-reconstruction filter reconstructions only) and non-TOF PET/CT

(PROMPTS+RANDOMS reconstructions only) scanners [20]. The standard devia-

tions in our warm background measurements were also comparable to those re-

ported in the QUEST PET/CT study. It is important to note that the background

compartment of the phantom was intended to simulate the non-zero uptake of

normal liver parenchyma, as is commonly seen in clinical studies [15, 16]. Even

though liver tumors tend to take up higher concentrations of the 90Y microspheres,

which is the goal of radioembolization, the normal liver parenchyma often takes up

some of the microspheres as well, albeit usually at a lower concentration. Thus, it

was imperative to include warm background activity in the large compartment of

the phantom in an attempt to simulate the clinical setting. In our experience, the

ratio of tumor:normal liver (“background”) activity concentrations varies from pa-

tient to patient. Future work includes investigating the effects of tumor:background

activity concentrations on image quality.

Noise in the PET imaging volumes was quantified by both the background variability

on the high activity day of imaging (~ 0.29 MBq/ml) (Eq. 3) and the scatter/background

counts in the cold (no activity) lung insert of the phantom (Eq. 4). Background variabil-

ity on the Biograph mMR was significantly lower than that reported for both the TOF

and non-TOF Biograph PET/CT scanners in the QUEST study (16.7% mean versus ~

30, 50, and 38% means for TOF and Gaussian post-reconstruction filter, TOF and no

post-reconstruction filter, and non-TOF reconstructions, respectively) [20]. However,

scatter counts in the lung insert from the mMR (49.0% mean) were higher than those

from Biograph TOF PET/CT scanners (~ 30% mean) and non-TOF PET/CT scanners

using PROMPTS+RANDOMS mode (~ 35% mean). They were, however, lower than

those from Biograph non-TOF PET/CT scanners in NETTRUES mode (~ 60% mean)

[20]. A possible reason for the higher rate of scatter counts in the cold lung insert com-

pared to those reported by Willowson et al. could be due to fact that the attenuation

maps from this study were vendor-provided, since attenuation maps of phantoms can-

not be directly measured with MRI. Depending on the type of lung insert used in the

vendor provided maps (styrofoam or solid), this could affect the attenuation properties

and scatter estimates used in the reconstruction. However, private communication with

a representative from Siemens confirmed that the vendor-provided attenuation map

was measured from identical phantoms used in this study. Another possibility is that

the difference in geometry of the Biograph mMR scanner (i.e., longer axial FOV) may

allow for more scatter counts than the Biograph mCT or non-TOF PET/CT scanners.

Regardless, scatter counts are higher for any of these three scanners compared to 18F

when imaging 90Y. A possible explanation is that in very low count studies, the

estimated scatter distribution may be inaccurate. The scatter distribution is iteratively

estimated from the measured activity distribution and the phantom attenuation map.

When count statistics are low in an imaging dataset, residual scatter counts may

remain in regions of cold (i.e., no) activity, and the data supports this theory. For the
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low activity scan, the counts in the cold insert were approximately 76% of warm back-

ground, which is significantly higher than that measured for 18F at 26%. At the highest
90Y activity scan, cold insert counts was approximately 33% of warm background, much

closer to that of 18F. Higher residual scatter counts in cold areas may also explain why

hot sphere RCs for low total activity scans are much lower that for 18F. Others have in-

vestigated incomplete convergence in these cold areas [32], and this remains an area of

active research.

Count recovery in the higher activity concentrated (hot) spheres was good, with mean RCs

ranging from approximately 30–75% on the highest activity imaging day (~ 2.16 MBq/ml).

These values are consistent with those from a previous ACR phantom study at two of the

institutions included in this study [23]. They are also consistent with those

reported for the same total activity level in the QUEST study for the Siemens

Biograph TOF PET/CT scanners (two iterations, 5-mm Gaussian post-reconstruction fil-

ter) and better than those for the non-TOF PET/CT scanners (all reconstructions) [20].

RCs from 90Y PET imaging were also lower than those from 18F PET imaging, with the

exception of the largest sphere size at the highest activity. We report lower 18F RCs than

Willowson et al., who reported RCs approaching near 100% for the largest sphere [20].

Discrepancy in these measurements is likely due to a difference in the method for drawing

VOIs: they used a region-growing approach, where VOIs were drawn at 50% of the max-

imum value, whereas we used the known sphere diameter to draw VOIs. Using an attenu-

ation map-based method for drawing VOIs, as opposed to a region-growing approach, is

known to decrease RCs in PET images [24]. Our method is more susceptible to partial

volume effects but is more representative of what is performed for individual lesion dos-

imetry. As is characteristic of PET imaging studies, whether using 90Y or a standard

isotope-like 18F, RCs degraded with decreasing VOI size [21, 23, 24, 33, 34]. Combining

this with the high noise, which is characteristic of 90Y PET images, it is apparent

from Fig. 2 that very small regions of high uptake (i.e., the smallest sphere) are dif-

ficult, if not impossible, to identify. This is a limitation that must be considered in

clinical applications of 90Y PET imaging when assessing microsphere uptake in

small lesions. RCs of any given hot sphere size also slightly decreased with

decreasing activity concentration, similar to previous phantom studies [20, 23].

Contributing factors to sub-optimal recovery, especially below 18F, could include

partial volume effects, low positron statistics, and high randoms rates. Low annihi-

lation counts, and thus low trues rates, especially combined with high randoms

rates, are limiting factors of OSEM reconstruction algorithms, as previously dis-

cussed. Low trues rates are demonstrated as a contributing factor for poorer recov-

ery in Fig. 6f for even a standard isotope such as 18F. However, this does not account for

the entire discrepancy between these two isotopes. Handling these combined factors in it-

erative reconstruction algorithms is an active area of research, not just in 90Y PET imaging

[30] but also in gated-cardiac PET imaging where statistics are often low [35].

Inter-center variability, as quantified by the COV for each sphere size and activity con-

centration, was acceptable (< 25%) for sphere diameters ≥ 22 mm and ≥ 0.60 MBq/ml. For

the highest activity level, inter-center variability was < 23% for sphere diameters ≥ 22 mm.

In the multi-institutional phantom study by Fahey et al., nine sites tested the variability of

imaging 18F on PET/CT using an ACR phantom in preparation for a multi-institutional

clinical trial. They reported COVs in RCs of 5.9, 21.2, and 17.0% for VOI diameters 25, 16,
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and 12 mm, respectively [19]. Though these values are lower than what we measured for

our comparably sized sphere VOIs, considering the noisy nature of 90Y PET images, our

results offer promise for the ability to reliably perform multi-institutional clinical studies

of 90Y PET-based dosimetry with the Siemens Biograph mMR.

Intra-center variability was also acceptable, < 7% for sphere diameters ≥ 22 mm,

which was lower than that reported by the QUEST study for the Biograph TOF

PET/CT (5, 4, and 8% for sphere diameters 37, 28, and 22 mm, respectively) on

the highest activity imaging day (2.32 MBq/ml) [20]. Yet, for low activity concen-

trations, this variability increased significantly, and COVs of the spheres became

comparable to those seen at a multi-institutional level, suggesting that inter-center

variation at low activities is likely more due to scanner performance than experi-

mental error. Conversely, the large variability seen at the inter-center level at even

the highest activity concentration (Fig. 5a–c) that is generally not present at the

intra-center level for these same activity concentration ranges (Fig. 6a–c) suggests

there could be discrepancies in the phantom preparation in addition to differences

between individual scanner performance.

Several limitations exist with this study. As mentioned previously, we used a

vendor-provided attenuation map since direct attenuation map acquisition of phan-

toms is not accurate on PET/MRI scanners. A study by Ziegler et al. found that

the MR-derived attenuation map of the NEMA image quality phantom, obtained

from the Siemens Biograph mMR PET/MRI scanner, only captured the photon

attenuation of water inside the phantom but failed to capture the plastic housing

of the phantom itself, which significantly degraded both the quantitative accuracy

and background variability of the PET images. Image quality was improved when a

CT-derived attenuation map of the phantom was used instead [21]. It is important

to note that this necessity for using a CT-derived attenuation map only applies to

phantom studies and is not necessary for clinical studies. Since the attenuation

maps were not measured directly from the PET/MRI scanner at the time of PET

imaging, they had to be manually registered and verified to the PET volumes in

order to incorporate into offline reconstruction. Manual registration of the attenu-

ation map to the PET data may have introduced error during the reconstruction

procedure since it is not an exact process; however, visual inspection confirmed

satisfactory registration between the data sets. We attempted to further mitigate

any re-positioning errors both at the intra- and inter-center level by using a phan-

tom cradle and positioning device to replicate phantom placement in the scanner

between sites. Furthermore, since we were unable to image the phantom’s plastic

housing directly with MRI, we could not see if the spheres were filled completely;

thus, the “true” activities may have actually been overestimates of what was actu-

ally filled in the spheres. Since our RCs agreed well with those reported in the

QUEST study by Willowson et al. for Siemens Biograph TOF PET/CT scanners, we

consider this effect to be negligible. Lastly, a general limitation of PET/MR imaging

is the lack of attenuation correction for coils, which may degrade quantitative

assessment of the PET images in clinical studies. Since we are assessing only the

PET camera performance in this study and not the MR-based attenuation correc-

tion algorithm, we excluded coils from this study. However, this is something to

consider in clinical cases when coils are often used.
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PET/MRI scanners from other vendors, such as GE, were not included in this study

due to a lack of other vendor sites at the time of conducting this study. Future work

will test the performance of GE PET/MRI scanners.

Conclusions
90Y PET measurements from Siemens Biograph mMR (PET/MRI) scanners are accept-

able and reproducible at the multi-institutional level. This study may provide insight

into the minimum activity concentrations (≥ 0.60 MBq/ml) and VOI size (≥ 22 mm

diameter) for accurate and reproducible measurements across institutions. Performance

is comparable to that of its TOF PET/CT counterpart and may suggest that multi-

institutional clinical studies of 90Y PET-based dosimetry using Siemens hybrid PET

scanners can include both PET/MRI and TOF PET/CT scanners, although MRI may

offer additional advantages, such as superior soft-tissue contrast for easy delineation of

liver lesions.

Abbreviations
18F: Fluorine-18; 3D: Three-dimensional; 90Y: Yttrium-90; APD: Avalanche photodiode; COV: Coefficient of variation;

CT: Computed tomography; DTPA: Diethylenetriaminepentaacetic acid; EDTA: Ethylenediaminetetraacetic acid;

FOV: Field of view; IQ: Image quality; MRI: Magnetic resonance imaging; NEMA: National Electrical Manufacturers

Association; OP-OSEM: Ordinary poisson ordered subset expectation maximization; PET: Positron-emission tomography;

PSF: Point spread function; PVE: Partial volume effect; QUEST: Quantitative uptake evaluation in SIR-spheres therapy;

RC: Recovery coefficient; SPECT: Single photon emission computed tomography; TOF: Time of flight; VOI: Volume of

interest

Acknowledgements

We thank Sirtex Ltd. for funding this study, providing the phantom, filling supplies, and 90Y chloride activity, and for

funding scanner time.

Funding

The supplies, scanner activity, and publication costs of this study were provided by Sirtex Ltd.

Availability of data and materials

All data is stored at the Washington University School of Medicine, St. Louis, MO, USA.

Authors’ contributions

All authors contributed to the data acquisition at their respective institutions. NM, ME, DF, MC, ME, FL, KK, and MT

contributed to the design of this study. Data was reconstructed, processed, and analyzed by NM. The manuscript was

written by NM. All authors have read and edited the manuscript and consented to its publication.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Competing interests

NM has received travel funds from Sirtex. DF, MC, and ML are employees of Siemens Healthineers. MT was a Research

and Development manager of Sirtex at the time of data collection; he became an employee of ABX-CRO during

manuscript preparation. Though this study was funded by Sirtex Ltd., the study was scientifically conducted independ-

ently of said company. The other authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box

8224, St. Louis, MO 63110, USA. 2Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount

Sinai, 1470 Madison Ave, New York, NY 10029, USA. 3Department of Biomedical Engineering, City College of New York,

160 Convent Ave, New York, NY 10031, USA. 4Siemens Healthineers, Siemens Medical Solutions USA, Inc., 40 Liberty

Boulevard, Malvern, PA 19355-9998, USA. 5Molecular Imaging, Siemens Healthineers, 810 Innovation Dr, Knoxville, TN

37932, USA. 6Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU,

Norwegian University of Science and Technology, Postboks 8905, 7491 Trondheim, Norway. 7Department of Radiology,

Icahn School of Medicine at Mt. Sinai, One G. Levy Pl., Box 1141, New York, NY 10029, USA. 8Agency for Science

Maughan et al. EJNMMI Physics  (2018) 5:7 Page 16 of 18



Technology and Research, National University of Singapore Clinical Imaging Research Centre, 14 Medical Drive, #B1-01,

Singapore 117599, Singapore. 9Department of Nuclear Medicine, Cleveland Clinic, Mail Code Jb3, 9500 Euclid Ave,

Cleveland, OH 44195, USA. 10NYU Medical Center, 333 E 38th St, New York, NY 10016, USA. 11Klinik und Poliklinik für

Nuklearmedizin, TU München, Strasse 22, 81675, Munich, Germany. 12Department of Nuclear Medicine,

Charité—Universitätsmedizin Berlin, Charitépl. 1, 10117 Berlin, Germany. 13Siemens Healthcare GmbH, Berlin, Germany.
14Sirtex Medical Ltd, Level 33, 101 Miller St, North Sydney, NSW 2060, Australia. 15ABX-CRO Advanced Pharmaceutical

Services, 1 Begonia Road, Normanhurst, NSW 2076, Australia. 16Mallinckrodt Institute of Radiology, Washington

University School of Medicine, 510 S. Kingshighway, Campus Box 8225, St. Louis, MO 63110, USA.

Received: 30 October 2017 Accepted: 16 February 2018

References

1. Murthy R, Kamat P, Nuñez R, Salem R. Radioembolization of Yttrium-90 microspheres for hepatic malignancy.

Semin Interv Radiol. 2008;25(1):48–57. https://doi.org/10.1055/s-2008-1052306.

2. Pasciak AS, Bradley Y, JM MK. Handbook of radioembolization. Physics, Biology, Nuclear Medicine, and Imaging.

CRC Press. 2016;

3. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment

for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv

Radiol. 2006;17(8):1251–78.

4. van Hazel GA, Heinemann V, Sharma NK, Findlay MPN, Ricke J, Peeters M, et al. SIRFLOX: randomized phase III trial

comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus

selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol. 2016;34(15):1723–31.

https://doi.org/10.1200/JCO.2015.66.1181.

5. Salem R, Hunter RD. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: a review.

International Journal of Radiation Oncology*Biology*Physics. 2006;66(2, Supplement):S83–S8.

https://doi.org/10.1016/j.ijrobp.2006.02.061.

6. Atassi B, Bangash AK, Bahrani A, Pizzi G, Lewandowski RJ, Ryu RK, et al. Multimodality imaging following 90Y

radioembolization: a comprehensive review and pictorial essay. Radiographics. 2008;28(1):81–99.

https://doi.org/10.1148/rg.281065721.

7. Sarfaraz M, Kennedy AS, Lodge MA, Li XA, Wu X, Yu CX. Radiation absorbed dose distribution in a patient treated

with yttrium-90 microspheres for hepatocellular carcinoma. Med Phys. 2004;31(9):2449-53. https://doi.org/10.1118/

1.1781332.

8. Eaton BR, Kim HS, Schreibmann E, Schuster DM, Galt JR, Barron B et al. Quantitative dosimetry for yttrium-90

radionuclide therapy: tumor dose predicts fluorodeoxyglucose positron emission tomography response in hepatic

metastatic melanoma. J Vasc Interv Radiol. 2014;25(2):288-95. https://doi.org/10.1016/j.jvir.2013.08.021.

9. Kokabi N, Galt JR, Xing M, Camacho JC, Barron BJ, Schuster DM et al. A simple method for estimating dose

delivered to hepatocellular carcinoma after yttrium-90 glass-based radioembolization therapy: preliminary results

of a proof of concept study. J Vasc Interv Radiol. 2014;25(5):277-87. https://doi.org/10.1016/j.jvir.2013.11.007.

10. Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, et al. Post-radioembolization yttrium-90 PET/CT—part

1: diagnostic reporting. EJNMMI Res. 2013;3(1):56. https://doi.org/10.1186/2191-219x-3-56.

11. Elschot M, Vermolen BJ, Lam MGEH, de Keizer B, van den Bosch MAAJ, de Jong HWAM. Quantitative comparison

of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver

radioembolization. PLoS One. 2013;8(2):e55742. https://doi.org/10.1371/journal.pone.0055742.

12. Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based

dosimetry in liver metastasis therapy using SIR-spheres. Eur J Nucl Med Mol Imaging. 2010;37(9):1654–62.

https://doi.org/10.1007/s00259-010-1470-9.

13. Gates VL, Esmail AA, Marshall K, Spies S, Salem R. Internal pair production of 90Y permits hepatic localization of

microspheres using routine PET: proof of concept. Journal of nuclear medicine : official publication, Society of

Nuclear Medicine. 2011;52(1):72–6. https://doi.org/10.2967/jnumed.110.080986.

14. D'Arienzo M, Filippi L, Chiaramida P, Chiacchiararelli L, Cianni R, Salvatori R, et al. Absorbed dose to lesion and

clinical outcome after liver radioembolization with 90Y microspheres: a case report of PET-based dosimetry. Ann

Nucl Med. 2013;27(7):676–80. https://doi.org/10.1007/s12149-013-0726-4.

15. Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, et al. Post-radioembolization yttrium-90 PET/CT—part

2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI Res. 2013;3(1):57.

https://doi.org/10.1186/2191-219x-3-57.

16. Fowler KJ, Maughan NM, Laforest R, Saad NE, Sharma A, Olsen J, et al. PET/MRI of hepatic 90Y microsphere

deposition determines individual tumor response. Cardiovasc Intervent Radiol. 2016;39(6):855–64.

https://doi.org/10.1007/s00270-015-1285-y.

17. van den Hoven AF, Rosenbaum CE, Elias SG, de Jong HW, Koopman M, Verkooijen HM, et al. Insights into the

dose-response relationship of radioembolization with resin 90Y-microspheres: a prospective cohort study in

patients with colorectal cancer liver metastases. Journal of nuclear medicine : official publication, Society of

Nuclear Medicine. 2016;57(7):1014–9. https://doi.org/10.2967/jnumed.115.166942.

18. Willowson KP, Hayes AR, Chan DLH, Tapner M, Bernard EJ, Maher R et al. Clinical and imaging-based prognostic

factors in radioembolisation of liver metastases from colorectal cancer: a retrospective exploratory analysis.

EJNMMI Res. 2017;7(1):46. https://doi.org/10.1186/s13550-017-0292-1.

19. Fahey FH, Kinahan PE, Doot RK, Kocak M, Thurston H, Poussaint TY. Variability in PET quantitation within a

multicenter consortium. Med Phys. 2010;37(7):3660–6. https://doi.org/10.1118/1.3455705.

20. Willowson KP, Tapner M, Bailey DL. A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes

after radioembolization with resin microspheres : the QUEST phantom study. Eur J Nucl Med Mol Imaging. 2015;

42(8):1202–22. https://doi.org/10.1007/s00259-015-3059-9.

Maughan et al. EJNMMI Physics  (2018) 5:7 Page 17 of 18

https://doi.org/10.1055/s-2008-1052306
https://doi.org/10.1200/JCO.2015.66.1181
https://doi.org/10.1016/j.ijrobp.2006.02.061
https://doi.org/10.1148/rg.281065721
https://doi.org/10.1118/1.1781332
https://doi.org/10.1118/1.1781332
https://doi.org/10.1016/j.jvir.2013.08.021
https://doi.org/10.1016/j.jvir.2013.11.007
https://doi.org/10.1186/2191-219x-3-56
https://doi.org/10.1371/journal.pone.0055742
https://doi.org/10.1007/s00259-010-1470-9
https://doi.org/10.2967/jnumed.110.080986
https://doi.org/10.1007/s12149-013-0726-4
https://doi.org/10.1186/2191-219x-3-57
https://doi.org/10.1007/s00270-015-1285-y
https://doi.org/10.2967/jnumed.115.166942
https://doi.org/10.1186/s13550-017-0292-1
https://doi.org/10.1118/1.3455705
https://doi.org/10.1007/s00259-015-3059-9


21. Ziegler S, Jakoby BW, Braun H, Paulus DH, Quick HH. NEMA image quality phantom measurements and attenuation

correction in integrated PET/MR hybrid imaging. EJNMMI Physics. 2015;2(18) https://doi.org/10.1186/s40658-015-0122-3.

22. Maughan NM, Parikh PJ, Laforest R. Low trues statistics and high randoms rates degrade quantitative accuracy in

PET iterative reconstruction methods. Nucl Sci Symp-Med Imaging Conference. 2016:M16F–9. http://2016.nss-mic.

org/images/program/AbstractBook.pdf.

23. Maughan NM, Eldib M, Conti M, Knešaurek K, Faul D, Parikh PJ, et al. Phantom study to determine optimal PET

reconstruction parameters for PET/MR imaging of 90 Y microspheres following radioembolization. Biomedical

Physics & Engineering Express. 2016;2(1):015009.

24. Willowson K, Forwood N, Jakoby BW, Smith AM, Bailey DL. Quantitative (90)Y image reconstruction in PET. Med

Phys. 2012;39(11):7153–9. https://doi.org/10.1118/1.4762403.

25. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens

mMR integrated whole-body PET/MR scanner. Journal of nuclear medicine : official publication, Society of Nuclear

Medicine. 2011;52(12):1914–22. https://doi.org/10.2967/jnumed.111.092726.

26. Jakoby BW, Bercier Y, Watson CC, Bendriem B, Townsend DW. Performance characteristics of a new LSO PET/CT

scanner with extended axial field-of-view and PSF reconstruction. IEEE Trans Nucl Sci. 2009;56(3):633–9.

https://doi.org/10.1109/TNS.2009.2015764.

27. Grezes-Besset L, Nuyts J, Boellard R, Buvat I, Michel C, Pierre C et al., editors. Simulation-based evaluation of NEG-

ML iterative reconstruction of low count PET data. 2007 IEEE nuclear science symposium conference record; 2007

Oct. 26 2007-Nov. 3 2007.

28. van Velden FHP, Kloet RW, van Berckel BNM, Lammertsma AA, Boellaard R. Accuracy of 3-dimensional

reconstruction algorithms for the high-resolution research tomograph. J Nucl Med. 2009;50(1):72–80.

29. Comtat C, Bataille F, Michel C, Jones JP, Sibomana M, Janeiro L et al., editors. OSEM-3D reconstruction strategies

for the ECAT HRRT. IEEE Symp Conference Record Nucl Sci 2004. 2004;6:3492-96. https://doi.org/10.1109/NSSMIC.

2004.1466639.

30. Carlier T, Willowson KP, Fourkal E, Bailey DL, Doss M, Conti M. (90)Y -PET imaging: exploring limitations and

accuracy under conditions of low counts and high random fraction. Med Phys. 2015;42(7):4295–309.

https://doi.org/10.1118/1.4922685.

31. Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI

Physics. 2016;3(1):3. https://doi.org/10.1186/s40658-016-0138-3.

32. Rahmim A, Cheng JC, Blinder S, Camborde ML, Sossi V. Statistical dynamic image reconstruction in state-of-the-art

high-resolution PET. 2005(0031-9155 (Print)).

33. Attarwala AA, Molina-Duran F, Büsing K-A, Schönberg SO, Bailey DL, Willowson K, et al. Quantitative and qualitative

assessment of yttrium-90 PET/CT imaging. PLoS One. 2014;9(11):e110401. https://doi.org/10.1371/journal.pone.0110401.

34. Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: characterization of PET/CT

and PET/MR scanners for a comprehensive set of positron emitters of growing application—18F, 11C, 89Zr, 124I,

68Ga, and 90Y. J Nucl Med. 2015;56(8):1285-9. https://doi.org/10.2967/jnumed.115.156711.

35. Martinez-Möller A, Zikic D, Botnar RM, Bundschuh RA, Howe W, Ziegler SI, et al. Dual cardiac–respiratory gated

PET: implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging. 2007;34(9):1447–54.

https://doi.org/10.1007/s00259-007-0374-9.

Maughan et al. EJNMMI Physics  (2018) 5:7 Page 18 of 18

https://doi.org/10.1186/s40658-015-0122-3
http://2016.nss-mic.org/images/program/AbstractBook.pdf
http://2016.nss-mic.org/images/program/AbstractBook.pdf
https://doi.org/10.1118/1.4762403
https://doi.org/10.2967/jnumed.111.092726
https://doi.org/10.1109/TNS.2009.2015764
https://doi.org/10.1109/NSSMIC.2004.1466639
https://doi.org/10.1109/NSSMIC.2004.1466639
https://doi.org/10.1118/1.4922685
https://doi.org/10.1186/s40658-016-0138-3
https://doi.org/10.1371/journal.pone.0110401
https://doi.org/10.2967/jnumed.115.156711
https://doi.org/10.1007/s00259-007-0374-9

	Multi institutional quantitative phantom study of yttrium-90 PET in PET/MRI: the MR-QUEST study
	Authors

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Phantom preparation
	Image acquisition and reconstruction
	Image post-processing and analysis

	Results
	Discussion
	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

