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Abstract. Given a compact metric group G, we are interested in those semigroups
2 of continuous endomorphisms of G, possessing the following property: The only
infinite, closed, 2-invariant subset of G is G itself. Generalizing a one-dimensional
result of Furstenberg, we give here a full characterization—for the case of finite-
dimensional tori—of those commutative semigroups with the aforementioned prop-
erty.

1. Introduction. Let S be a multiplicative semigroup of integers. 2 is lacunary if all
the members of (a E 2|o > 0} are powers of a single integer a. Otherwise, 2 is
nonlacunary. With this terminology, Furstenberg proves in [1, p. 48] the following

Theorem. // 2 is a nonlacunary semigroup of integers and a is an irrational, then
2 a is dense modulo 1.

This theorem is a generalization of a theorem of Hardy and Littlewood, which
asserts that if r is a fixed positive integer and a is an irrational, then the set
[nra | n E N} is dense modulo 1.

From the point of view of the theory of diophantine approximations, we are in a
special case of the following general situation: Suppose G is a metric group and H is
a closed subgroup, which is invariant under a given commutative semigroup 5 of
continuous endomorphisms of G. We can form the subgroup H/S of G, consisting
of all the elements of G which are carried to H by some endomorphism in S. Now it
can be asked how closely, in a properly defined sense, can the elements of G be
approximated by elements of H/S. The theorem relates to the case G = R, H = Z,
and implies that if 5 is a nonlacunary semigroup, then for every irrational a E R
and for every e > 0 there is some m/s E Z/S such that

(1.1) \a- m/s\<e/s.

Restricting ourselves to the problem of approximating irrational numbers, we may
ask which sets S of positive integers have the property that every irrational a can be
approximated as in (1.1) by rationals with denominators in S. The theorem supplies
a complete answer in the case that 5 is a multiplicative semigroup. Such approxima-
tions are possible iff 5 is nonlacunary. (Actually, for lacunary 5 it is easy to find
irrationals a for which (1.1) is impossible for sufficiently small e > 0.)
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510 DANIEL BEREND

The theorem has a dynamic aspect also. Given a continuous operator on a
compact metric space, a basic problem is to describe the orbits of the points under
the operator. Of course, instead of considering only one operator (or, more precisely,
a one-parameter semigroup or group of operators), we may study the action
generated by several operators. An important notion in this connection is that of a
minimal system, i.e. a system in which the orbit of any point is dense in the space. A
special, highly important case is that of semigroups of continuous endomorphisms of
compact metric groups. In this case minimality is impossible; the unit of the group,
for example, always has a trivial orbit.

In this language the theorem is concerned with orbits of points of the circle group
T under a semigroup 2 of endomorphisms of T. It asserts that, unless 2 is a
one-parameter semigroup, the system is "almost minimal". That is, apart from the
torsion elements (the rationals), which have easily describable finite orbits, each
element gives rise to a dense orbit. The theorem is almost equivalent to the assertion
that an infinite, closed set E in T, which is invariant under a nonlacunary semigroup
of endomorphisms of T, is necessarily the whole of T.

The theorem is proved in two stages:
(1) First, it is shown that if the set E has the additional property of containing the

point 0 as a nonisolated point, then E is the whole group.
(2) Second, using results relating to the notion of disjointness, the case of arbitrary

sets is established.
The main theme of this paper is a generalization of the theorem to finite-dimen-

sional tori. We obtain necessary and sufficient conditions on a commutative semi-
group 2 of endomorphisms of Tr to have the property that an infinite, closed,
2-invariant subset of Tr is necessarily Tr itself. We might point out that these
conditions are surprisingly mild and that, even in higher dimensions, "most"
commutative semigroups (though not the one-parameter semigroups) satisfy them.

Theorem 2.1, which states these conditions, is formulated in §2. That section also
contains a few notations and definitions we use in the sequel.

In §3 we prove the necessity of the conditions of the theorem. For every
commutative 2, which does not fulfill the conditions, we build an infinite, closed,
2-invariant, proper subset of Tr.

The two following sections are devoted to the proof of the sufficiency of the
conditions. Similarly to the way of proof in the one-dimensional case, we first prove
in §4 that a closed, 2-invariant set, which contains 0 as a nonisolated point, is
necessarily the whole group. This part, which is rather trivial in the one-dimensional
case, is much more involved in the general case. In §5 we complete the proof, passing
to arbitrary infinite, closed, 2-invariant sets. The tools developed in [1] for the
one-dimensional case are sufficiently general to enable us to complete the proof in
our case as well.

In §6 the conditions of the theorem are discussed. We show that they are very
weak and how they can be verified in special cases.

I wish to express my gratitude to H. Furstenberg for the encouragement and the
helpful advice he gave me while working on the subject.
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2. The main theorem. Let Tr denote the /--dimensional torus considered as an
additive group: Tr = RyZr. The points of Tr are regarded as column vectors
x = ixx, x2,.. .,xr)T. We do not distinguish between a point x £ Tr and points of
Rr lying above it. The continuous endomorphisms of Tr correspond torXr integer
matrices, a denotes an endomorphism as well as the corresponding matrix. Lifting a
we get a linear transformation of Rr, denoted also by a. The action of an endomor-
phism a on a point x is given by a(x) = ox, to be understood as the product modulo
1 of the matrix a and the vector x.

Let 2 denote a semigroup of endomorphisms of Tr. To avoid trivialities, we
assume throughout that the identity endomorphism / belongs to 2, while the zero
endomorphism 0 does not. A set £ Ç Tr is ^.-invariant if a(£) E E for every a G 2.
A closed, 2-invariant set M is minimal if there are no closed, nonvoid, 2-invariant,
proper subsets of M.

Studying the conditions, under which the property now to be defined is satisfied,
is our main object of interest throughout the paper.

Definition 2.1. The semigroup 2 satisfies the ID property if the only infinite,
closed, 2-invariant subset of Tr is Tr itself (ID—infinite invariant is dense).

We can also say, more briefly, that 2 is ID. As already indicated, the restriction to
infinite sets in the definition is essential. In fact, considering the subgroups Tr[k] of
torsion elements of order dividing k, k ranging over the positive integers, we obtain
infinitely many fully invariant sets, i.e. sets which are invariant under all the
endomorphisms of Tr, and each of them is finite.

Definition 2.2. Two endomorphisms a, t are rationally dependent if o' = rm for
some nonzero integers /, m. Otherwise, they are rationally independent.

In a similar manner we define rational dependence and independence of pairs of
nonzero complex numbers.

Our principal result can now be formulated.

Theorem 2.1. The commutative semigroup 2 of endomorphisms of Tr is an ID
semigroup if and only if the following conditions are satisfied:

(1) There exists an endomorphism o in 2 such that the characteristic polynomial of o"
is irreducible over Z for every positive integer n.

(2) For every common eigenvector v of 2 there exists an endomorphism ov in 2 such
that the corresponding eigenvalue Xv of ov lies outside the unit disc in the complex
plane.

(3) 2 contains a pair of rationally independent endomorphisms.

Before proceeding to the proof of the theorem, one remark is in order. It will be
shown in the course of the proof that if a commutative semigroup 2 satisfies the first
condition of the theorem (or even a weaker one), then there exists a basis of C with
respect to which all the linear transformations in 2 are in diagonal form (see Lemma
3.4). The vectors of this basis are the common eigenvectors of 2, mentioned in the
theorem in the second condition.

3. The necessity of the conditions. Throughout most of this section 2 will denote a
commutative semigroup of endomorphisms of Tr, which is known to satisfy the ID

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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property. We shall prove a series of lemmas, which together imply that the three
conditions in Theorem 2.1 are satisfied.

For an endomorphism a we denote by/a its characteristic polynomial and by m„
its minimal polynomial.

Lemma 3.1. ma is irreducible over Z for every a G 2.

Proof. Suppose, to the contrary, that for some a G 2 we have the nontrivial
decomposition

(3.1) ma = gh,        ig,hEZ[x]).

Let
H={xETr\(g(o))(x) = 0).

H is a closed subgroup of Tr. Since gio) is a polynomial in a and 2 is
commutative, gio) commutes with every endomorphism in 2. Hence H is 2-
invariant. By the nontriviality of the decomposition (3.1) we see that the rank of the
matrix gio) satisfies the inequalities 0 < rank(g(a)) < r.

The left-hand side inequality shows that H is not the whole of Tr, while the
right-hand side shows that it is infinite.

Altogether, H is an infinite, closed, 2-invariant, proper subset of Tr, which is
impossible since 2 is ID. The contradiction proves the lemma.

Lemma 3.2. There exists a basis of C with respect to which every a G 2 is in
diagonal form.

Proof. Suppose we are given a basis of Cr and a subsemigroup 2' of 2 such that
every a G 2' is in diagonal form with respect to that basis. (In the initial stage we
have an arbitrary basis of Cr and the subsemigroup of 2, consisting solely of the
identity endomorphism.) For an endomorphism a G 2 and an eigenvalue X of a let

Va^={vEC'\oiv) = Xv).

Having a basis with respect to which 2' is in diagonal form means that C is the
direct sum of all its subspaces of the form na62,F0 X(o) (most of which are null),
where X: 2' -» C chooses for each a G 2' an eigenvalue of a. If for every a G 2 each
such subspace is contained in one of the subspaces Va x, X an eigenvalue of a, then 2
itself is in diagonal form with respect to the present basis. Assume, therefore, this is
not the case for some t G 2. Since 2 is commutative, every subspace of the form
rioS5:,F0 A(a) is 2-invariant. Examine the restriction t, of r to some subspace of this
form. Its minimal polynomial mT divides mT. In view of Lemma 3.1, mT is
irreducible over Z, and hence it has no multiple roots in C. Consequently, mT¡ also
has no multiple roots. It follows that t, is diagonalizable. Hence, in each subspace of
the form noe2,K(, X((J) we can find a basis, with respect to which the corresponding
restriction of r is in diagonal form. The union of all the bases obtained in this way
forms a basis of C, with respect to which the subsemigroup of 2, generated by 2'
and t, has diagonal form.

This change of basis, made in order to enable the augmentation of the subsemi-
group of 2 consisting of those transformations which are already in diagonal form,
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causes an increase in the number of the independent nontrivial subspaces of the
form noS2,F0 A(0). Hence the process must terminate after a finite number of steps.
The basis we have at this stage satisfies the conditions of the lemma.

Let us now fix some basis (ü(I), ü(2>,... ,v(r)) of C satisfying the conditions of the
lemma. For an endomorphism a G 2 we denote by X, aX2 „,.. .,Xra its eigenvalues
corresponding to this basis. We want to show that o is uniquely determined by A, a,
that is a, a = Xx T implies a = t. In fact, the semigroup of endomorphisms generated
by 2 and tp = a — t is still a commutative ID semigroup. Since X,=Xla — X,T =
0, the polynomial mf is divisible by x. Lemma 3.1 implies then that mv = x, which
means that tp = 0, whence a = t.

Consequently, instead of considering the semigroup 2, we may just as well
examine the set A, = {X, 0|a G 2}. A, is obviously a multiplicative semigroup of
nonzero complex numbers, each element in which is an algebraic number of order
not exceeding r over Q. We need information concerning the field extension of Q
obtained by adjoining the set A,. Let us denote this field by K.

Lemma 3.3. [K:Q] = r.

Proof. Every element of K has a concrete representation as a polynomial in
elements of A, with rational coefficients. Hence every element of K is an eigenvalue
of an r X r rational matrix. Thus K is an algebraic extension of Q, every element in
which is of a degree not exceeding r over Q. Hence [K : Q] < r.

Now suppose that [K:Q] = k < r. Consider the ring of endomorphisms 2'
generated by 2. Regarded as a multiplicative semigroup, 2' (without the zero
endomorphism) is commutative and satisfies the ID property. 2' is obviously in
diagonal form with respect to the basis v(X),v<2\...,v(r). Hence each a G 2' is
uniquely determined by X, 0. Consequently, 2' is isomorphic to some subring of the
ring of integers of K. This implies that 2', regarded as an additive group, is
isomorphic to some subgroup of Zk. But then 2' is isomorphic to Z1 for some / < k.
Let a,, a2,... ,o¡ be a system of generators of 2'. For an arbitrary one-dimensional
closed subgroup H of Tr, consider the subgroup %=xo¡iH). This subgroup is
infinite, closed and 2'-invariant, and it is at most /-dimensional. This contradicts the
ID property of 2', which proves the lemma.

Now we can prove the necessity of the first condition in Theorem 2.1.

Proposition 3.1. There exists some a G 2 such that fan is irreducible over Z for
every n E N.

Proof. Since the roots of/„» are X" „, X"2 „,...,X" „, it is sufficient to prove the
existence of an endomorphism a in 2 such that Q(X" 0) = K for every n EN.
Suppose, to the contrary, that there exists no such endomorphism in 2. Denoting by
Fx, F2,..., F¡ the proper sub fields of K, we find that for every a G 2 there exists a
positive integer n such that X" a G F¡ for some 1 < /" < /.

For an arbitrary subset A of K let

{Â= {a EK\3n EN,a" EA),       2A = {a G 2|X,    G A).
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Our assumption that the proposition fails to be true means then that

í = i
Let H be an arbitrary one-dimensional closed subgroup of Tr. For a set 2' of

endomorphisms of Tr and a subset A of Tr, we denote the set UoE2,a(^4) by 'S.'A. In
view of the foregoing decomposition of 2 it is clear that, in order to arrive at a
contradiction to 2 being ID, it is sufficient to show that for each 1 < i =£ / the
set 2 jf H is contained in a finite union of closed proper subgroups of Tr. So let F be
one of the fields F¡, 1 < / < /. To show that 2^/7 is contained in a finite union of
subgroups of Tr, it is sufficient to show that JF can be represented as

m

(3.2) {F =   IJ Fcij,       aj E K, 1 </ « m.
7=1

In fact, using the same arguments as the ones used in the proof of Lemma 3.3, we
observe that, if 2'Fa denotes the (additive) group generated by 2Fa , then 2'Fa H is
contained in a subgroup of Tr, the dimension of which does not exceed [F : Q]. Since
the decomposition (3.2) of {F leads to a corresponding decomposition of 2^,
namely 2y^ = W"=xSFa , the set S^H is contained in a finite union of proper
subgroups of Tr.

Let R* denote the multiplicative group of invertible elements of a ring R with a
unit element. F* is a subgroup of \[F*, which is in turn a subgroup of K*. To
establish a decomposition of JF as in (3.2) we only have to show that

(3.3) [■¡F*:F*]< oo.

Let a be an arbitrary element of fF*. For some positive integer s we have
(3.4) as = a E F*.

Let us recall a few definitions and basic results concerning the groups of fractional
ideals in F and in K, to be denoted by IF and by IK, respectively (see, for example,
Narkiewicz [3]).

( 1 ) Every fractional ideal & can be uniquely decomposed into a product of integer
powers of distinct prime ideals in the ring of integers of the field.

(2) There is a natural injection of IF into IK, whereby IF may be thought of as a
subset of IK.

(3) In particular, we are interested in the decomposition

(3.5) p = W]'Wr---^lh       (e(>l,K/<A)
of every prime in IF into a product of primes in IK. Each $, is said to lie above p.
Two ideals $,, $2, lying above distinct p,, p2, are themselves distinct. If in the
decomposition (3.5) there is some e, > 1, then p is ramified. Only a finite number of
primes in IF are ramified.

(4) In the group IF we distinguish a subgroup PIF, consisting of all principal
fractional ideals of F. The group IF/PIF, which is termed the group of ideal classes,
is finite.
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Returning to (3.4), we see that, in particular, the fractional ideals generated by as
and by a are the same. That is, we have the following equality in IK:

(3.6) (a)'=(fl).

Now we decompose (a) and (a) into products of primes:

(3.7) (a) = $f'^ • • X« G V
(3.8) (a)=b[>^---n'¿ElF.

Decomposing each p,, 1 < / < n, into a product of primes in IK, and substituting
(3.7) and (3.8) in (3.6), we are due to obtain an identity. Suppose that one of the
primes p, decomposes, say, as in (3.5). Then that part of (3.7) which is composed of
ideals lying above that p, is necessarily of the form &m where

&= %ex</e<$e22/e •■■'$ehh/e

with e = g.c.d. iex, e2,. ..,eh), and m is a positive integer. In particular, every
unramified p, which appears on the right-hand side of (3.8), appears (decomposed
perhaps) in an appropriate power in (3.7) also.

Hence there exist &x, 6£2,.. .,($,„ E IK (nontrivial roots of primes in IF) and
corresponding positive integers nx,n2,...,nw, such that

(a) = d&^&p • • • &Z',       0<mj< nj, 1 <j ^ w,

for some & E IF. Let $,, (S>2,...,%1 be a full system of elements of IF, mutually
noncongruent modulo PIF. Then

(3.9) (a) = (b)%&? •••&;',       0<mj<nJtl<j<w,

for some b E F and 1 < i < t.
Consider the subgroup of f~F* consisting of those a E \[F* such that (a) = (¿>)

for some b E F*. Denoting by 0^ the ring of integers of K, we readily see that this
group is just ®*,F* D fF*. Now

(3.10) [{F*: F*] =[{f*:0*;F* n /f*]-[0*F* n {¥*: F*].

The first factor on the right-hand side of (3.10) is finite by (3.9). Hence, to establish
(3.3) it remains to show that

(3.11) [e*F* n {F*: F*\ < oo.

We obviously have 0*F* n fF* = (0* D 4T*)F*. This implies

e*KF* n {f*/f* = 0* n /f*/0* n f*.

Consequently, (3.11) is equivalent to

(3.12) [0* n {F*:e%nF*] < oo.

Let QK denote the finite group of roots of unity lying in K. By Dirichlet's unit
theorem there exist units ex, e2,...,em eQ*. such that every tj G 0£ can be uniquely
represented in the form

(3.13) 1¡ = i.lfx¿i...¿¡lí
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where £ G tiK and i„ i2,...,im are integers. Let /Y denote the subgroup of 0£
consisting of those i) G 0£ with £ = 1 in their decomposition. We have

(3.14) [©* n {f* : 0* n f*] ^[0* n {Ë*: H n F*]

= [0* n /f*: //n yF~*]-[//n {f*: hn f*]

^[0* : #]• [// n /f* : // n F*] =10,1 ■ [// n /f* : // n F*].
Dirichlet's theorem establishes an isomorphism, given through (3.13), between H

and Zm, carrying the two subgroups H n fF* and H n F* of H into the subgroups
T, and T2 of Z"', respectively. Of course Yx D Y2. Since from (3.13) it is clear that
every element of Yx has some nonzero multiple lying in Y2, both groups are of the
same rank. Since every subgroup of Zm is isomorphic to Z" for some 0 < n *£ m,
and since a subgroup of rank n of Z" is of finite index in Z", we obtain

[h n {f* : h n F*] = [r, : r2] < oo.

Thus, applying (3.14), we see that (3.12) is indeed true, which completes the proof
of the proposition.

For a polynomial / over Q we denote by Q( / ) the splitting field of / over Q. We
use the same notation for an automorphism of Q( / ) and for its natural extension to
Q(/)", n being any positive integer. Now we can formulate the following lemma,
which helps us to visualize 2 more clearly. Since the lemma will be used in §4 also,
we do not assume that 2 is an ID semigroup.

Lemma 3.4. Let S be a commutative semigroup of endomorphisms of Tr. Assume
there is some o in 2 withfa irreducible over Z. Then:

(1) The roots X, „, X2a,...,Xro offa are mutually distinct.
(2) There exists some basis u(1), u<2),... ,v(r)ofC such that:
(a) 2 is in diagonal form with respect to this basis.
(b) vin E Q(X,Jfor all 1 < i < r.
(c) // \p is any element of the Galois group of the extension  Q(/„)/Q then

(3) Every endomorphism r in 2 can be uniquely expressed in the form r = 1r¡=¿a¡o'
with a¡ E Q for all 0 *£ 1< r - 1.

Proof. The first part follows from the irreducibility of fa.
To construct a basis with the required properties we proceed as follows. The

homogeneous system of linear equations over Q(X, „),

(3.15) (a-X,,> = 0,
is known to have a nontrivial solution v in C. Hence it also has a nontrivial solution
v^inQiXXay.

Let the elements of the Galois group of the extension Q(/0)/Q act on the system
of equalities obtained from (3.15) after replacing v with ü(1). We obtain solutions
v(2),...,v(r) of the systems produced by (3.15) when substituting X2o,... ,Xr „,
respectively, for X, 0. Evidently, the resulting vectors o(I), v(2),.. .,v(r) satisfy (2)(b)
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and they are eigenvectors of o, corresponding to the eigenvalues X, a, X2„,...,Xra,
respectively. Hence, they form a basis of C. It is now clear that they satisfy (2)(c)
also.

Since a is in diagonal form with respect to the chosen basis, (2)(a) is a conse-
quence of (3), whence it remains to prove only the latter part.

Let us determine the algebra of all matrices X over some subfield L of C
commuting with a, to be denoted by CL(o). Since the condition of commuting
oX = Xo is given by a homogeneous system of linear equations over Q, dim(CL(o))
is independent of the choice of L. Hence dim(CQ(a)) = dim(Cc(a)). Let ö be the
diagonal matrix representing a with respect to the basis u(l), r/2),... ,v(r). It is easy to
verify that dim(Cc(o)) = dim(Cc(d)). Now the elements on the main diagonal of ö
are X, a, X2 „,... ,Xr a. Since they are mutually distinct, Cc(rJ) is just the /--dimen-
sional algebra of all diagonal matrices. Hence CQ( o ) is also /--dimensional.

The algebra PQ(o), consisting of all polynomials in a with rational coefficients, is
obviously contained in CQ(o). Since all the eigenvalues of o are distinct we have
ma = fa. Hence PQ(o) is also /--dimensional. Consequently CQ(o) = Pq(o), and the
last part of the lemma follows.

Now we fix a basis i>(1), v(1),...,v(r) satisfying the conditions of the lemma. We
return to the proof that an ID semigroup 2 satisfies the conditions in Theorem 2.1.
The necessity of the second condition is seen in the following

Lemma 3.5. For every Ki< r there exists an endomorphism o¡ in 2 such that
|A,,0,.|>1.

Proof. Suppose, to the contrary, that, for example, |Xlj0|< 1 for all a G 2. To
arrive at a contradiction, we shall build an infinite, closed, 2-invariant, proper
subset of Tr. Let us select an endomorphism t G 2 with fT irreducible. We dis-
tinguish between two cases.

Case I. X, T is real.
In this case we see, using Lemma 3.4, that X, „ is real for all a G 2 and that the

vector t>(1) is real as well. It is clear that, for sufficiently small a > 0, the projection of
the line segment

ta= {tvw\t ER, \t\<a) ÇR'

on Tr may serve as the required set.
Case II. X, T is nonreal.
In this case X, T also is an eigenvalue of t, say X2t =X, t, where the bar denotes

complex conjugation. By Lemma 3.4 we have vl2) = u(1) and X2a=Xx a for all
a G 2. As a set with the required properties we may choose the projection of an
ellipse (its interior included) of the form

&a= [zvm + zvi2)\zE C, |z|<fl} CRr

on Tr for some sufficiently small a > 0. This completes the proof.
Now we turn to the proof of the necessity of the third condition in Theorem 2.1.

First, we show that it is impossible for a one-parameter semigroup, or group, to

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



518 DANIEL BEREND

satisfy the ID property. For a matrix o we denote by 5(a) the semigroup consisting
of all the nonnegative powers of a and by G(o) the group consisting of all integral
powers of o.

Lemma 3.6. Let o be an endomorphism ofTr. Then:
( 1) S(o) does not satisfy the ID property.
(2) If a is an automorphism then G(o) is not ID as well.

Proof. We have to consider only the case in which fa is irreducible. We treat
separately the case in which a is an automorphism and the case in which it is not,
building in each an infinite, closed, proper subset of Tr, which is invariant under the
relevant semigroup.

Case I. o is not an automorphism.
In view of Lemma 3.5 we may assume that | X, „ |> 1 for all 1 < / < r.
Choose some nonzero integral point e in Rr, say e = (1,0,..., 0)r. We assert that

the projection on Tr of the set

e;(e) = {a-"(e)\n>0} EW,
which is the orbit of e in Rr under the linear transformation o~x, has the needed
properties. In fact, it is obviously an S( o )-invariant, proper subset of Tr. Now,
decompose e in C into a sum of eigenvectors of a:

(3.16) e = axv0) + a2v{2) + ■■• +arv{r).

For every n>0we have

o-(e) = xi>,ü<" + x-2>2t><2> + • • • +x;>y>.

Hence o~"(e) -» 0. Since e EW projects into 0 G Tr, this implies that our set is
closed. Its infinity follows from the fact that o~"(e) ^ 0 for all /i.

Case II. a is an automorphism.
In view of Lemma 3.5 we may assume that a has no eigenvalues on the unit circle.

Suppose, for example, that |X, J< 1 for 1 < / < k, while |X, 0|> 1 for k < i : < r,
where 1 < k < r.

Select again the point e E W, used in the previous case, and perform the
decomposition (3.16). Choose the point

(3.17) v = e - (axvw + ■■■ +akv(k)) = ak+xv(k+X) + ■■■ +arv(r).

The first representation of v shows that o"(v)   ->   0 (mod 1), while the second
n — oo

shows that o~"iv)   -»   0. Hence the closure of the projection of the two-sided orbit
n-*oo

of v under a,

ea(v)= {o"(v)\n EZ) EW,

on Tr is just that projection together with the point 0. This set is, therefore, a closed,
proper subset of Tr, which is evidently also G(a)-invariant.

It remains to prove that our set is infinite. For this it is obviously sufficient to
show that o"(v) G Zr for every n G Z. First, we deal with the point v. The numbers
ax,a2,...,ar, used in (3.17) to define v, are uniquely determined by the nonhomoge-
neous system of linear equations (3.16). Since the coefficients of that system belong
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to Q(/0), we have a, G Q(/0) for every 1 < i < r. Let \p be an automorphism of the
extension Q(/„)/Q, which carries, say, v(k+X) to v(X). By (3.17) we have ¡p(v) ¥= v,
whence v E Qr. Since o"(e) ¥= 0 for all n, the same reasoning applies to show that
o"(v) G Qr for all n. This completes the proof.

Now we can complete the proof of the necessity of the third condition in Theorem
2.1.

Proposition 3.2. 2 contains a pair of rationally independent endomorphisms.

Proof. Choose an endomorphism a G 2 with fa« irreducible for all n > 0. We
want to find an endomorphism t G 2, rationally independent of a.

Denote by DR(o) the set of matrices over the ring R, which commute with a and
are rationally dependent of it. From Lemma 3.4 it follows that DQ(a) is a commuta-
tive semigroup of matrices. To prove the proposition it is sufficient to show that its
subsemigroup Dz(o) is not ID.

The main idea is to show that Dz(o) is not much larger than the multiplicative
semigroup, or group, generated by a, which was shown in Lemma 3.6 not to satisfy
the ID property. More precisely, we claim that Dz(o) may be represented in the
form

(3.18) Dz(a)=  U G(o)o,
i=i

if a is an automorphism, and in the form

s

(3.19) Dz(o)=  (JS(o-).o-,
i=i

if a is not an automorphism, for a suitable finite set of endomorphisms o,, o2,...,os
in Dzio).

Suppose that such a decomposition has been accomplished. Let E be an infinite,
closed, G(a )-invariant (or 5(o)-invariant), proper subset of Tr. The set Ex =
Usj=xo¡iE) is obviously infinite, closed and Dz(a)-invariant. To show that Ex is a
proper subset of Tr we notice that, since fa„ is irreducible over Z for every positive n,
fa has no roots of unity among its eigenvalues. (Actually, this is not exactly so if
r = 1, in which case a = 1 and a = -1 are roots of unity, although they satisfy the
irreducibility condition. Here we have to choose o¥=±l, which is, of course,
possible.) Hence a is ergodic, i.e., every closed, 5(a)-invariant, proper subset of Tr is
nowhere dense [1, pp. 26-27]. This implies that Ex is a proper subset of Tr. Hence,
Dz(o) does not satisfy the ID property.

Thus, it remains only to establish the possibility of representing Dz(o) as in (3.18)
or (3.19). Let t be any element of Dz(o). Suppose

(3.20) r' = om

for some nonzero integers /, m. In particular we have

(3.21) Ài,t - AT,0.
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The solutions X,T G Kof (3.21) are in correspondence with the solutions t G DQio)
of (3.20). Hence we only have to find the solutions of (3.21). We distinguish between
two cases.

Case I. a is an automorphism.
In this case the numbers XKo and X, T belong to 6*.. Using Dirichlet's unit theorem

we decompose X | 0:

*..„ = £ • ek,42 ■■■<"     (¿eö„ k, e z, i « i « u).
Now X, T solves (3.21) for some /, m iff it is of the form

where £' is any element of QK and i G £Z, A: being the g.c.d. of A,, /c2,... ,ku. Hence

[DQ(a):G(a)]=k\iiK\< co.

Consequently, we obtain [Dz(o) : Gio)] < oo, proving the feasibility of a decom-
position of the form (3.18).

Case II. a is not an automorphism.
From (3.21) we obtain, by passing to IK, that (X, T)' = (X, a)m. Let us decompose

(X, „) into a product of primes in IK:

(XKo) = pf'p^---p^.
It is immediately seen that (X, T) is necessarily of the form

(3.22) (Xi.rHfrVî** •••*?■
withí G jZ, k being the g.c.d. of kx, k2,...,kv.

Now, the set of numbers t, for which the ideal ip'xk[p22 • ■ • $'ki is actually
generated by a solution X, T of (3.21), forms a subgroup of \Z containing Z, say,
pZ. For any i G -pZ there are exactly lfi^-1 solutions X, T of (3.21) generating the
ideal p{*'p2*2 ' ' ' P'/1- ^n fact> if ai.t satisfies both of these conditions, then the set of
all elements satisfying them is just fi^X, T. Hence [DQ(o) : G(o)] = k'\Q,K\.

For every t G Dz(o) the number t corresponding to t in (3.22) is nonnegative.
Hence it is evident that if out of every coset of DQ(o) modulo G(o) we select that
endomorphism t G Dz(o), if there exists any, for which / is the minimum possible,
then we obtain a finite set of endomorphisms, for which the decomposition (3.19)
holds. This proves the proposition.

Thus, the conditions stated in Theorem 2.1 have been shown to be necessary for 2
to be an ID semigroup, so we turn to prove their sufficiency.

4. Sufficiency—sets with 0 as a nonisolated point. Throughout this section 2
denotes a commutative semigroup satisfying the conditions stated in Theorem 2.1. E
is a closed, 2-invariant subset of Tr which contains 0 as a nonisolated point. Our
aim is to show that E is necessarily Tr itself, which will prove that 2 satisfies what
might be called a restricted ID property.

Lifting E to W E C we obtain there a set, also denoted by E. We fix a basis u(1),
u(2),... ,D(r) of C having the properties stated in Lemma 3.4. The matrix U, built by
the column vectors u(1), o<2),... ,v(r), is the connecting link between the representa-
tions of vectors and of transformations relative to the standard basis of Cr and
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relative to the new one. The semigroup obtained from 2 by diagonalization is
denoted by 2; the matrices corresponding to o, t G 2—by 5, f G 2. The set of
vectors of coefficients of all the points of E with respect to the new basis is denoted
by É. Evidently, Ë is a closed, 2-invariant subset of Cr containing 0 as a nonisolated
point. We note, for subsequent use, that a point in C is actually in Rr iff in its
representation with respect to the new basis u(1>, u(2),.. . ,u<r), any two coefficients,
corresponding to two complex conjugate basis vectors, are conjugate themselves.

Our computations, aimed at showing that E = Tr, will be done concerning the set
É; the simple way 2 acts on C makes this convenient. We shall prove that É is
sufficiently "big" to ensure that E, as a subset of Tr, is the entire group.

F is known to contain a sequence of nonzero points converging to 0. We intend to
work in a nontrivial 2-invariant subspace of C, minimal with respect to the
property of containing such a sequence of points of E. The following lemma proves
that 2-invariant subspaces of C are of an extremely simple character.

Lemma 4.1. A subspace V of C is S-invariant iff it is spanned by some subset of the
standard basis.

The if part of the lemma follows immediately from 2 being in diagonal form. For
the opposite direction it is only necessary to make use of the fact that there exists a
ö E 2 with its diagonal elements mutually distinct; a subspace, invariant under such
a transformation, is easily shown to be of the required form.

The vectors of the standard basis of Cr are denoted by eu\ 1 < ¡< r, where
e(1> = (l,0,...,0)r,etc.

Without loss of generality we assume that the subspace, spanned by the first k
(> 1) vectors of the standard basis, to be denoted by Vk, is a minimal, nonzero,
2-invariant subspace of C, containing a sequence of nonzero points of Ë, converg-
ing to 0. Let («<m))^=| be such a sequence. We may assume that all the components
of M(m) are nonzero for every m. Points of Vk will usually be denoted as rc-dimen-
sional vectors, omitting their last (r — k) zero components. For the time being we
work in C only with points belonging to Vk.

Lemma 4.2. Let a G 2. Then either |X, „|> 1 for all l^i^k or |X, a|< 1 for all
Ki<k.

Proof. Assume, to the contrary, that for some a G 2 we have, say, |X, „|> 1 for
1 %=.: < / and | X, „ |« 1 for / < i < k, where 1 < / < k. Let N(o) = max,^¿ | X, a |.
For a > 0 consider the annular region

ftfl= {(zx,...,zk)TEVk\\z,\^aN(o)Vl*Zi^k,  max \z,\>a\.

For all sufficiently large m there exists a positive integerym such that öJm(ui-m)) E 3la.
Since 31 a is compact there is some limit point w = w(a) of this sequence, w belongs
to 31 a and hence it is nonzero. Since F is à-invariant and closed we have vv G Ê.
Finally, our assumption concerning the eigenvalues of a implies that w E V¡.

Applying the same construction to a sequence (aj)f=x decreasing to 0, instead of
to a single number a, we obtain a sequence (w(J))JLx of nonzero points in Ê
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converging to 0, each point in which lies in V¡. But this, contradicting the minimality
property of Vk, proves the lemma.

The former lemmas enable us to prove that quite a number of semigroups possess
the property under investigation, namely that a closed, invariant set containing 0 as
a nonisolated point, is necessarily the whole group.

Example 4.1. Let 2 be the semigroup of endomorphisms of T2 generated by
a = (22°) and t = (°x\). We have X, a = X2o = 2, X, T = (1 + J5)/2 and X2 T =
(1 — v/5 )/2. Since all the eigenvalues are real, we can diagonalize 2 over R. Since
(1 + v/5 )/2 > 1 while |(1 - v/5 )|/2 < 1, Lemma 4.2 proves that E contains a
sequence of points converging to 0 lying on one of the two characteristic lines of 2.
Since on such a line the points of E form a set invariant under multiplication by 2
and by (1 + v/5~)/2 (or (1 — v/5 )/2), the problem is actually reduced to a one-di-
mensional one. Since the numbers 2 and (1 + v/5 )/2 (as well as the numbers 2 and
(1 — v/5~)/2) are readily seen to be rationally independent, the ideas of [1, Lemmas
IV.1-IV.2] can be adopted for our case to prove that E contains one-half of one of
the characteristic lines. Since both Unes are of irrational slopes, they are dense in T2,
whence E = T2.

Lemma 4.2 and the fact that for each 1 < /' < r there is some a G 2 with | X, 0 [> 1
imply together the existence of some a G 2 for which

(4.1) |A„fl|>l,       \<i<k.

Lemma 4.3. If o ES satisfies (4.1) then there exists some point w(0) G É, all of
whose coordinates are nonzero, such that the sequence defined by

(4.2) u(n) = ö"'(u(0)),       «>0,

forms a sequence of points in E which approaches 0.

Proof. The same construction as the one applied in the proof of Lemma 4.2
enables us to find a point w(0) G É, a sequence (i<(m))"=1 of points in E converging
to 0 and a sequence ( jm)"=, of positive integers such that fjy"'(¿7(m))   -»    w(0).

m-. oo
Obviously, jm tends to infinity with m. Hence, for every n, the sequence (um-")™=x

defined by
Um-" = öJ™-"(ü(m)), »1>1,

belongs to É for sufficiently large »i. Since the sequence converges to ö~"(u(0)), the
lemma is established.

Lemma 4.4. If o, r G 2 then
(4.3) log|X,,T|/log|X,,0|=a,        Ki<k,

for some a, dependent on a and r, but not on i (if the denominator vanishes for some i
then it vanishes for every i).

Proof. It is sufficient to establish (4.3) for some fixed a G 2 and all t G 2. Hence
we may assume that a satisfies (4.1). We may also assume that a satisfies (4.1). In
fact, for a sufficiently large m the endomorphism omr satisfies (4.1), and once (4.3) is
established for ct"V instead of for t, it follows for t as well.
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Suppose, to the contrary, that, for example,

, log|X,.T|/log|X„J=«,       1 </</,
1 ' ' log|X,,T|/log|X,.a|<«,       Ki<k,

for some 1 < / < k.
For every nonnegative integer h consider the sequence iwj-h)cf=h of points in Ë

defined by
(4.5) wJ-h = fJ-hiu{[Ja]))

where (M(n))*=0 is a sequence satisfying the conditions of Lemma 4.3. (For a real
number x we denote by [x] and {x} its integral part and its fractional part,
respectively.)

For suitable real numbers ß, and y,, 1 < i < k, we can decompose the eigenvalues
of a and t into

(4.6) \,„=|A„0| •<?(&),       Ki<k,

A,,t=|A,,t| •<?(?,), Ki<k,

where e(x) = e2*'* for x E R. Denoting by v¡, 1 < i < k, the components of the
vector v E Vk,we obtain by (4.4) for some positive numbers e„ 1 < i < k,

k
(4.7)    wj-h = fj~hö-[ja]iu(0)) = 2 x^x-^yv'»

/=1

= 2 \Krrhe(U - h)y,)\X,J-y°xei-[ja}ß,)ur)e"
ï=i

= 2 \Kr\-h\Ko\UaH(j - h)y¡-[ja^¡)ufV^
1=1

+   2   \Kr\-Jc'~h\Ka\UaHÜ~h)yi-[ja]ßi)ufVi\
l = l+\

The sequence iwj'h)f=h is now immediately seen to be bounded for every h. Let
w(h) be some limit point of the sequence. Obviously, w{h) E V¡. Since u{0) ̂  0 for all
1 ^ /' < k, w(h) is nonzero. Finally, (w(/,))£L, is a sequence of points in Ë, converg-
ing to 0. This contradicts the minimality property of Vk, which proves the lemma.

Example 4.2. The last lemma is sufficient to reduce the problem to the one-dimen-
sional case for a large number of commutative semigroups. In fact, Vk is one-dimen-
sional unless for some /* and/ the ratio log|X, „ |/log|X ■_„ | is the same for all a G 2.
Suppose 2 is generated by two commuting, rationally independent endomorphisms a
and t, /„„ being irreducible over Z for all n. In case all eigenvalues are real, it is
unclear whether an equality of the form

logX/.o/logA,.,, = logX, T/logXy T

can occur. (We dispose of the absolute value signs by passing to a2 and t2 if
necessary.) At any rate, if no such equality is satisfied, we can show, as indicated in
Example 4.1, that E contains one-half of one of the characteristic Unes. It can be
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shown that, due to the irreducibility of /„, the projection of such a ray on Tr is
necessarily dense, whence E = Tr.

Returning to the general case, we are now going to prove that E contains an arc of
a "nice" curve of a very definite character.

Lemma 4.5. Let a G 2 satisfy (4.1). There are integers l0 5» 0, /,,.. .,lk, not all zero,
and a positive number t' such that the vector w{l) defined by

(4.8) w^= 2|A,,o|/°'e(/,í + /0íA)"í0V(')

belongs to Ë for every t E [0, t']. (Here w(0) is as in Lemma 4.3 and ßx, ß2,.. .,ßk are
given through (4.6).)

Proof. Let t G 2 be rationally independent of a. We may assume that t satisfies
(4.1). In fact, for some sufficiently large m the endomorphism om(i) satisfies (4.1)
and is also rationally independent of o. Hence, omr may be chosen instead of t.

We now consider the sequence (w(J))JL0, which arises from the class of sequences
(wJ-h)jLh, defined by (4.5), in the special case h = 0:

WU) = fTYyU«])).

By Lemma 4.4, (4.7) reads

(4.9) w^= 2\*iJJa]eUyi-[j<*]ß,h\0)eU)
i=]

= 2 |X,,op>e({;(Y,-«/3,)}),({/«}f3,>í0V'>.
;=1

The rational independence of o and t implies that the vector ({a},
[yx — aßx),...,{yk — aßk)), considered as an element of T*+1, is not a torsion
element. In fact, assume it is of finite order. Then, in particular, for suitable integers
p,q, px, qx we have a = p/q and yx — otßx = px/qx. Hence by (4.3) and (4.6) we
obtain Xf*1 = X^. But this implies opq' = rqq\ contradicting the rational indepen-
dence of a and t. Thus, the element in question is a torsion element.

The closure of the set [x" \ n E N}, x being an element of a given compact group,
forms a subgroup. Every infinite closed subgroup of T*+1 contains a connected
one-dimensional subgroup, the form of which is {i{l0t}, {V}> • • • > (AO) 10 < í < 1},
where /0, lx,...,lk are integers, not all zero, and we may assume that ¡0 > 0. Hence,
since Ë is closed and wU) E Ë for all/, the equality (4.9) proves the lemma.

Let us now summarize what we have achieved up to this point and describe the
strategy to be applied in the following. Starting with a set Ë, known to be closed and
2-invariant and to contain 0 as a nonisolated point, we proved that Ë contains an
arc of a "nice" curve. (The curve is elliptical in case l0 = 0 and spiral in case /0 > 0.)
From now on we use only this arc and its images under large powers of an
endomorphism satisfying (4.1). We want to establish the existence of arbitrarily long
subarcs of these images, which are "almost straight". Returning to Tr, F will prove
to contain such arcs as well. Passing to the limit, we shall find in F a translate of
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some infinite subgroup of Tr. Having such exact information, we shall be able to
show that the set E is the whole of Tr.

We note that, in some sense, the way we adopt may seem excessively lengthy. In
fact, in course of the proof of Lemma 4.5 we were content to find some one-dimen-
sional subgroup in the closure of the set {({/«},{/( Yi ~~ aß \ )}>••■>{/( Y* ~~ <*ßk )} ) 1/
= 0,1,2,...}. The group actually generated may be much larger. The reason for not
attempting to use the entire group is the difficulty of characterizing it. At any rate, in
some cases this group is in fact exactly one-dimensional.

Example 4.3. Let 2 be generated by o = (¡52 ) and t = (_{*). The eigenvalues of t
are 2 ± if3 . Since the components of each real vector with respect to the basis v(X),
t>(2) are conjugate, such a vector is uniquely determined by its first component. The
subset of C, formed by taking for each vector in E its first component, contains 0 as
a nonisolated point and is invariant under multiplication by 2 and 2 + if3 . From
the proof of Lemma 4.5 it can be seen that, unless the three numbers 1, U^vT,
(27r)"'arctanv/3/2 are linearly dependent over Q, the set in question is C itself,
which implies that F = T2. Since an attempt at characterizing for every case the
exact subset of C obtained in this way seems impracticable, we are content to know
that E contains in this case an arc of a spiral.

As another example, let 2 be generated by o = (q5°) and t = (\~\). We have
X, T = 3 + 4/ and X2t = 3 — 4/, so that the eigenvalues of both o and t are of
modulus 5. Here, the resulting subset of C contains 0 as a nonisolated point and is
invariant under multiplication by 5 and by 3 + 4i. Such a set is not necessarily C
itself. The union of all circles, whose centers are at the origin and whose radii are of
the form 5k,kan arbitrary integer, is an example of a set having these properties.

Let us return to the general case. A set A in a metric space ( X, d ) forms an e-net
for the set B if for every b E B there exists an a E A such that d(a, b) < e. With this
definition we state

Lemma 4.6. For every e > 0, E forms an e-net for arbitrarily long line segments in
Vk-

Proof. We start with an endomorphism o satisfying (4.1) and an arc {w(,)|0 < t
«; t'} in F, as given by Lemma 4.5. We shall use images of this arc under high
powers of ö and show that they form e-nets for long line segments. Define, therefore,

m,™.' = àm(wU)),       0 < t « t', m = 0,1,2,....

By (4.8) we have

*-•'= 2 \ia\\jjMht + lo*ßj)"T>'U)-
7=1

To obtain a line segment for which the arc {wm''|0 < t < t'} is a good approxi-
mation, we naturally select the segment formed by taking the linear part of that arc
(expanding vvm'' into a power series in t). Hence we define

k
(4.10) t>*-' = I X7,0(l + /0rln|A,>o| +2»/((, + l^)t)uf^\

7 = 1

0<i <t',m = 0,1,2,....
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First we want to examine how closely wmJ approximates v"'-':

<"'' - »,""' = X7,o(exp(/0/ln|X„a| +2wi(lj + /„£»

-I - l0tm\\jj -2m(lj + l0ßj)t)-uf\       1 <j < k.
It is easily seen that

|exp(z) - 1 - z|<|z|2exp(|z|)/2,        z G C.

Hence

\wp-' - «7 ' | ̂  I A, .„ Tc72i 2exp( cyr ) - j M)°> 1/2

<#2ixMr,    \<j<k,

where

cj = ((/0ln|X,,o|)2 + (2w{lj + l0ßj)f)V2,   Cj = c>xp(c/)-|«f 1/2.

Suppose, for example, that |Xlo| is maximal among all the |X „|, 1 </ < k.
Using some norm || • || on Vk, we obtain for some c, independent of t and m,

(4.11) \\w"'-' -vmJ\\^ct2\XXa\m,       0<t<t',m = 0,l,2,....

The expression appearing on the right-hand side of (4.11) is quite large if m is
large, unless t is restricted to be small. Hence, we take only the partial arcs

g(«)= {wm-'\0<t<tm} CE,       m = 0,1,2,...,

and the corresponding line segments

§(«)= {um-'|0*Sf<fm} ç Vk,       m = 0,1,2,....

For every e > 0, we want the set S(m) to form an e-net for the set i<m) for
sufficiently large m. In view of (4.11) a sufficient condition for this is

(4.12) f2|Xli0r   -   0.
m~' oo

It is also desired that the length of §(m) will tend to infinity with m. Let i(0, r, e)
denote the line segment whose center is at 0, of radius r and in the same direction as
the unit vector e, that is,

ñiO,r,e)= {0 + te\\t\^r}.

Let §(m) = i(Ö(m), f(m\ è(m)), m = 0,1,2,.... By (4.10) we have, for some d > 0,
r{m) 5* dtm\XXa\m. (Actually, this is true only if /0 and /, are not both zero. If l0 = 0
then we have to choose among all indices/, for which l} ¥= 0, that/ for which | Xy 01 is
maximal. Both (4.11) and the last inequality are seen to hold with that/. Alterna-
tively, we observe that, in the proof of Lemma 4.5, l0, lx,...,lk could have been
chosen with l0 and /, not both zero.)

Hence we need also

(4.13) fJXli0r   -    oo.
m-* oo
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Now, there is no difficulty in choosing (fm)m=o in such a way that both (4.12) and
(4.13) hold. For example, tm =\XX J'3m/4.

The line segments Tm), m > 0, satisfy the conditions of the lemma.

Proposition 4.1. For every e > 0, E forms an e-net for arbitrarily long line segments
in W.

Proof. Instead of the sets &(m) and ¥m), m>0, used in the proof of Lemma 4.6,
we now take the sets £<m) and á(m), which are the corresponding sets before the
diagonalization, i.e. S(m) = U(&(m)), 5(m) = U(¥m)), m > 0 (U being the matrix
built of the basis vectors v(X\ o(2),... ,v(r), represented relative to the standard basis).

Since U is nonsingular there exist constants a2> ax > 0 such that

a,||M(2> - «(1)|| < ||t/(M(2>) - U(u^)\\ < a2||u<2) - w(1)||,       M(1>, h(2> G Cr

The left inequality shows that the lengths of the segments 9(m) tend to infinity with
m; the right one that for every e > 0, S(m) forms an e-net for i<m) for sufficiently
large m.

The only point yet to be proved is that the segments i(m), m>0, are contained in
Rr. According to the remarks at the outset of this section, we need only verify that if,
for_example, v(2) = v°\ then v^' = v'xn''. But if u(2) =vm then X2a = \a and u20)
= wj0) Now we see that in (4.6) we can take ß2 = -/?, and y2 = -yx (since (4.6)
determines these numbers only modulo 1). The construction of the group
{({lot),{lxt),...,{lkt))\0 < t < t') in the proof of Lemma 4.5 shows then that
l2 = -/,. By (4.10) we finally have v2'( =vlxn,t. Hence the segment i<m) may indeed
be assumed to lie in Rr, which completes the proof.

Proposition 4.2. E contains a translate of some infinite, closed subgroup ofT'.

Proof. Let the sequence of line segments, the existence of which was established
in Proposition 4.1, be given by 3(m) = 4(0(m), r(m\ z{m)), m = 0,1,2,....

Let w denote the natural projection of Rr on Tr. By the compactness of Tr and of
the unit sphere Sr~ ' in Rr we may assume, passing to a subsequence if necessary,
that

tr(0{m))   ^   O'er,     r(m>   -    oo,    z(m)   ^   z'6SH.
m-*oo m-*oo m-*oo

Now we claim that the Une passing through 0' and in the same direction as z',
which may be denoted by 9(0', oo, z'), is contained in E. In fact, given any point in
i(0', oo, z'), there are points arbitrarily close to it in i(m) for sufficiently large m.
Since E is closed and contains points arbitrarily close to these, it contains the whole
line 4(0', oo, z').

The proposition follows now from the fact that the closure of a Une in Tr is a
translate of some subgroup of Tr.

The former results in this section were independent of the fact that 2 contains an
endomorphism a with /0» irreducible over Z for all n. Only the much weaker
property of 2 being diagonalizable was assumed. Thus, Proposition 4.2 holds, for
example, for the semigroup generated by (l2) and (1°), which is obviously not an
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ID semigroup. Now we have to utilize the existence of such a a in 2, but first we
need the following

Lemma 4.7. Let G be a compact, abelian, metric group and let Y be the dual group. A
sequence (Gm)^=, of closed subgroups of G satisfies Gm   -»    G (/« the Hausdorff

m—* oo
metric) iff for every nonzero y E Y we have y G Ann(Gm) for sufficiently large m
iwhere Ann(vV) denotes the annihilator in Y of a closed subgroup H of G).

Proof. The "only if" part is trivial, so we turn to prove the "if" part.
To prove that Gm   -»    G it is certainly sufficient to show that ¡im   ->    jtt in the

m~*<x m -* oo
weak topology of measures, where pm and ju denote the Haar measures of G„, and G,
respectively. Since Y is discrete, this is equivalent to showing that

(4.14) fy(x)dpm(x)   -    (y(x)dp(x)    Vy G Y.
•'G m->oo  •'G

Let v be either one of the ¡im, m E N, or p. Then

¡y(x)dv(x) = fzd{poy-x)(z).
jg jt

(Here T is the unit circle in the complex plane.) The measure v ° y"1, induced by v
on the subgroup y(G) of T, is clearly a translation-invariant measure on y(G),
whence it is the Haar measure of y(G). It follows that, unless the restriction of y to
Gm is the trivial character, the integral on the left-hand side of (4.14) vanishes. But
the conditions of the lemma guarantee that if y is nontrivial on G, then for
sufficiently large m its restriction to Gm is non tri vial as well. Thus (4.14) holds, which
proves the lemma.

We shall have to apply the lemma during the proof of the next proposition. The
dual group of Tr is Zr, the points of which are regarded as row vectors y =
(yx, y2,... ,yr). The action of y on a point x = (xx, x2,. ..,xr)T in Tr is given by
Y(*) = e(2rJ=xyjXj).

Proposition 4.3. Let o be an endomorphism ofTr such that /„. is irreducible over Z
for every positive integer n, and let H be an infinite closed subgroup of Tr. Then there
exists a sequence (m¡)f=x of positive integers such that om'(H)  -»   Tr.

/—00

Proof. In view of Lemma 4.7 it is sufficient to establish the existence of a
sequence (m,) such that for every nonzero y E Zr we have y E Ann(om'(H)) for
sufficiently large /. Suppose, to the contrary, that no such sequence exists. Then there
exists a finite set of nonzero characters y(1), y(2),... ,y{s) such that for every positive
integer m we have y E A.nn(om(H)) for some i. In other words, every positive
integer belongs to one of the following subsets of N:

N¡= {m GN|y(/) G Ann(om(H))},       l*zi*Zs.

Consequently, by a well-known theorem of van der Waerden (see, for example,
Khinchin [2]), there is some /0, 1 < i0 < s, such that Nifj contains arbitrarily long
arithmetic progressions. In particular, for some positive integers a and d we have a,
a + d,...,a + (r- Y)d E N¡
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Let us denote the character y'^'a" by y' and the endomorphism ad by od. Then,
since y G Ann( a "'( H )) iff yo'" E Ann(TY), we have y'oj G Ann(//) for every
0 </ < r — 1. This implies that for some integers /0, /,,... ,lr_,, not all of which are
zero, we have

(4.15) l0y' + lxy'ad+ ■■•+/,_ ,y'a;-'=0.

In fact, since // is infinite and isomorphic with the dual of Zr/Ann(//), Ann(vï) is
not of finite index in Zr. Hence Ann(//) is of rank not exceeding r — 1.

Now, (4.15) implies that the matrix 2jZqIjOJ is singular. The nontrivial polynomi-
als 1rZlLxJ and f„ have, therefore, a nontrivial common divisor. Since f„ is known
to be irreducible, we have arrived at a contradiction, which proves the proposition.

It is a simple matter now to show that E = Tr. By Proposition 4.2 we have
x + H E E for some point x in Tr and some infinite, closed subgroup H of Tr. In
view of Proposition 4.3 a"''(//) -» Tr for some sequence (»i,)" ,, where a is an

endomorphism in 2 which satisfies the first condition in Theorem 2.1. Since
om'ix + H) = om'ix) + om'iH), we obviously have am'(jc + H) -*  Tr as well.

/-oo
Since £ is a-invariant and closed, we arrive at the desired conclusion.

5. The sufficiency of the conditions. Throughout this section 2 denotes a com-
mutative semigroup of endomorphisms of Tr, satisfying the conditions of Theorem
2.1. We proceed to show that 2 satisfies the ID property. Here we mostly extend the
ideas used in [1] for the one-dimensional case.

Lemma 5.1. If o is an epimorphism of Tr then its kernel is a finite set of torsion
elements ofTr.

Proof. Since a is an epimorphism, the matrix representing it is invertible over Q.
Let t be the inverse matrix. Let / be the least common multiple of the denominators
of all elements of t. The matrix It is integer, hence an endomorphism of Tr.
Consequently, if some xGT satisfies oix) = 0 then also /t(o(x)) = 0, which
amounts to lx = 0. Since there are only V points x in Tr satisfying lx = 0, the lemma
follows.

Lemma 5.2. Let o be an ergodic endomorphism of Tr. A finite o-invariant set is
necessarily composed only of torsion elements.

Proof. Let F be a finite a-invariant set and x E E. For some integers m > n > 0
we have omix) = a"(x), and hence (am — a")(;c) = 0. In view of Lemma 5.1 it is
sufficient, therefore, to show that om — a" is an epimorphism. Now, if X,, X2,... ,Xr
are the eigenvalues of a, then Xf - X'j, Xm2 - X\,... ,Xmr - X" are those of om - a".
Since, by the ergodicity of o, none of the eigenvalues of a is either 0 or a root of
unity, the eigenvalues of om — o" are all nonzero. Hence om — a" is an epimor-
phism, which implies the lemma.

Lemma 5.3. 2 has a subsemigroup 20, generated by at most max{2, r) endomor-
phisms, which still satisfies the conditions of Theorem 2.1.
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Proof. The case r = 1 is trivial, so we consider only the case r 5* 2.
It is required to select r endomorphisms (or less) in 2, generating a subsemigroup

20 which satisfies the conditions in question. First, we take an endomorphism a,
with /a„ irreducible over Z for all n. Next, we take additional endomorphisms
o2,...,ok E S such that, for every common eigenvector of 2, at least one of the o,,
1 < i=£ k, has a corresponding eigenvalue of modulus greater than unity.

We have, by now, at most r endomorphisms. To verify this it is necessary to show
that a, has some eigenvalue with modulus greater than unity. In fact, otherwise all
the eigenvalues of a, would lie on the unit circle, whence by [3, Theorem 2.1(i)] all of
them would have been roots of unity. But we have noticed already that if r > 2 and
fa„ is irreducible for all n, then a, has no roots of unity among its eigenvalues.

If we have less than r endomorphisms, then taking an endomorphism ak+x which
is rationally independent of a,, the semigroup 20 generated by a,, a2,...,ak+x
evidently satisfies the conditions. If we have exactly r endomorphisms, no two of
which are rationally independent (which is possible, for example, if r = 2 and the
selected endomorphisms are an automorphism a, and its inverse ox'x), then we
replace or by a'r = ormT, where t G 2 is rationally independent of a,, a/ is rationally
independent of a,. For sufficiently large m, the eigenvalues of a'r, corresponding to
eigenvalues of o'r of modulus greater than unity, have the same property themselves.
Hence, the semigroup 20 generated by a,, a2,... ,a/ has the desired properties.

The basic step, formulated a little bit differently than in the original paper, is
given in the following

Proposition [l,p. 45]. Let 2 denote a commutative semigroup of endomorphisms of
Tr. We assume (i) that there exists some ergodic endomorphism o in 2, and (ii) that
there exists a prime q with the property that all det a, a G 2, are relatively prime to q.
Then if M and B are closed S-invariant subsets ofTr and M is minimal with respect to
these properties, M + B = Tr implies B = Tr.

The following proposition generalizes Proposition IV.2 of [1] to the /--dimensional
case.

Proposition 5.1. Let M be a S-minimal subset ofTr. Then M is necessarily a finite
set of torsion elements.

Proof. In the proof of Proposition 3.2 it was noted that 2 contains an ergodic
endomorphism. Hence, in view of Lemma 5.2, it is sufficient to prove that M is
finite.

We want to apply the proposition cited from [1]. The first condition of that
proposition is satisfied. As to the second condition, we select a subsemigroup 20 of
2 which if finitely generated and still satisfies the conditions in Theorem 2.1, as is
possible by Lemma 5.3. 20 satisfies both conditions of the aforementioned proposi-
tion. Now, if we prove that the conclusion of our proposition holds for 20, then it
holds for 2 as well. In fact, M contains a 20-minimal subset M0, which is then a
finite set of torsion elements. The set M, being 2-minimal and containing a torsion
element, is necessarily a finite set of torsion elements. Hence we may assume that 2
satisfies both conditions of the preceding proposition.
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We have to show that M is finite. Suppose, to the contrary, that it is not. Then
M — M is a closed, 2-invariant subset of Tr, which contains 0 as a nonisolated
point. Hence, by the results of §4, M — M = Tr. Applying the preceding proposi-
tion, we obtain M = Tr, which is impossible. The contradiction proves the proposi-
tion.

Now we can complete the proof of the sufficiency of the conditions in Theorem
2.1. Let E be an infinite, closed, 2-invariant subset of Tr. We proceed to show that
F = Tr. Let E' denote the set of all accumulation points of F. From Lemma 5.1 it
follows that F' is 2-invariant. F' contains a 2-minimal subset M, and hence by
Proposition 5.1 there exists some torsion element x in £'. Suppose x is of order /.
Then IE is a closed, 2-invariant subset of Tr which contains 0 as a nonisolated point.
Hence IE = Tr. This implies (£ + xm) U (F + x(2)) U • • ■ U(F + x(r)) = Tr
where x(X), x(2),...,x(r) E Tr are the solutions of lx = 0. Since each of the sets
E + x('\ 1 < / < lr, is closed, one of these sets has a nonempty interior. Hence E
has a nonempty interior. Since 2 contains an ergodic endomorphism, this implies
F = T'.

Thus the proof of Theorem 2.1 is complete.

6. Remarks. In this section we want to make a few remarks concerning the
verification of the conditions of Theorem 2.1 for given semigroups, to note that
"most" commutative semigroups satisfy these conditions, and to give a general
example.

First we note that ID semigroups are not necessarily large. The following theorem
is an immediate consequence of Theorem 2.1 and Lemma 5.3.

Theorem 6.1. Let S be a commutative semigroup of endomorphisms ofTr satisfying
the ID property. There exists a subsemigroup 20 of 2, also satisfying the ID property,
which is generated by at most max{2, r) endomorphisms.

The first condition in Theorem 2.1, i.e. that there exists an endomorphism a in 2
such that/,» is irreducible over Z for every positive integer n, is a very weak one. In
some sense, most polynomials in Z[x] are irreducible. If a is an endomorphism such
that /„ is irreducible, then an endomorphism t commuting with o is uniquely
determined by X, T. Now, t satisfies the desired property iff Q(X" T) = Ki= Q(X, „))
for all n. The proof of Proposition 3.1 shows that most numbers a in K satisfy
Q(a") = K for all n. In fact, all the other numbers belong to a finite union of finite
group extensions of the multiplicative groups of the proper subfields of K. All that
indicates that most endomorphisms satisfy the condition under consideration.

We also note that, given an endomorphism a, it is possible effectively to determine
whether/„. is irreducible for every n E N. First, we observe that there exists some n'
such that if/„» is irreducible for all n, 1 < n < n', then it is irreducible for all n E N.
In fact, suppose f„ is irreducible but /„« is reducible for some n > 2. Then it can be
shown that/,» has multiple roots. Hence for a certain pair of roots of fa, say X, and
X2, we have (X,/X2)" = 1. The number X,/X2 is of a degree not exceeding /-(/■ — 1)
over Q. Since the degree over Q of a primitive root of unity of order m is (pirn) (<p
being Euler's function), we can choose n' as a number such that (pirn) > /■(/■ — 1) for
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all m > «'. (Evidently, such an n' can be found.) Finally, we recall that the question
concerning the irreducibility of fa„ can be decided for each n separately (see, for
example, van der Waerden [5, p. 77]).

Concerning the second condition of Theorem 2.1, we note that, since the product
of the absolute values of all eigenvalues of an epimorphism is at least 1, "on the
average" at least half of the eigenvalues lie outside the unit disc. Hence it should be
easy to have for each of the common eigenvectors an endomorphism, the corre-
sponding eigenvalue of which is of modulus greater than 1.

The third condition is, in some sense, the strongest. It asserts that the
common objects of interest—semigroups and groups generated by only one endo-
morphism—never have the ID property. Yet, the proof of Proposition 3.2 shows
that this condition is not much more restrictive than that.

We also note that, given two commuting endomorphisms a and t with fa
irreducible over Z, we can effectively determine whether they are rationally indepen-
dent. First, suppose a and r are not automorphisms. If the two integers det o and
det t are rationally independent then the same holds for o and t as well. Assume,
therefore, that det o' = det rm. For o and t to be rationally dependent we must have
(o't""1)" = 7* for some positive integer n. Considerations used earlier in this section
prove that a number n' can be found such that, if the last equality holds for some n
at all, then it holds for some n < «'. Next, we turn to the case of automorphisms.
The proof of Proposition 3.2 shows that the question concerning the rational
dependence of a and r is equivalent to that of the rational dependence of the
numbers X, 0 and X, T. Since these numbers are units, the effective Dirichlet unit
theorem [4, Theorem 11.3.5] enables us to decide the last question.

We conclude with a general example of ID semigroups of Tr.
Example 6.1. Let a be an endomorphism of Tr (r > 2) such that/,., is irreducible

for all n and let / 5* 2 be an integer. Then the commutative semigroup 2 generated
by the two endomorphisms o and // satisfies the ID property. In fact, the first
condition in Theorem 2.1 is satisfied by a while the second is satisfied by //. Since
fuyk = (x — lk)r is reducible over Z, a and // are rationally independent. Thus we
have an ample supply of ID semigroups generated by just two endomorphisms.
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