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Abstract
This paper studies bilateral multi-issue negotiation between self-interested autonomous agents.
Now, there are a number of different procedures that can be used for this process; the three main
ones being the package deal procedure in which all the issues are bundled and discussed together,
the simultaneous procedure in which the issues are discussed simultaneously but independently of
each other, and the sequential procedure in which the issues are discussed one after another. Since
each of them yields a different outcome, a key problem is to decide which one to use in which
circumstances. Specifically, we consider this question for a model in which the agents have time
constraints (in the form of both deadlines and discount factors) and information uncertainty (in that
the agents do not know the opponent’s utility function). For this model, we consider issues that are
both independent and those that are interdependent and determine equilibria for each case for each
procedure. In so doing, we show that the package deal is in fact the optimal procedure for each
party. We then go on to show that, although the package deal may be computationally more com-
plex than the other two procedures, it generates Pareto optimal outcomes (unlike the other two), it
has similar earliest and latest possible times of agreement to the simultaneous procedure (which is
better than the sequential procedure), and that it (like the other two procedures) generates a unique
outcome only under certain conditions (which we define).

1. Introduction

Negotiation is a key form of interaction in multiagent systems (Maes, Guttman, & Moukas, 1999;
Sandholm, 2000). It is a process in which disputing agents decide how to divide the gains from
cooperation. Since this decision is made jointly by the agents themselves (Rosenschein & Zlotkin,
1994; Raiffa, 1982; Pruitt, 1981; Fisher & Ury, 1981; Young, 1975; Kraus, 2001), each agent
can only obtain what the other is prepared to allow them. Now, the simplest form of negotiation
involves two agents and a single-issue. For example, consider a scenario in which a buyer and a
seller negotiate on the price of a good. To begin, the two agents are likely to differ on the price at
which they believe the trade should take place, but through a process of joint decision-making they
either arrive at a price that is mutually acceptable or they fail to reach an agreement. Since agents
are likely to begin with different prices, one or both of them must move toward the other, through
a series of offers and counter offers, in order to obtain a mutually acceptable outcome. However,
before the agents can actually perform such negotiations, they must decide the rules for making
offers and counter offers. That is, they must set the negotiation protocol (Lax & Sebenius, 1986;
Osborne & Rubinstein, 1990; Rosenschein & Zlotkin, 1994; Kraus, Wilkenfeld, & Zlotkin, 1995;
Lomuscio, Wooldridge, & Jennings, 2003).
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On the basis of this protocol, each agent chooses its strategy (i.e., what offers it should make
during the course of negotiation). For competitive scenarios with self-interested agents, each partic-
ipant defines its strategy so as to maximise its individual utility. Furthermore, for such scenarios, an
agent’s optimal strategy depends very strongly on the information it has about its opponent (Fatima,
Wooldridge, & Jennings, 2002, 2004). For example, the strategy that a buyer would use if it knew
the seller’s reserve price differs from the one it would use if it did not. From all of this, it can be
seen that the outcome of single-issue negotiation depends on four key factors (Harsanyi, 1977): the
negotiation protocol, the players’ strategies, the players’ preferences over the possible outcomes,
and the information that the players have about each other. However, in most bilateral negotiations,
the parties involved need to settle more than one issue. For example, agents may need to come to
agreements about objects/services that are characterised by attributes such as price, delivery time,
quality, reliability, and so on. For such multi-issue negotiations, the outcome also depends on one
additional factor: the negotiation procedure (Schelling, 1956, 1960; Fershtman, 1990), which spec-
ifies how the issues will be settled. Broadly speaking, there are three ways of negotiating multiple
issues (Keeney & Raiffa, 1976; Raiffa, 1982):

• Package deal: This approach links all the issues and discusses them together as bundle.

• Simultaneous negotiation: This involves settling the issues simultaneously, but independently,
of each other.

• Sequential negotiation: This involves negotiating the issues sequentially, one after another.

Now, these three different procedures have different properties and yield different outcomes to the
negotiators (Fershtman, 2000). So the key question to answer is: which of them is best? Here,
since we are concerned with self-interested agents, our notion of the optimal procedure is the one
that maximises an agent’s individual return. However, such optimality is only part of the story;
given our motivations we are also concerned with the Pareto optimality of the solutions for these
procedures (because Pareto optimality ensures that utility does not go wasted), the computational
complexity of the procedures (because for scenarios with information uncertainty, the agents need
to compute their equilibrium offers during the process of negotiation, as opposed to the complete in-
formation scenario where the strategies can be precompiled), the actual time of agreement (because
for scenarios with information uncertainty, this time depends on an agent’s beliefs about its oppo-
nent and an agreement may not occur in the first time period), and the uniqueness of the solutions
they generate (because this allows the agents to know their actual shares).

One immediate observation in this vein is that the package deal gives rise to the possibility of
making tradeoffs across issues. Such tradeoffs are possible when different agents value different
issues differently. For example, if there are two issues and one agent values the first more than the
second, while the other agent values the second issue more than the first, then it is possible to make
tradeoffs and thereby improve the utility of both agents relative to the situation without tradeoffs. In
contrast, for the simultaneous and sequential approaches, the issues are settled independently and so
there is no scope for such tradeoffs between them. Moreover, we seek to answer the above question
about optimality for the types of situation that are commonly faced by agents in real-world contexts.
Thus, we consider negotiations in which there are:

1. Time constraints. Agents have time constraints in the form of both deadlines and discount
factors. Here we view deadlines as an essential element since negotiation cannot go on in-
definitely, rather it must end within a reasonable time limit (Livne, 1979). Likewise, discount
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factors are essential since the desirability of the good being traded often declines with time.
This happens either because the good is perishable or due to inflation. Moreover, the strategic
behaviour of agents with deadlines and discount factors differs from those without (see Ru-
binstein, 1982, for single issue bargaining without deadlines and Sandholm & Vulkan, 1999;
Ma & Manove, 1993; Fershtman & Seidmann, 1993; Kraus, 2001, for bargaining with dead-
lines and discount factors). For instance, the presence of a deadline induces each negotiator
to play a strategy that ensures the best possible agreement before the deadline is reached.
Likewise, the presence of a discount factor means that reaching an agreement today is not the
same as reaching it tomorrow. Hence, the agents try to reach an agreement sooner rather than
later.

2. Uncertainty about the opponent’s negotiation parameters. The information that agents have
about their negotiation opponent is likely to be uncertain (see Fudenberg & Tirole, 1983;
Fudenberg, Levine, & Tirole, 1985; Rubinstein, 1985, for single issue bargaining with uncer-
tainty). Moreover, in some bargaining situations, one of the players may know something of
relevance that the other does not. For example, when bargaining over the price of a second
hand car, the seller knows its quality, but the buyer does not. Such situations are said to have
asymmetry in information between the players (Muthoo, 1999). On the other hand, in sym-
metric information situations both players have the same information. Again, agents have to
operate in both situations and so we analyse both cases.

3. Interdependence between issues. The issues under negotiation may be independent or inter-
dependent. In the former case, an agent’s utility from an issue depends only on the agreement
that is reached on it, not on how the other issues are settled. In the latter case, an agent’s
utility from an issue depends not only on the agreement that is reached on it but also on how
the other issues are settled (Bar-Yam, 1997; Klein, Faratin, Sayama, & Bar-Yam, 2003). Both
situations are common in multiagent systems and so again we analyse both cases.

Thus we study five different settings: i) complete information setting (CI), ii) a setting with
independent issues and symmetric uncertainty about the agents’ utilities (SUI ), iii) a setting with
independent issues and asymmetric uncertainty about the agents’ utilities (AUI ), iv) a setting with
interdependent issues and symmetric uncertainty about the agents’ utilities (SUD), and v) a setting
with interdependent issues and asymmetric uncertainty about the agents’ utilities (AUD).

Our methodology is to first derive equilibria for each of the procedures in each of the above
settings, From this, we can determine which of them is optimal. As we will see, this analysis shows
that, for all the settings, the package deal is the best. We then go on to analyse the procedures in
terms of other performance metrics. Specifically, we show that, in all the settings, only the package
deal generates a Pareto optimal outcome. We also show that although the package deal may be com-
putationally more complex than the other two procedures, it has similar earliest and latest possible
times of agreement to the simultaneous procedure (which is better than the sequential procedure),
and it (like the other two procedures) generates a unique outcome only in certain situations (which
we define). The key results of our study are summarised in Table 1.

There has previously been some formal comparison of different procedures to find the optimal
one (see Section 7 for details). However, all this work has at least one of the following major
limitations. First, it has focused on comparing procedures for negotiation without deadlines. Note
that existing work has obtained equilibrium for negotiation with deadlines, but only for the single
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Information Package deal Simultaneous Sequential
setting

For the cth issue For the cth issue For the cth partition
CI tc = 1 tc = 1 tc = c

Time of for 1 ≤ c ≤ m for 1 ≤ c ≤ m for 1 ≤ c ≤ μ

agreement For the cth issue For the cth issue For the cth partition
tc SUI , SUD tec = 1 tec = 1 tec = tsc

AUI , and AUD tlc = min(2r − 1, n) tlc = min(2r − 1, n) tlc = tsc + min(2r − 1, n)
for 1 ≤ c ≤ m for 1 ≤ c ≤ m for 1 ≤ c ≤ μ

Time to CI O(mn) O(Mn) O(Mn)
compute SUI and SUD O(mπ̂r3T (n − T

2 )) O(|Sz|π̂zr
3T (n − T

2 )) O(|Sz|π̂zr
3T (n − T

2 ))
equilibrium AUI and AUD O(mπ̂r3(n − T

2 )T
2 ) O(|Sz|π̂zr

3(n − T
2 )T

2 ) O(|Sz|π̂zr
3(n − T

2 )T
2 )

Pareto CI ,
optimal? SUI ,SUD, Yes No No

AUI , and AUD

Unique CI If ¬C1 If C2 If C2

equilibrium? SUI ,SUD, If ¬C3 ∨ C4 If C5 If C5

AUI , and AUD

Table 1: A summary of key results. tsc denotes the start time for the cth partition, tec the earliest
possible time of agreement, and tlc the latest possible time of agreement).

issue case (Sandholm & Vulkan, 1999; Stahl, 1972), and a special type of the sequential procedure
for multiple issues (Fatima et al., 2004). See Section 7 for details. Second, it has focussed only on
independent issues and asymmetric information settings. Third, it has only focused on finding the
optimal procedure, but has not considered the additional solution properties of different procedures.
Given this, our paper makes a threefold contribution. First, we obtain the equilibrium for each
procedure when there are deadlines. Second, we analyse multiple issues that are both independent
and interdependent. Moreover, we analyse both symmetric and asymmetric information settings.
Finally, on the basis of the equilibrium for different procedures, we provide the first comprehensive
comparison of their solution properties (viz. time complexity, Pareto optimality, uniqueness, and
time of agreement). When taken together, the results clearly indicate the choices and tradeoffs
involved in choosing a negotiation procedure in a wide range of circumstances. This knowledge
can be used by a system designer who is responsible for designing the mechanism that should be
used to moderate the negotiation encounters and by the agents themselves if they can choose how to
arrange their interactions. Furthermore, this knowledge also tells the agents what their equilibrium
offers are during negotiation.

The remainder of the paper is organised as follows. We begin by giving a brief overview of
single-issue negotiation in Section 2. In Section 3, we study the three multi-issue procedures for the
setting with complete information and where the issues are independent. This study is undertaken
to provide a foundation for Sections 4, 5, and 6, which treat the information about the agents’
utilities as uncertain. More specifically, in Section 4, we analyse a scenario with symmetric uncer-
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tainty about the opponent’s utility. In Section 5, we analyse a scenario with asymmetric uncertainty
about the opponent’s utility. Sections 4 and 5 both deal with independent issues. In Section 6, we
extend the analysis to interdependent issues. Section 7 discusses the related literature and Section 8
concludes. Appendix A provides a summary of notation employed throughout the paper.

2. Single-Issue Negotiation

Assume there are two agents: a and b. Each agent has time constraints in the form of deadlines and
discount factors. Since we focus on competitive scenarios with self-interested agents, we model
negotiation using the ‘split the pie game’ analysed by Osborne and Rubinstein (1994), Binmore,
Osborne, and Rubinstein (1992). We begin by introducing this complete information game.

Let the two agents be negotiating over a single issue (i). This issue is a ‘pie’ of size 1 and the
agents want to determine how to divide it between themselves. There is a deadline (i.e., a number
of rounds by which negotiation must end). Let n ∈ N

+ denote this deadline. The agents use
Rubinstein’s alternating offers protocol (Osborne & Rubinstein, 1994), which proceeds through a
series of time periods. One of the agents, say a, starts negotiation in the first time period (i.e., t = 1)
by making an offer (xi), that lies in the interval [0, 1], to b. Agent b can either accept or reject
the offer. If it accepts, negotiation ends in an agreement with a getting a share of xi and b getting
yi = 1 − xi. Otherwise, negotiation proceeds to the next time period, in which agent b makes a
counter-offer. This process of making offers continues until one of the agents either accepts an offer
or quits negotiation (resulting in a conflict). Thus, there are three possible actions an agent can take
during any time period: accept the last offer, make a new counter-offer, or quit the negotiation.

An essential feature of negotiations involving alternating offers is that the pie is assumed to
shrink with time (Rubinstein, 1982). Specifically, it shrinks at each step of offer and counteroffer.
This shrinkage models a decrease in the value of the pie (representing the fact that the pie perishes
with time or there is inflation). This shrinkage is represented with a discount factor denoted 0 <
δi ≤ 1 for both1 agents. At t = 1, the size of the pie is 1, but in all subsequent time periods t > 1,
the pie shrinks to δt−1

i .
We denote the set of real numbers by R and the set of real numbers in the interval [0, 1] by R1.

Then let [xt
i, y

t
i ] denote the offer made at time period t where xt

i and yt
i denote the share for agent a

and b respectively. Then, for a given pie, the set of possible offers is:

{[xt
i, y

t
i ] : xt

i ≥ 0, yt
i ≥ 0, and xt

i + yt
i = δt−1

i }

where xt
i ∈ R1 and yt

i ∈ R1. Each player’s utility function is defined over the set R. Let ua
i :

R1 × N
+ → R and ub

i : R1 × N
+ → R denote the utility functions of the two agents. At time t, if

a and b receive a share of xt
i and yt

i respectively (where xt
i + yt

i = δt−1
i ), then their utilities are:

ua
i (x

t
i, t) =

{
xt

i if t ≤ n
0 otherwise

ub
i(y

t
i , t) =

{
yt

i if t ≤ n
0 otherwise

1. Having a different discount factor for different agents only makes the presentation more involved without leading to
any changes in the analysis of the strategic behaviour of the agents or the time complexity of finding the equilibrium
offers. Hence we have a single discount factor for both agents.
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The conflict utility (i.e., the utility received in the event that no deal is struck) is zero for both
agents. Note that δ is not shown explicitly in an agent’s utility function but is implicit. This is
because, during any time period t, xt

i and yt
i denote a’s and b’s actual shares respectively (not the

ratios of their shares) where xt
i + yt

i = δt−1
i . In other words δ is included in an agent’s share. This

will become clearer when we show the agents’ shares in Expression 1.
For the above setting, the agents reason as follows in order to determine what to offer. Let agent

a denote the first mover (i.e., at t = 1, a proposes to b how to split the pie). To begin, consider the
case where the deadline for both agents is n = 1. If b accepts, the division occurs as agreed; if not,
neither agent gets anything (since n = 1 is the deadline). Here, a is in a powerful position and is
able to propose to keep 100 percent of the pie and give nothing to b 2. Since the deadline is n = 1,
b accepts this offer and agreement takes place in the first time period.

Now, consider the case where the deadline is n = 2. In the first round, the size of the pie is 1
but it shrinks to δi in the second round. In order to decide what to offer in the first round, a looks
ahead to t = 2 and reasons backwards3. Agent a reasons that if negotiation proceeds to the second
round, b will take 100 percent of the shrunken pie by offering [0, δi] and leave nothing for a. Thus,
in the first time period, if a offers b anything less than δi, b will reject the offer. Hence, during the
first time period, agent a offers [1− δi, δi]. Agent b accepts this and an agreement occurs in the first
time period.

In general, if the deadline is n, negotiation proceeds as follows. As before, agent a decides what
to offer in the first round by looking ahead as far as t = n and then reasoning backwards. This
decision making leads a to make the following offer in the first time period:

[Σn−1
j=0 [(−1)jδj

i ], 1 − Σn−1
j=0 [(−1)jδj

i ]] (1)

Agent b accepts this offer and negotiation ends in the first time period. Note that the equilibrium
outcome depends on who makes the first move. Since we have two agents and either of them could
move first, we get two possible equilibrium outcomes.

On the basis of the above equilibrium for single-issue negotiation with complete information, we
first obtain the equilibrium for multiple issues and then determine the optimal negotiation procedure
for the various settings that we have previously described.

3. Multi-Issue Negotiation with Complete Information

As mentioned in Section 1, the existing literature does not provide an analysis of all the multi-issue
procedures for negotiation with deadlines. Hence, we begin by analysing the complete information
setting. From this base, we can then extend to the case where there is information uncertainty.

Here a and b negotiate over m > 1 independent issues (Section 6 deals with interdependent
issues). These issues are m distinct pies and the agents want to determine how to split each of them.
Let S = {1, 2, . . . ,m} denote the set of m pies. As before, each pie is of size 1. Let the discount
factor for issue c, where 1 ≤ c ≤ m, be 0 < δc ≤ 1. For each issue, let n denote each agent’s

2. It is possible that b may reject such a proposal. In practice, a will have to propose an offer that is just enough to
induce b to accept. However, to keep the exposition simple, we assume that a can get the whole pie by making the
100 percent proposal.

3. This backward reasoning method is adopted from (Stahl, 1972). Our model is a generalisation of (Stahl, 1972);
during time period t, an agent in our model can propose any offer between zero and δt−1 (because the size of the pie
is δt−1), but a player in (Stahl, 1972) is given a fixed number of alternatives to choose from.
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deadline. In the offer for time period t (where 1 ≤ t ≤ n), agent a’s (b’s) share for each of the m
issues is now represented as an m element vector xt ∈ R

m
1 (yt ∈ R

m
1 ). Thus, if agent a’s share for

issue c at time t is xt
c, then agent b’s share is yt

c = (δt−1
c − xt

c). The shares for a and b are together
represented as the package [xt, yt].

We define an agent’s cumulative utility using the additive form. There are two reasons for this.
First, it is the most common form for cumulative utilities in traditional multi-issue utility theory
(Keeney & Raiffa, 1976). Second, additive cumulative utilities are linear and so the problem of
making tradeoffs becomes computationally tractable4. The functions Ua : R

m
1 × R

m
1 × N

+ → R

and U b : R
m
1 ×R

m
1 ×N

+ → R give the cumulative utilities for a and b respectively at time t. These
are defined as follows:

Ua([xt, yt], t) =

{
Σm

c=1k
a
c ua

c (x
t
c, t) if t ≤ n

0 otherwise
(2)

U b([xt, yt], t) =

{
Σm

c=1k
b
cu

b
c(y

t
c, t) if t ≤ n

0 otherwise
(3)

where ka ∈ R
m
+ denotes an m element vector of constants for agent a and kb ∈ R

m
+ that for b. Here

R+ denotes the set of positive real numbers. These vectors indicate how the agents value different
issues. For example, if ka

c > ka
c+1, then agent a values issue c more than issue c + 1. Likewise

for agent b. In other words, the m issues are perfect substitutes (i.e., all that matters to an agent is
its total utility for all the m issues and not that for any subset of those Varian, 2003; Mas-Colell,
Whinston, & Green, 1995). In all the settings we study, the issues will be perfect substitutes.

Each agent has complete information about all negotiation parameters (i.e., n, m, ka
c , kb

c, and δc

for 1 ≤ c ≤ m). For this complete information setting, we now determine the equilibrium for the
package deal, the simultaneous procedure, and the sequential procedure.

3.1 The Package Deal Procedure

In this procedure, the agents use the same protocol as for single-issue negotiation (described in Sec-
tion 2). However, an offer for the package deal includes a proposal for each issue under negotiation.
Thus, for m issues, an offer includes m divisions, one for each issue. Agents are allowed to either
accept a complete offer (i.e., all m issues) or reject a complete offer. An agreement can therefore
take place either on all m issues or on none of them.

As per single-issue negotiation, an agent decides what to offer by looking ahead and reasoning
backwards. However, since an offer for the package deal includes a share for all the m issues,
agents can now make tradeoffs across the issues in order to maximise their cumulative utilities. For
1 ≤ c ≤ m, the equilibrium offer for issue c at time t is denoted as [at

c, b
t
c] where at

c and bt
c denote

the shares for agent a and b respectively. We denote the equilibrium package at time t as [at, bt]

4. Using a form other than the additive one will make the function nonlinear. Consequently an agent’s tradeoff problem
becomes a global optimization problem with a nonlinear objective function. Due to their computational complexity,
such nonlinear optimization problems can only be solved using approximation methods (Horst & Tuy, 1996; Bar-
Yam, 1997; Klein et al., 2003). Moreover, these methods are not general in that they depend on how the cumulative
utilities are actually defined. In order to overcome this difficulty, we used the additive form for defining cumulative
utilities. Consequently, our tradeoff problem is a linear optimization problem, the exact solution to which can be
found in polynomial time (as shown in Theorems 1 and 2). Although our results apply to the above defined additive
cumulative utilities, in Section 6.4 we discuss how they would hold for nonlinear utilities.
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where at ∈ R
m
1 (bt ∈ R

m
1 ) is an m element vector that denotes a’s (b’s) share for each of the m

issues. Also, for 1 ≤ t ≤ n, δt−1 ∈ R
m
1 is an m element vector that represents the sizes of the

m pies at time t. The symbol 0 denotes an m element vector of zeroes. Note that for 1 ≤ t ≤ n,
at + bt = δt−1 (i.e., the sum of the agents’ shares (at time t) for each pie is equal to the size of
the pie at t). Finally, for time period t (for 1 ≤ t ≤ n) we let a(t) (respectively b(t)) denote the
equilibrium strategy for agent a (respectively b).

As mentioned in Section 1, the package deal allows agents to make tradeoffs. We let TRADEOFFA

(TRADEOFFB) denote agent a’s (b’s) function for making tradeoffs. Given this, the following theo-
rem characterises the equilibrium for the package deal procedure.

Theorem 1 For the package deal procedure, the following strategies form a Nash equilibrium. The
equilibrium strategy for t = n is:

a(n) =
{

OFFER [δn−1, 0] IF a’s TURN
ACCEPT IF b’s TURN

b(n) =
{

OFFER [0, δn−1] IF b’s TURN
ACCEPT IF a’s TURN

For all preceding time periods t < n, if [xt, yt] denotes the offer made at time t, then the equilibrium
strategies are defined as follows:

a(t) =
{

OFFER tradeoffa(ka, kb, δ,ub(t), m, t) IF a’s TURN
If (Ua([xt, yt], t) ≥ ua(t)) ACCEPT else REJECT IF b’s TURN

b(t) =
{

OFFER tradeoffb(ka, kb, δ,ua(t), m, t) IF b’s TURN
If (U b([xt, yt], t) ≥ ub(t)) ACCEPT else REJECT IF a’s TURN

where ua(t) = Ua([at+1, bt+1], t + 1) and ub(t) = U b([at+1, bt+1], t + 1). An agreement takes
place at t = 1.

Proof: We look ahead to the last time period (i.e., t = n) and then reason backwards. To begin,
if negotiation reaches the deadline (n), then the agent whose turn it is takes everything and leaves
nothing for its opponent. Hence, we get the strategies a(n) and b(n) as given in the statement of
the theorem.

In all the preceding time periods (t < n), the offering agent proposes a package that gives its
opponent a cumulative utility equal to what the opponent would get from its own equilibrium offer
for the next time period. During time period t, either a or b could be the offering agent. Consider
the case where a makes an offer at t. The package that a offers at t gives b a cumulative utility of
U b([at+1, bt+1], t+1). However, since there is more than one issue, there is more than one package
that gives b a cumulative utility of U b([at+1, bt+1], t + 1). From among these packages, a offers the
one that maximises its own cumulative utility (because it is a utility maximiser). Thus, the problem
for a is to find the package [at, bt] so as to:

maximise Σm
c=1k

a
c at

c

such that Σm
c=1(δ

t−1
c − at

c)k
b
c = ub(t)

0 ≤ at
c ≤ 1 for 1 ≤ c ≤ m (4)
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This tradeoff problem is similar to the fractional knapsack problem (Martello & Toth, 1990; Cor-
men, Leiserson, Rivest, & Stein, 2003), the optimal solution for which can be generated using a
greedy approach5 (i.e., by filling the knapsack with items in the decreasing order of value per unit
weight). The items in the knapsack problem are analogous to the issues in our case. The only differ-
ence is that the fractional knapsack problem starts with an empty knapsack and aims to fill it with
items so as to maximise the cumulative value, while an agent’s tradeoff problem can be viewed as
starting with the agent having 100 per cent of all the issues and then aiming to give away portions
of issues to its opponent so that the latter gets a given cumulative utility, while the resulting loss
in its own utility is minimised. Thus, in order to find how to split the m issues, agent a considers
ka

c /kb
c for 1 ≤ c ≤ m because ka

c /kb
c is the utility that a needs to give up in order increase b’s utility

by one. Since a wants to maximise its own utility and give b a utility of U b([at+1, bt+1], t + 1), it
divides the m pies such that it gets the maximum possible share for those issues for which ka

c /kb
c is

high and gives to agent b the maximum possible share for those issues for which ka
c /kb

c is low. Thus,
a begins by giving b the maximum possible share for the issue with the lowest ka

c /kb
c. It then does

the same for the issue with the next lowest ka
c /kb

c and repeats this process until b gets a cumulative
utility of U b([at+1, bt+1], t + 1). In order to facilitate this process of making tradeoffs, the individ-
ual elements of kb are arranged such that ka

c /kb
c > ka

c+1/kb
c+1. The function tradeoffa takes six

parameters: ka, kb, δ, ub(t), m, and t and uses the above described greedy method to solve the
maximisation problem given in Equation 4 and return the corresponding package. If there is more
than one package that solves Equation 4, then tradeoffa returns any one of them (because agent
a gets equal utility from all such packages and so does agent b). The function tradeoffb for
agent b is analogous to that for a.

On the other hand, the equilibrium strategy for the agent that receives an offer is as follows. For
time period t, let b denote the receiving agent. Then, b accepts [xt, yt] if ub(t) ≤ U b([xt, yt], t), oth-
erwise it rejects the offer because it can get a higher utility in the next time period. The equilibrium
strategy for a as receiving agent is defined analogously. Hence we get the equilibrium strategies
(a(t) and b(t)) given in the statement of the theorem.

In this way, we reason backwards and obtain the offers for t = 1. The first mover makes this
offer and the other agent accepts it. An agreement therefore occurs in the first time period. �

Theorem 2 For the package deal procedure, the time taken to determine an equilibrium offer for
t = 1 is O(mn) where m is the number of issues and n is the deadline.

Proof: We know from Theorem 1 that the time to compute the equilibrium offer for t = n is linear in
the number of issues (see strategies a(n) and b(n)). Consider a time period t < n. During this time
period, the function tradeoffa is used to make tradeoffs. The time complexity of tradeoffa
(which uses the greedy approach described in the proof of Theorem 1) is O(m) (Martello & Toth,
1990; Cormen et al., 2003). This function needs to be repeated for every time period from the
(n − 1)th to the first. Hence the time complexity of finding an offer for the first time period is
O(mn). �

5. The time complexity of this approach is O(m) (Martello & Toth, 1990), where m denotes the number of items. Note
that the greedy method for the fractional knapsack problem takes O(m) time regardless of whether the coefficients
ka

c and kb
c (for 1 ≤ c ≤ m) in Equation 4 are positive or negative (Martello & Toth, 1990). In the present setting

(as we mentioned at the beginning of Section 3) these coefficients are all positive. However, we will come across
negative coefficients when we deal with interdependent issues in Section 6.
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Theorem 3 The package deal procedure generates a Pareto optimal outcome.

Proof: Recall that we consider competitive negotiations. Hence, for an individual issue c (where
1 ≤ c ≤ m), an increase in one agent’s utility results in a decrease in that of the other. However,
for the package deal procedure, an agent considers its cumulative utility from all m issues. Con-
sequently, during the process of backward reasoning, at time t < n, the agent that makes tradeoffs
maximises its own cumulative utility without lowering that of its opponent (with respect to what the
opponent would offer in the next time period). Hence the equilibrium outcome for the package deal
is Pareto optimal. �

Theorem 4 For a given first mover, the package deal procedure has a unique equilibrium outcome
if the following condition is false:

C1. There exists an i and a j (where 1 ≤ i ≤ m and 1 ≤ j ≤ m) such that (i �= j) and
(ka

i /kb
i = ka

j /kb
j).

Proof: Consider a time period t < n and let a denote the offering agent. Recall from Theorem 1 that
a splits the m issues in the increasing order of ka

i /kb
i . Thus, for a given i and j, if ka

i /kb
i = ka

j /kb
j ,

then agent a is indifferent between which of the two issues (i or j) it splits up first. For example, if
m = 2, n = 2, δ = 0.5, ka

1 = 1, ka
2 = 2, kb

1 = 2, and kb
2 = 4, then ka

1/kb
1 = ka

2/kb
2 = 0.5. If a

is the offering agent at t = 1, it can offer (1, 0) for issue 1 and (1/4, 3/4) for issue 2. This gives a
cumulative utility of 1.5 to a and 3 to b. Alternatively a can offer (0, 1) for issue 1 and (3/4, 1/4)
for issue 2 since this also results in the same cumulative utilities to a and b.

On the other hand, if ka
i /kb

i �= ka
j /kb

j , then a splits issue i first if ka
i /kb

i < ka
j /kb

j and issue j first
if ka

i /kb
i > ka

j /kb
j . In other words, there is only one possible equilibrium offer that a can make at

any time t < n. Likewise there is one possible equilibrium offer that b can make at any time t < n.
Since there is a unique offer for each time period, the equilibrium outcome is unique. �

Note that the uniqueness we refer to in Theorem 4 is with respect to a given first mover. If the
first mover changes, then the equilibrium outcome may change, as the following example illustrates.
Let m = 2, n = 2, δ = 0.5, ka

1 = 1, ka
2 = 2, kb

1 = 2, and kb
2 = 1. If a is the offering agent at

t = 1, its equilibrium offer is (1/4, 3/4) for the first issue and (1, 0) for the second. This results in
a cumulative of 2.25 to a and 1.5 to b. In contrast, if b is the offering agent at t = 1, its equilibrium
offer is (0, 1) for the first issue and (3/4, 1/4) for the second. This results in a cumulative utility
of 1.5 to a and 2.25 to b. In the following discussion, we use the term unique to mean unique with
respect to a given first mover.

3.2 The Simultaneous Procedure

For this procedure, the m issues are partitioned into μ > 1 disjoint subsets. For 1 ≤ c ≤ μ, let
Sc denote the cth partition where ∪μ

c=1Sc = {1, . . . ,m}. The issues within each subset are settled
using the package deal. Negotiation for each of the μ partitions starts at t = 1. Thus, for μ = m, all
m issues are settled simultaneously and independently of each other. At the other extreme, we have
only one partition (i.e., μ = 1) which is the package deal procedure described in Section 3.1. Since
the issues in each subset (i.e., each Sc) are settled using the package deal, the equilibrium for each
of these μ partitions is obtained from Theorem 1. Consequently, we get the following results.

First, an agreement for each issue occurs in the first round. This is because negotiation for each
partition starts at t = 1. Also, from Theorem 1, we know that an agreement for the package deal
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occurs at t = 1. Hence, for the simultaneous procedure, an agreement for each partition (and hence
each issue) occurs in the first time period.

Second, for the simultaneous procedure, the time taken to determine an equilibrium offer for
t = 1 is Σμ

c=1O(|Sc|n) where |Sc| is the number of issues in the cth partition and n is the deadline.
This is explained as follows. Since the time taken to find the equilibrium offer for t = 1 for the
package deal (i.e., for μ = 1) is O(mn) (see Theorem 2), the time taken to compute the equilibrium
offer for t = 1 for the cth partition is O(|Sc|n). Hence, for all μ partitions, the time complexity
is Σμ

c=1O(|Sc|n) which is equal to O(Mn), where M denotes the number of issues in the largest
partition.

Third, it follows from Theorem 4 that the simultaneous procedure has a unique equilibrium
outcome if the following condition C2 is true:

C2. There is no partition c (where 1 ≤ c ≤ μ) for which the condition C1 is true.

Finally, as Theorem 5 shows, the simultaneous procedure may not generate a Pareto optimal
outcome.

Theorem 5 The simultaneous procedure may not generate a Pareto optimal outcome.

Proof: The package deal allows tradeoffs to be made across all the m issues, while the simultaneous
procedure allows tradeoffs to be made across issues within each partition but not across partitions.
Hence the simultaneous procedure may not generate a Pareto optimal outcome. We show this with a
counter example. Consider the case where n = 2, δ = 0.5, m = 3, μ = 2, S1 = {1, 2}, S2 = {3},
ka

1 = 1, ka
2 = 2, ka

3 = 3, kb
1 = 1, kb

2 = 0.5, and kb
3 = 0.25. Let a denote the first mover. From

Theorem 1, we know that in the equilibrium for partition S1, agent a gets a share of 0.25 for issue
1 and 1 for issue 2, and b gets a share of 0.75 for issue 1 and nothing for issue 2. For partition S2,
each agent gets a share of 1/2. Thus, a’s cumulative utility from all three issues is 3.75 and that of
b is 0.875.

Now consider the case where all three issues are discussed using the package deal. Here, μ = 1
and all other parameters remain the same. In the equilibrium outcome for this procedure, a gets a
cumulative utility of 5.125 and b gets 0.875. This means that the procedure with μ = 2 does not
generate a Pareto optimal outcome. �

3.3 The Sequential Procedure

For this procedure, the m issues are partitioned into μ > 1 disjoint subsets. For 1 ≤ c ≤ μ, let Sc

denote the cth partition where ∪μ
c=1Sc = {1, . . . ,m}. The μ partitions are negotiated sequentially,

one after another. The issues within a subset are settled using the package deal. Negotiation for the
first partition starts at time t = 1. If negotiation for the cth (for 1 ≤ c ≤ μ) partition ends at tc,
then negotiation for the (c + 1)th partition starts at time tc + 1. Each player gets its share for all
the issues in a partition as soon as the partition is settled. Thus, for μ = m, all m issues are settled
in sequence. At the other extreme, we have only one partition (i.e., μ = 1) which is the package
deal procedure described in Section 3.1. Since the issues in each subset (i.e., each Sc) are settled
using the package deal, the equilibrium for each of these μ subsets is obtained from Theorem 1 by
substituting the appropriate negotiation start times for each partition.

391



FATIMA, WOOLDRIDGE, & JENNINGS

Theorem 6 For the sequential procedure, the equilibrium time of agreement for the cth partition
(for 1 ≤ c ≤ μ) is Tc = c.

Proof: From Theorem 1, we know that an agreement for the package deal occurs in the first time
period. Hence, negotiation for each partition ends in the same time period in which it starts (i.e.,
negotiation for the cth partition starts at t = c and results in an agreement in the same time period).
The time taken to settle all the m issues is therefore μ. �

Note that the time complexity of the sequential procedure (i.e., the time to compute equilibrium
offers) is the same as that for the simultaneous procedure. Also, like the simultaneous procedure, the
equilibrium outcome for the sequential procedure may not be Pareto optimal. Finally, the condition
for the equilibrium outcome for the sequential procedure to be unique is the same as that for the
simultaneous procedure.

3.4 The Optimal Procedure

Having obtained the equilibrium outcomes for the three multi-issue procedures, we now compare
them in terms of the utilities they generate for each player. Then the procedure that gives a player
the maximum utility is its optimal one.

Note that, for the sequential procedure, the equilibrium outcome strongly depends on the order
in which the partitions are settled. This ordering is called the negotiation agenda. There are two
ways of defining the agenda (Fershtman, 1990): exogenously or endogenously. If the agenda is
determined before the actual negotiation over the issues begins, then it is said to be exogenous. On
the other hand, for the endogenous agenda, the agents decide what issue they will settle next during
the process of negotiation. The agenda that gives an agent the maximum utility between all possible
agendas is its optimal one (Fatima et al., 2004). Our objective here is not to determine the optimal
agenda, but to consider a given agenda and compare the equilibrium outcome for the sequential
procedure for that agenda with the outcomes for the simultaneous and the package deal procedures,
in order to find the optimal procedure. The following theorem characterises this procedure.

Theorem 7 Irrespective of how the m issues are split into μ > 1 partitions, the package deal is
optimal for both parties.

Proof: In order to compare an agent’s utility from different procedures, it is important to take into
account who initiates negotiation. For the package deal, the first mover makes an offer on all the
issues. Hence we compare an agent’s utilities for the three procedures, given the agent that will be
the first mover for all the three procedures for all the issues.

We first show that the outcome for the package deal is no worse than that for the simultaneous
procedure. Consider the simultaneous procedure for any μ > 1. For this procedure, for t ≤ n, the
offering agent makes tradeoffs across the issues in each partition independently of the other parti-
tions. Now consider the package deal procedure (i.e., with μ = 1 partitions). For this procedure,
the offering agent makes tradeoffs across all m issues. Since the difference between the procedure
with μ = 1 and the one with μ > 1 is that the former makes tradeoffs across all m issues while the
latter does not, each agent’s utility from the former procedure is no worse than its utility from the
latter.

We now show that for a given μ (where μ > 1), for each agent, the outcome for the simultaneous
procedure is better than that for the sequential one (irrespective of the agenda for the sequential
procedure). We do this by considering each of the μ partitions.
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Package deal Simultaneous Sequential
Time of For the cth issue For the cth issue For the cth partition

agreement (tc) tc = 1 tc = 1 tc = c
for 1 ≤ c ≤ m for 1 ≤ c ≤ m for 1 ≤ c ≤ μ

Time to compute O(mn) O(Mn) O(Mn)
equilibrium

Pareto optimal? Yes No No
Unique equilibrium? If ¬C1 If C2 If C2

Table 2: A comparison of the outcomes for the three multi-issue procedures for the complete infor-
mation setting (CI).

• Partition c = 1. Since negotiation for the first partition starts at t = 1 for both the simulta-
neous and the sequential procedures, the outcome for this partition is the same for μ = 1 and
μ > 1. Hence, for the first partition, an agent gets equal utility from the two procedures.

• Partition c > 1. Let agent a denote the first mover for partition c (for 2 ≤ c ≤ μ) for
both simultaneous and sequential procedures. Also, let Ua

sim and Ua
seq denote a’s cumulative

utility for this partition from the equilibrium outcome for the simultaneous and the sequential
procedures respectively. Likewise, let U b

sim and U b
seq denote b’s cumulative utility for this

partition from the equilibrium outcome for the simultaneous and the sequential procedures
respectively.

Now for the simultaneous procedure, negotiation for each partition starts in the first time
period. An agreement for each partition also occurs in the first time period. On the other hand,
for the sequential procedure, negotiation for the cth partition starts in the cth time period and
results in an agreement in the same time period (see Theorem 6). Since each pie shrinks with
time, agent a’s cumulative utility Ua

sim is greater than Ua
seq, and agent b’s cumulative utility

U b
sim is greater than U b

seq.

Thus, the simultaneous procedure is better than the sequential one for both agents. Furthermore
(as shown above), the outcome for the package deal is no worse than that for the simultaneous
procedure for both agents. Therefore, for each agent, the package deal is the optimal procedure. �
These results are summarised in Table 2. For the above analysis, the negotiation parameters n, δc,
ka

c , and kb
c (for 1 ≤ c ≤ m) were common knowledge to the agents. However, this is unlikely to

be the case for most encounters. Therefore we now extend this analysis to incomplete information
scenarios with uncertainty about utility functions6. In Section 4, we focus on the symmetric infor-
mation setting where each agent is uncertain about the other’s utility function. Then, in Section 5,
we examine the asymmetric information setting where one of the two agents is uncertain about the
other’s utility function, but the other agent knows the utility function of both agents.

6. There are two other sources of uncertainty: uncertainty about the negotiation deadline and uncertainty about discount
factors. Future work will deal with uncertainty about discount factors. However, for independent issues, we analysed
the case with symmetric uncertainty about deadlines in (Fatima, Wooldridge, & Jennings, 2006). The extension of
this work to the case of interdependent issues is another direction for future work.
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4. Multi-Issue Negotiation with Symmetric Uncertainty about the Opponent’s Utility

In this symmetric information setting, each agent is uncertain about its opponent’s utility function:
for 1 ≤ c ≤ m, agent a (b) is uncertain about kb

c (ka
c ). Specifically, let K denote a vector of r vectors

where each vector Ki ∈ R
m
+ (for 1 ≤ i ≤ r) consists of m constant positive real numbers. These

r vectors are the possible values for ka ∈ R
m
+ and kb ∈ R

m
+ . In other words, there are r types7

for agent a and r types for agent b. Let P a : N
+ → R1 denote the discrete probability distribution

function for ka and P b : N
+ → R1 that for kb. The domain for these two functions is [1..r]. In other

words, for 1 ≤ i ≤ r, P a(i) (P b(i)) is the probability that agent a (b) is of type i. For 1 ≤ c ≤ m,
let Kic denote the cth element of vector Ki.

In this setting, the vector K and the functions P a and P b are common knowledge to the nego-
tiators. Also, each agent knows its own type, but not that of its opponent. In addition, each agent
knows r, δ, n, and m.

Since there are r types for agent a and r types for agent b, we define r different cumulative
utility functions for each of the two agents. If agent a (b) is of type i (for 1 ≤ i ≤ r) then its utility
Ua

i : R
m
1 ×R

m
1 ×N

+ → R (U b
i : R

m
1 ×R

m
1 ×N

+ → R) from the division specified by the package
[xt, yt] at time t is:

Ua
i ([xt, yt], t) =

{
Σm

c=1Kicu
a
c (x

t
c, t) if t ≤ n

0 otherwise
(5)

U b
i ([xt, yt], t) =

{
Σm

c=1Kicu
b
c(y

t
c, t) if t ≤ n

0 otherwise
(6)

Note that, as before, the issues are perfect substitutes. For this setting, we determine the equi-
librium outcomes for each of the three multi-issue procedures and then compare them.

4.1 The Package Deal Procedure

We know from Theorem 1 that the equilibrium outcome for the complete information setting de-
pends on ka

c and kb
c (for 1 ≤ c ≤ m). However, in this setting, there is uncertainty about ka

c and
kb

c. Hence we use the standard expected utility theory (Neumann & Morgenstern, 1947; Fishburn,
1988; Harsanyi & Selten, 1972) to find an agent’s optimal strategy. Before doing so, however, we
first introduce some notation.

For 1 ≤ i ≤ r, we let a(i, t) denote the equilibrium strategy for an agent a of type i for the
time period t. Analogously, b(i, t) denotes the equilibrium strategy for an agent b of type i for the
time period t. Note that for 1 ≤ i ≤ r, if [at, bt] is the package offered at time t in equilibrium,
then at + bt = δt−1 (i.e., for each pie, the sum of the shares of the two agents is equal to the size
of the pie at time t). Also, for 1 ≤ i ≤ r, we let a(i, j, t) denote the equilibrium strategy for an
agent a of type i for the time period t, assuming that b is of type j. Analogously, b(i, j, t) denotes
the equilibrium strategy for an agent b of type i for the time period t, assuming that a is of type j.

Also, let eua(i, t) denote the cumulative utility that an agent a of type i expects to get from b’s
equilibrium offer at time t (i.e., a is the receiving agent and b the offering agent at t). Likewise,
eub(i, t) denotes the cumulative utility that an agent b of type i expects to get from a’s equilibrium
offer at time t (i.e., b is the receiving agent and a the offering agent at t). We let eua(i, j, t) denote
agent a’s expected cumulative utility from its own equilibrium offer at time t if a is of type i,

7. An agent’s type indicates which of the r vectors it corresponds to.
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assuming that b is of type j. Note that this is a’s utility when it is the offering agent at t. And let
eub(i, j, t) denote agent b’s expected cumulative utility from its own equilibrium offer at time t if b
is of type i and assuming that a is of type j. Note that this is b’s utility when it is the offering agent
at t.

Recall that in this setting, each agent only knows its own type, but not that of its opponent.
Since there are r possible types, there are r possible offers an agent can make at any time period
(one offer corresponding to each of the opponent’s types). Among these r offers, the one that gives
an agent the maximum expected cumulative utility is its optimal offer. If the cth offer (1 ≤ c ≤ r)
gives an agent the maximum expected cumulative utility, then we say that the optimal choice for the
agent is c. For time period t, we let opta(i, t) (optb(i, t)) denote the optimal choice for agent a
(b) of type i.

At t = n, the offering agent gets everything and the opponent gets zero utility. Thus, for t = n,
we have the following:

eua(i, n) = 0 for 1 ≤ i ≤ r (7)

eub(i, n) = 0 for 1 ≤ i ≤ r (8)

eua(i, j, n) =
m∑

c=1

Kicδ
t−1
c for 1 ≤ i ≤ r and 1 ≤ j ≤ r (9)

eub(i, j, n) =
m∑

c=1

Kicδ
t−1
c for 1 ≤ i ≤ r and 1 ≤ j ≤ r (10)

Note that for t = n, eua(i, j, n) and eub(i, j, n) do not depend on j because in the last time period,
the offering agent gets 100 percent of all the m pies. For all preceding time periods t < n, we have
the following:

eua(i, t) = eua(i, θ, t + 1) for 1 ≤ i ≤ r where θ = opta(i, t + 1) (11)

eub(i, t) = eub(i, λ, t + 1) for 1 ≤ i ≤ r where λ = optb(i, t + 1) (12)

eua(i, j, t) =
r∑

e=1

F a(i, j, e, t) × P b(e) for 1 ≤ i ≤ r and 1 ≤ j ≤ r (13)

eub(i, j, t) =
r∑

e=1

F b(i, j, e, t) × P a(e) for 1 ≤ i ≤ r and 1 ≤ j ≤ r (14)

The function F a takes four parameters: i, j, e, and t, and returns the utility that an agent a of type
i gets from offering the equilibrium package for time t, assuming that agent b is of type j where in
fact it is of type e. Obviously, agent b accepts a’s offer at t if U b

e (a(i, j, t), t) ≥ eub(e, γ, t + 1)
where γ = optb(e, t+1). Otherwise, agent b rejects a’s offer and negotiation proceeds to the next
round in which case a’s expected utility is EUA(i, t + 1). Hence, F a is defined as follows:

F a(i, j, e, t) =
{

Ua
i (a(i, j, t), t) if U b

e (a(i, j, t), t) ≥ eub(e, γ, t + 1) where γ = optb(e, t + 1)
eua(i, t + 1) otherwise

where the strategy a(i, j, t) for t = n is defined as follows:

A(i, j, n) =
{

OFFER [δn−1, 0] if a’s turn
ACCEPT otherwise
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and for all preceding time periods t < n it is defined as:

A(i, j, t) =
{

OFFER tradeoffa1(K, δ,eub(j, t), i, j,m, t, P a, P b) if a’s turn
if Ua

i ([xt, yt], t) ≥ EUA(i, t) ACCEPT else REJECT otherwise

where [xt, yt] denotes the offer made at t and the function8 TRADEOFFA1 is defined as follows.
Like TRADEOFFA, the function TRADEOFFA1 solves the following maximisation problem:

maximise Σm
c=1Kica

t
c

such that Σm
c=1(δ

t−1
c − at

c)Kjc = eub(j, t)
0 ≤ at

c ≤ 1 for 1 ≤ c ≤ m (15)

where i denotes a’s type and j that of b. However, the difference between TRADEOFFA1 and
TRADEOFFA arises when there is more than one package that maximises a’s cumulative utility (i.e.,
Σm

c=1Kica
t
c) while giving b a cumulative utility of eub(j, t). If there is more than one such package,

then in Theorem 1, it does not matter which of these packages a offers to b (because both agents
have complete information). Hence, TRADEOFFA can return any one such package. However, in
the present setting, there is uncertainty. Therefore, if there is more than one package that maximises
a’s cumulative utility while giving b a cumulative utility of eub(j, t), then TRADEOFFA1 returns
the package that maximises a’s expected cumulative utility. For instance, let [at, bt] be one such
package that maximises a’s cumulative utility. Then a’s expected cumulative utility from [at, bt]
(i.e., eua(i, j, t)) is as given in Equation 13 where:

F a(i, j, e, t) =
{

Ua
i ([at, bt], t) if U b

e ([at, bt], t) ≥ eub(e, γ, t + 1) where γ = optb(e, t + 1)
eua(i, t + 1) otherwise

Obviously, if there is more than one package that maximises a’s expected cumulative utility and
gives b a utility of eub(j, t) then TRADEOFFA1 returns any one such package.

We now turn to agent b. For this agent, F b, B(i, j, t), and tradeoffb1 are defined analogously
as follows:

F b(i, j, e, t) =
{

U b
i (b(i, j, t), t) if Ua

e (b(i, j, t), t) ≥ eua(e, α, t + 1) where α = opta(e, t + 1)
eub(i, t + 1) otherwise

where the strategy b(i, j, t) for t = n is defined as follows:

B(i, j, n) =
{

OFFER [0, δn−1] if b’s turn
ACCEPT otherwise

and for all preceding time periods t < n it is defined as:

B(i, j, t) =
{

OFFER tradeoffb1(K, δ,eua(j, t), i, j,m, t, P a, P b) if b’s turn
if U b

i ([xt, yt], t) ≥ EUB(i, t) ACCEPT else REJECT otherwise

8. A method for making tradeoffs has been proposed by Faratin, Sierra, and Jennings (2002) for an incomplete infor-
mation setting, but this method differs from ours. Also, Faratin et al. only present a method for making tradeoffs, but
they do not show that the resulting offer is in equilibrium. In contrast, our method shows that the resulting offer is in
equilibrium.
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Thus, the optimal choice for agent a (i.e., opta(i, t)) and that for agent b (i.e., optb(i, t)) are
defined as follows:

opta(i, t) = arg maxr
j=1eua(i, j, t) for 1 ≤ i ≤ r (16)

optb(i, t) = arg maxr
j=1eub(i, j, t) for 1 ≤ i ≤ r (17)

Note that the offering agent’s optimal choice for t = n does not depend on its opponent’s type since
the offering agent gets all the pies.

We compute the optimal choice for the first time period by reasoning backwards from t = n.
At t = 1, if an agent a of type i is the offering agent, then it offers the package that corresponds to
agent b being of type opta(i, 1). Likewise, if an agent b of type i is the offering agent, then it offers
the package that corresponds to agent a being of type optb(i, 1).

However, since opta(i, 1) and optb(i, 1) are obtained in the absence of complete information,
an agreement may or may not take place in the first time period. If an agreement does not occur
at t = 1, then the agents need to update their beliefs as follows. Let T a

t ⊆ {1, 2, . . . , r} denote
the set of possible types for agent a at time t. For t = 1, we have T a

1 = {1, 2, . . . , r} and T b
1 =

{1, 2, . . . , r}. Assume that an agent a of type i makes an offer at t = 1. If the offer that a makes
gets rejected, then it means that b is not of type opta(i, 1) and so a updates its beliefs about b using
Bayes’ rule. Now, on the basis of a’s offer at t = 1 (say [x1, y1]), agent b can infer the possible
types for agent a. Thus, agent b too updates its beliefs using Bayes’ rule. The belief update rules
for time t are as defined below.

UPDATE BELIEFS: Agent a puts all the weight of the posterior distribution of b’s type
over T b

t − {optb(i, t)} using Bayes’ rule. Agent b puts all the weight of the posterior
distribution of a’s type over K using Bayes’ rule where K ⊆ {1, 2, . . . , r} is the set of
possible types for a that can offer [xt, yt] in equilibrium.

The belief update rule for the case where b offers at t = 1 is analogous to the above case where a
offers at t = 1.

Thus if the offer at t = 1 gets rejected, then negotiation goes to the next round. At t = 2, the
offering agent (say an agent a of type i) finds opta(i, 2) with its updated beliefs. This process of
updating beliefs and making offers continues until an agreement is reached.

In Section 3, we used the concept of Nash equilibrium because the agents had complete infor-
mation. However, in the current setting, each agent is uncertain about its opponent’s type and so
an agent’s optimal strategy depends on its beliefs about its opponent. Hence we use the concept
of sequential equilibrium (Kreps & Wilson, 1982; van Damme, 1983) for this setting. Sequential
equilibrium is defined in terms of two elements: a strategy profile and a system of beliefs. The
strategy profile comprises of a pair of strategies, one for each agent. The belief system has the fol-
lowing properties. Each agent has a belief about its opponent’s type. In each time period, an agent’s
strategy is optimal given its current beliefs (during the time period) and the opponent’s possible
strategies. For each time period, each agent’s beliefs (about its opponent) are consistent with the
offers it received. Using this concept of sequential equilibrium, the following theorem characterises
the equilibrium for the package deal procedure.

Theorem 8 For the package deal procedure, the following strategies form a sequential equilibrium.
The equilibrium strategies for t = n are:

a(i, n) =
{

OFFER [δn−1, 0] IF a’s TURN
ACCEPT IF b’s TURN
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b(i, n) =
{

OFFER [0, δn−1] IF b’s TURN
ACCEPT IF a’s TURN

for 1 ≤ i ≤ r. For all preceding time periods t < n, if [xt, yt] denotes the offer made at time t, then
the equilibrium strategies are defined as follows:

a(i, t) =

⎧⎪⎪⎨
⎪⎪⎩

OFFER tradeoffa1(K, δ, eub(ψ, t), i, ψ,m, t, P a, P b) IF a’s TURN
If offer gets rejected UPDATE BELIEFS
RECEIVE OFFER and UPDATE BELIEFS IF b’s TURN
If (Ua

i ([xt, yt], t) ≥ eua(i, t)) ACCEPT else REJECT

b(i, t) =

⎧⎪⎪⎨
⎪⎪⎩

OFFER tradeoffb1(K, δ, eua(φ, t), i, φ, m, t, P a, P b) IF b’s TURN
If offer gets rejected UPDATE BELIEFS
RECEIVE OFFER and UPDATE BELIEFS IF a’s TURN
If (U b

i (xt, yt], t) ≥ eub(i, t)) ACCEPT else REJECT

for 1 ≤ i ≤ r. Here, ψ = opta(i, t) and φ = optb(i, t). The earliest possible time of agreement
is t = 1 and the latest possible time of agreement is t = min(2r − 1, n).
Proof: At time t = n, the offering agent takes all the pies and leaves nothing for its opponent.
The opponent accepts this and we get a(i, n) and b(i, n). Now consider a time period t < n.
Recall that during negotiation for the complete information setting (see Section 3.1), at time t < n,
the offering agent proposes a package that gives its opponent a cumulative utility equal to what
the opponent would get from its own equilibrium offer for the next time period. However, for the
current incomplete information setting, an agent knows its own type but not that of its opponent.
Hence, for this scenario, at time t < n, the offering agent (say a) proposes a package that gives b
an expected cumulative utility equal to what b would get from its own equilibrium offer for the next
time period (i.e., eub(ψ, t)). This package is determined by the tradeoffa1 function. Likewise,
if b is the offering agent at time t, then it makes tradeoffs using tradeoffb1 and offers a an
expected cumulative utility eua(φ, t).

We obtain the equilibrium offer for t = n − 1 and then reason backwards until we obtain the
equilibrium offer for t = 1. However, since these offers are computed in the absence of complete
information (i.e., on the basis of expected utilities), an agreement may or may not take place at
t = 1. If an agreement does not take place at t = 1, then negotiation proceeds as follows. Consider
a time period t such that 1 ≤ t < n. Let [xt, yt] denote the offer made at time t. The agent
that receives the offer (say agent a) updates its beliefs using Bayes’ rule: put all the weight of the
posterior distribution of b’s type over K where K ⊆ {1, 2, . . . , r} is the set of possible types for b
that can offer [xt, yt] in equilibrium. If the proposed offer ([xt, yt]) gets rejected, then the offering
agent (say agent b of type i) updates its beliefs using Bayes’ rule: put all the weight of the posterior
distribution of a’s type over T a

t − {optb(i, t)}. The belief update rule for the case where agent a
offers at time t are analogous to the above rule. These belief update rules when incorporated in the
agents’ strategies give a(i, t) and b(i, t) as shown in the statement of the theorem.

We now show that the beliefs specified above are consistent. During any time period t < n, let
the strategy profile (a(i, t), b(i, t)) assign probability 1 − ε to the above specified posterior beliefs
and probability ε to the rest of the support for the opponent’s type. As ε → 0, the above strategy pair
converges to (a, b). Also, the beliefs generated by the strategy pair converge to the beliefs described
above. Given these beliefs, the strategies a and b are sequentially rational.
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The earliest possible time of agreement is t = 1. We show this with the following example. Let
n = 2, m = 2, r = 2, δ = 1/2, and K = [1, 2; 5, 1]. Let agent a be the offering agent at time t = 1.
Assume that a is of type 1 (i.e., ka = [1, 2]). Let P b(1) = 0.1 and P b(2) = 0.9. Since r = 2, agent
a can play two possible strategies at time t = 1: one that corresponds to the case where b is of type 1
and the other that corresponds to the case where b is of type 2. For the former case, a’s equilibrium
offer at t = 1 is [0, 1] for the first issue and [34 , 1

4 ] for the second one. Hence eua(1, 1, 1) = 1.5.
For the latter case, a’s equilibrium offer at t = 1 is [25 , 3

5 ] for the first issue and [1, 0] for the second
issue. Hence eua(1, 2, 1) = 2.16. Since eua(1, 2, 1) > eua(1, 1, 1), opta(1, 1) = 2 and a plays
the latter strategy. Now if b is in fact of type 2, then it accepts a’s offer at t = 1. But if b is in fact of
type 1, it rejects a’s offer at t = 1 since it can get a higher utility at t = 2. An agreement therefore
occurs at t = 2. Thus, the earliest possible time of agreement is t = 1.

Now consider the case where an a of type i offers at t = 1 but an agreement does not occur at
this time. When a’s offer gets rejected, it knows that b is not of type opta(i, 1). Thus the number
of possible types for b is now reduced to r−1. This happens every time a makes an offer (i.e., every
alternate time period) but it gets rejected. When negotiation reaches time period t = 2r − 1, there
is only one possible type for b. Likewise, there is only one possible type for agent a. An agreement
therefore takes place at t = 2r − 1. However, if n < 2r − 1 then an agreement occurs at t = n (see
a(i, n) and b(i, n)). In other words, if an agreement does not occur at t = 1, then it occurs at the
latest by t = min(2r − 1, n). �

As we mentioned earlier, if there is more than one package that solves Equation 15, then tradeoffa1
returns the one that maximises a’s expected cumulative utility. Let paij

t (where i denotes a’s type
and j that of b) denote the set of all possible packages that tradeoffa1 can return at time t. The
set pbij

t for agent b is defined analogously.

Theorem 9 For a given first mover, the package deal procedure has a unique equilibrium outcome
if the condition C3 is false or C4 is true.

C3. There exists an i, j, c, and d, such that (c �= d) and (i �= j) and (Kic/Kjc = Kid/Kjd) where
1 ≤ i ≤ r, 1 ≤ j ≤ r, 1 ≤ c ≤ m, and 1 ≤ d ≤ m.

C4. |paij
t | = 1 and |pbij

t | = 1 where 1 ≤ i ≤ r, 1 ≤ j ≤ r, i �= j, and 1 ≤ t ≤ n.

Proof: Let i denote agent a’s type and j denote b’s type where i �= j, 1 ≤ i ≤ r, and 1 ≤ k ≤ r.
Note that if a and b are of the same type, they have similar preferences for different issues. So i �= j
because the agents gain from making tradeoffs when they are of different types. The rest of the
proof for the condition C3 follows from Theorem 4. Consider C4. If C3 is true, then we know that,
at time t, tradeoffa1 returns that package that solves Equation 15 and maximises a’s expected
cumulative utility. Hence if paij

t contains a single element, then there is only one possible package
that tradeoffa1 can return. Likewise, if pbij

t contains a single element, then there is only one
possible package that tradeoffb1 can return. If there is only one possible offer for each time
period 1 ≤ t ≤ n, then the equilibrium outcome is unique. �

In order to determine the time complexity of the package deal, we first find the complexity
of the tradeoffa1 function. As we mentioned before, tradeoffa1 differs from tradeoffa
when there is more than one package that solves the maximisation problem of Equation 15. We
know from Theorem 9 that there is more than one such package if the condition C3 is true. We also
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know from Theorem 1 that using the greedy approach, tradeoffa considers the m issues in the
increasing order of Kic/Kjc where i denotes a’s type and j denotes b’s type. Let Sij

p ⊆ S denote a
set of issues (where 0 ≤ Dij < m, 1 ≤ p ≤ Dij , i denotes a’s type, and j denotes b’s type) such
that:

|Sij
p | > 1 for 1 ≤ p ≤ Dij

and:

∀
c,d∈Sij

p

Kic

Kjc
=

Kid

Kjd

In other words, Sij
p is a set of issues such that if c and d belong to Sij

p then Kic/Kjc = Kid/Kjd, and
Dij is the number of sets that satisfy this condition. So if Dij = 0 then it means that there is only
one package that solves Equation 15. But if Dij > 0 then there is more than one package that solves
Equation 15 and from among these tradeoffa1 must find the one that maximises a’s expected
cumulative utility. For example if the set of issues is S = {1, 2, 3, 4}, r = 2, K1 = {5, 6, 7, 8},
and K2 = {9, 6, 7, 8}, then D12 = 1, S12

1 = {2, 3, 4}, and |S12
1 | = 3. So while making tradeoffs,

a can consider the issues in S12
1 in any order because for all the three issues it needs to give up the

same amount of utility in order to increase b’s utility by 1. The three issues in S12
1 can be ordered

in 3! different ways resulting in 3! different packages. From among these 3! different packages,
tradeoffa1 must find the one that maximises a’s expected cumulative utility. In general, for
Dij > 1, let πij denote the number9 of possible packages tradeoffa1 needs to consider where
πij is:

πij =
Dij∏
p=1

|Sij
p |!

In other words, if a’s type is i and b’s type is j, then there are πij packages that solve Equation 15
and from among these tradeoffa1 must find the one that maximises a’s expected cumulative
utility. So if Dij = 0, then πij = 1. Let π̂ be defined as:

π̂ = max
1≤i≤r,1≤j≤r,i �=j

πij (18)

In other words, π̂ is the maximum number of packages that tradeoffa1 will have to search to
find the one that maximises a’s expected cumulative utility (considering all possible types of a
and all possible types of b). Note that, as before, a and b are of different types (i.e., i �= j in
Equation 18) because the agents gain from making tradeoffs when they are of different types. The
time complexity of tradeoffa1 depends on π̂.

Theorem 10 The time complexity of tradeoffa1 is O(mπ̂).
Proof: We know from Theorem 2 that the time complexity of finding any one package that solves
Equation 15 is O(m). However, if there is more than one package that solves Equation 15 then
tradeoffa1 returns the one that maximises a’s expected cumulative utility. The time to compute
a’s expected cumulative utility from any one such package is O(m). The maximum number of such
packages for which a needs to find its expected cumulative utility is π̂. Thus the time complexity of
tradeoffa1 is O(mπ̂). �

9. Note that πij is defined in terms of the factorial of |Sij
p |, but |Sij

p | is independent of m and it is assumed that
|Sij

p | � m.
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Corollary 1 If Dij = 0 for 1 ≤ i ≤ r, 1 ≤ j ≤ r, and i �= j, then the time complexity of
tradeoffa1 is the same as the complexity of tradeoffa.

Proof: If Dij = 0 for 1 ≤ i ≤ r, 1 ≤ j ≤ r, and i �= j, then πij = 1 and so π̂ = 1. So the time
complexity of tradeoffa1 is O(m). �

Theorem 11 The time complexity of computing the equilibrium offers for the package deal proce-
dure is O(mπ̂r3T (n − T

2 )) where T = min(2r − 1, n).
Proof: Let a denote the agent that offers at t = 1 and assume that n is even (the proof for odd
n is analogous). We begin with the last time period and then reason backwards. Since n is even
and a starts at t = 1, it is b’s turn to offer in the last time period. For t = n, the time taken to find
eub(i, j, t) (for a given i and j) is O(m) (see Equation 10). Hence, the time taken to find eub(i, j, t)
for all possible types of b (i.e., 1 ≤ j ≤ r) is O(mr). Note that, at this stage, eub(i, t−1) is known
for 1 ≤ i ≤ r (see Equation 12).

Now consider the time period t = n − 1. Since n is even, it is a’s turn to offer at t = n − 1.
In order to find a(i, t), we first need to find ψ where ψ = opta(i, t). From Equation 16 we know
that, for a given i, the time to find opta(i, t) depends on the time taken to find eua(i, j, t) which
in turn depends on the time to find fa(i, j, e, t) (see Equation 13). The time taken for fa(i, j, e, t)
depends on the time taken for a(i, j, t). For a given i and a given j, the time taken to find a(i, j, t)
is the time taken by the function tradeoffa. Since eub(j, t) is already known at time t, the time
taken by tradeoffa1 is O(mπ̂) (see Theorem 10). The time taken to find fa(i, j, e, t) is therefore
O(mπ̂). Given this, the time to find eua(i, j, t) (for a given i, j, and t) is O(mπ̂r). Hence, for a
given i, the time to find ψ = opta(i, t) is O(mπ̂r2). At this stage, EUB(ψ, t) is known (see the last
sentence in the first paragraph of this proof). Consequently, for a given i, the time to find a(i, t) is
O(mπ̂r2). Recall that each agent knows only its own type and not that of its opponent. Hence we
need to determine a(i, t) for all possible types of a (i.e., for 1 ≤ i ≤ r). This takes O(mπ̂r3) time.
Note that at this stage eua(i, j, t) is known for all possible values of i and all possible values of j
(where 1 ≤ i ≤ r and 1 ≤ j ≤ r).

Now consider the time period t = n− 2 when it is b’s turn to offer. For t = n− 2 and a given i,
the time to find optb(i, t) is O(mπ̂r2) and so the time to find optb(i, t) for all possible types of
b (i.e., for 1 ≤ i ≤ r) is O(mπ̂r3).

In the same way, the time required to do all the necessary computation for each time period
t < n is O(mπ̂r3). Hence, the total time to find the equilibrium offer for the first time period is
O((n − 1)mπ̂r3). However, as noted previously, an agreement may or may not occur in the first
time period. If an agreement does not take place at t = 1, then the agents update their beliefs
and compute the equilibrium offer for t = 2 with the updated beliefs. The time to compute the
equilibrium offer for t = 2 is O((n − 2)mπ̂r3). This process of updating beliefs and finding the
equilibrium offer is repeated at most T = min(2r − 1, n) times. Hence the time complexity of the
package deal is ΣT

i=1O((n − i)mπ̂r3) = O(mπ̂r3T (n − T
2 )) (see Cormen et al., 2003, – page 47

– for details on how to simplify an expression of the form ΣT
i=1O((n − i)mπ̂r3)). �

Theorem 12 The package deal procedure generates a Pareto optimal outcome.

Proof: This follows from Theorem 3. The difference between the complete information setting of
Theorem 3 and the current incomplete information setting is that for the former setting the agents
maximise their cumulative utilities, whereas in the current setting they maximise their expected
cumulative utilities. Specifically, for every time period, the offering agent maximises its expected
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cumulative utility from all the m issues such that its opponent’s expected cumulative utility is equal
to what the opponent would get from its own equilibrium offer for the next time period. Hence, for
the current setting, the equilibrium offer for every time period is Pareto optimal. �

4.2 The Simultaneous Procedure

Recall that for this procedure, the μ > 1 partitions are discussed in parallel but independently of
each other. The offers made during the negotiation for any one partition do not affect the offers
for the others. Specifically, negotiation for each partition starts at t = 1 and each partition is
settled using the package deal procedure. Since each partition is dealt with separately, the results of
Theorem 8 apply directly to each of the μ partitions.

Let π̂c denote π̂ for the cth partition. Then, from Theorem 11, we know that the time taken for the
cth (for 1 ≤ c ≤ μ) partition is O(|Sc|π̂cr

3T (n − T
2 )). Let the partition for which |Sc|π̂c is highest

be denoted Sz . Then the time complexity of the simultaneous procedure is O(|Sz|π̂zr
3T (n −

T
2 )). Also, from Theorem 5, it follows that the simultaneous procedure may not generate a Pareto
optimal outcome. Finally, from Theorem 9 we know that the simultaneous procedure has a unique
equilibrium outcome if the following condition is satisfied:

C5. If there is no partition c (where 1 ≤ c ≤ μ) for which the condition (¬C3 ∨ C4) is false.

4.3 The Sequential Procedure

For this procedure, the μ > 1 partitions are discussed independently and one after another. Also,
for 1 ≤ c ≤ μ, negotiation on the cth partition starts in the time period that follows an agreement
on the (c−1)th partition. Since the package deal is used for each partition, the following results are
obtained on the basis of Theorem 8.

First, Theorem 8 applies to each of the μ > 1 partitions. Thus, for the sequential procedure,
if negotiation for the cth (for 1 ≤ c ≤ μ) partition starts at time tc, then it ends at the earliest at
time tc and at the latest by tc + min(2r − 1, n). Second, it follows from Theorem 11 that the time
taken for the sequential procedure is O(|Sz|π̂zr

3T (n − T
2 )). Third, the sequential procedure may

not generate a Pareto optimal outcome (see Theorem 5). Finally, the conditions for uniqueness are
the same as those for the simultaneous procedure.

4.4 The Optimal Procedure

Having obtained the equilibrium outcomes for the three procedures for the above defined incomplete
information scenario, we now compare them in terms of the expected utilities they generate to each
player. Again, the procedure that gives a player the maximum expected utility is the optimal one.

Theorem 13 The package deal is optimal for each agent.

Proof: The proof for this is the same as Theorem 7. The only difference between the complete
information setting of Theorem 7 and the current incomplete information setting is that for the
package deal procedure for the former setting (during time period t < n), the offering agent pro-
poses a package that maximises its own cumulative utility, while giving its opponent a cumulative
utility equal to what the opponent would get from its own equilibrium offer in the next time period.
On the other hand, for the current incomplete information setting, the offering agent proposes a
package that maximises its own expected cumulative utility while giving its opponent an expected
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Package deal Simultaneous Sequential
Time of Earliest: 1 Earliest: 1 For the cth partition

agreement Latest: min(2r − 1, n) Latest: min(2r − 1, n) tec = tsc
for all m issues for all m issues tlc = tsc + min(2r − 1, n)

for 1 ≤ c ≤ μ

Time to compute O(mπ̂r3T (n − T
2 )) O(|Sz|π̂zr

3T (n − T
2 )) O(|Sz|π̂zr

3T (n − T
2 ))

equilibrium
Pareto optimal? Yes No No

Unique equilibrium? If ¬C3 ∨ C4 If C5 If C5

Table 3: A comparison of the expected outcomes for the three multi-issue procedures for the sym-
metric information setting (for the sequential procedure, tsc denotes the start time for the
cth partition, tec the earliest possible time of agreement, and tlc the latest possible time of
agreement).

cumulative utility equal to what the opponent would get from its own equilibrium offer in the next
time period. Also, for each agent, the package deal maximises the expected cumulative utility from
all the m issues (since tradeoffs are made across all the m issues). But the simultaneous procedure
maximises each agent’s expected cumulative utility for each partition (i.e., the simultaneous proce-
dure does not make tradeoffs across partitions). Hence each agent’s expected cumulative utility for
all the m issues is higher for the package deal relative to the simultaneous procedure. Furthermore,
irrespective of how the m issues are partitioned into μ partitions, we know that the simultaneous
procedure is better than the sequential one for each agent (see Theorem 7). Hence, the package deal
is optimal for each agent. �

These results are summarised in Table 3.

5. Multi-Issue Negotiation with Asymmetric Uncertainty about the Opponent’s
Utility

In some bargaining situations, one of the players may know something of relevance that the other
may not know. For example, when bargaining over the price of a second hand car, the seller knows
its quality but the buyer does not. Such situations are said to have asymmetry in information between
the players (Muthoo, 1999). Our asymmetric information setting differs from the symmetric one
explored in the previous section in that one of the two agents (say a) has complete information, but
the other (say b) is uncertain about a’s utility function: for 1 ≤ c ≤ m, agent b is uncertain about
ka

c . Here, K, P a, P b, n, r, and m are as defined in Section 4. The negotiation parameters K, P a,
P b, r, δ, n, and m are common knowledge to the negotiators. Furthermore, a knows its own type
and that of b, while b knows its own type but not that of a. Finally, the definitions for the cumulative
utility functions remain the same as in Section 4. For this setting, we now determine the equilibrium
for each of the three multi-issue procedures.
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5.1 The Package Deal Procedure

We extend the analysis of Section 4 to the current setting as follows. It is clear that for the last time
period (t = n), the utilities eua(i, t) and eub(i, t) are as per Section 4. Let j̄ denote b’s actual
type. Recall that agent a now knows j̄. Hence on the basis of Equation 13 for the SUI setting, we
get eua(i, j, t) for the current asymmetric information setting as follows:

eua(i, j, t) = F a(i, j, j̄, t) for 1 ≤ i ≤ r and 1 ≤ j ≤ r (19)

On the other hand, since agent b is uncertain about a’s type, the definitions for eub(i, t) and
eub(i, j, t) are as given in Section 4. Also, the definitions for F a, F b, a(i, j, t), b(i, j, t), opta(i, t),
and optb(i, t) for all time periods remain the same as in Section 4.

Finally, in this setting, belief updating does not apply to agent a because it has complete in-
formation. Only agent b updates its beliefs about a. This is done in the same way described in
Section 4. Because of b’s uncertainty, we use the concept of sequential equilibrium in this setting as
well. The following theorem characterises the equilibrium for the package deal procedure.

Theorem 14 For the package deal procedure the following strategies form a sequential equilib-
rium. The equilibrium strategies for t = n are:

a(i, n) =
{

OFFER [δn−1, 0] IF a’s TURN
ACCEPT IF b’s TURN

b(i, n) =
{

OFFER [0, δn−1] IF b’s TURN
ACCEPT IF a’s TURN

for 1 ≤ i ≤ r. For all preceding time periods t < n, if [xt, yt] denotes the offer made at time t, then
the equilibrium strategies are defined as follows:

a(i, t) =

⎧⎨
⎩

OFFER tradeoffa1(K, δ,eub(j̄, t), i, j̄, m, t, P a, P b) IF a’s TURN
RECEIVE OFFER IF b’s TURN
If (Ua

i ([xt, yt], t) ≥ eua(i, t)) ACCEPT else REJECT

b(i, t) =

⎧⎪⎪⎨
⎪⎪⎩

OFFER tradeoffb1(K, δ, eua(φ, t), i, φ, m, t, P a, P b) IF b’s TURN
If offer gets rejected UPDATE BELIEFS
RECEIVE OFFER and UPDATE BELIEFS IF a’s TURN
If (U b

i (xt, yt], t) ≥ eub(i, t)) ACCEPT else REJECT

for 1 ≤ i ≤ r. Here, j̄ denotes agent b’s type and φ = optb(i, t). The earliest possible time of
agreement is t = 1 and the latest possible time is t = min(2r − 1, n).
Proof: As Theorem 8. The only difference is that a now knows b’s type (j̄). Hence this information
is used as a parameter for tradeoffa1.

The earliest possible time of agreement is t = 1. We show this with the following example.
Let n = 2, m = 2, r = 2, δ = 1/2, and K = [1, 2; 5, 1]. Let b (i.e., the agent with uncertain
information) be the offering agent at time t = 1. Assume that b is of type 2 (i.e., kb = [5, 1]). Let
P a(1) = 0.9 and P a(2) = 0.1. Since r = 2, b can play two possible strategies at time t = 1:
one that corresponds to the case where a is of type 1 and the other that corresponds to the case
where a is of type 2. For the former case, b’s equilibrium offer at t = 1 is [0, 1] for the first issue
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and [34 , 1
4 ] for the second. Hence eub(1, 1, 1) = 4.725. For the latter case, b’s equilibrium offer

at t = 1 is [25 , 3
5 ] for the first issue and [1, 0] for the second one. Hence eub(1, 2, 1) = 3. Since

eub(1, 1, 1) > eub(1, 2, 1), optb(1, 1) = 1 and b plays the former strategy. Now if a is in fact
of type 1, then it accepts b’s offer at t = 1. But if a is in fact of type 2, it rejects b’s offer at t = 1
since it can get a higher utility at t = 2. An agreement therefore occurs at t = 2. Thus, the earliest
possible time of agreement is t = 1.

Now consider the case where an agent b of type i offers at t = 1 but an agreement does not
occur at this time. When b’s offer gets rejected, it knows that a is not of type optb(i, 1). Thus
the number of possible types for a is now reduced to r − 1. This happens every time b makes an
offer (i.e., every alternate time period) but it gets rejected. When negotiation reaches time period
t = 2r − 1, there is only one possible type for a. Since a knows b’s type, an agreement therefore
takes place at t = 2r − 1. However, if n < 2r − 1 then an agreement occurs at t = n (see a(i, n)
and b(i, n)). In other words, if an agreement does not occur at t = 1, then it occurs at the latest by
t = min(2r − 1, n). �

Note that the latest possible time of agreement for the asymmetric information setting is the same as
that for the symmetric information setting of Theorem 8. This is because, in the asymmetric setting,
although a knows b’s type, b is uncertain about a’s type. Also, it takes 2r − 1 time periods for b to
come to know a’s actual type. Hence, the earliest and latest time of agreement is the same for both
settings.

Theorem 15 The time complexity of computing the equilibrium offers for the package deal proce-
dure is O(mπ̂r3 T

2 (n − T
2 )) where T = min(2r − 1, n).

Proof: Let a denote the agent that offers at t = 1 and assume that n is even (the proof for odd
n is analogous). We begin with the last time period and then reason backwards. Since n is even
and agent a starts at t = 1, it is b’s turn to offer in the last time period. For t = n, the time
taken to find eub(i, j, t) (for a given i and j) is O(m) (see Equation 10). Hence, the time taken
to find eub(i, j, t) for all possible types of b (i.e., 1 ≤ j ≤ r) is O(mr). Note that, at this stage,
eub(i, t − 1) is known for 1 ≤ i ≤ r (see Equation 12).

Now consider the time period t = n − 1. Since n is even, it is a’s turn to offer at t = n − 1.
In order to find a(i, t), we first need to find ψ where ψ = opta(i, t). From Equation 16 we know
that, for a given i, the time to find opta(i, t) depends on the time taken to find eua(i, j, t) which,
in turn, depends on the time to find fa(i, j, e, t) (see Equation 19). The time taken for fa(i, j, e, t)
depends on the time taken for a(i, j, t). For a given i and a given j, the time taken to find a(i, j, t) is
the time taken by tradeoffa1. Since eub(j, t) is already known at time t, the time taken by the
function tradeoffa1 is O(mπ̂) (as Theorem 2). The time taken to find fa(i, j, e, t) is therefore
O(mπ̂). Given this, the time to find eua(i, j, t) (for a given i, j, and t) is O(mπ̂) since b’s type
is known to both agents – see Equation 19. Hence, for a given i, the time to find ψ = opta(i, t)
is O(mπ̂r). At this stage, EUB(ψ, t) is known (see the last sentence in the first paragraph of this
proof). Consequently, for a given i, the time to find a(i, t) is O(mπ̂r). Recall that b does not know
a’s type. Hence we need to determine a(i, t) for all possible types of a (i.e., for 1 ≤ i ≤ r). This
takes O(mπ̂r2) time. Note that at this stage eua(i, j, t) is known for all possible values of i and all
possible values of j (where 1 ≤ i ≤ r and 1 ≤ j ≤ r).

Now consider the time period t = n−2 when it is b’s turn to offer. The only difference between
the computation for t = n− 1 and t = n− 2 is that for the former case, the time to find eua(i, j, t)
(for a given i, j, and t) is O(mπ̂) since b’s type is known to both agents. However for the latter
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case, the time to find eub(i, j, t) (for a given i, j, and t) is O(mπ̂r) since a’s type is not known to
b (see Equation 14). Consequently, for a given i, the time to find b(i, t) is O(mπ̂r2). So the time to
determine b(i, t) for all possible types of b (i.e., for 1 ≤ i ≤ r) is O(mπ̂r3) time. Note that at this
stage eub(i, j, t) is known for all possible values of i and all possible values of j (where 1 ≤ i ≤ r
and 1 ≤ j ≤ r).

In the same way, the time required to do all the necessary computation for each odd time period
t < n is O(mπ̂r2), while that for each even time period is O(mπ̂r3). Hence, the total time to find
the equilibrium offer for the first time period is O(mπ̂r3(n−1

2 )). However, as noted previously, an
agreement may or may not occur in the first time period. If an agreement does not take place at t =
1, then the agents update their beliefs and compute the equilibrium offer for t = 2 with the updated
beliefs. The time to compute the equilibrium offer for t = 2 is O(mπ̂r3(n−2

2 )). This process of
updating beliefs and finding the equilibrium offer is repeated at most T = min(2r − 1, n) times.
Hence the time complexity of the package deal is ΣT

i=1O(mπ̂r3(n−i
2 )) = O(mπ̂r3(n − T

2 )T
2 ). �

Theorem 16 The package deal procedure generates a Pareto optimal outcome.

Proof: As per Theorem 12. �

Theorem 17 For a given first mover, the package deal procedure has a unique equilibrium outcome
if ¬C3 ∨ C4 is true.

Proof: As per Theorem 9. �

5.2 The Simultaneous Procedure

Theorem 14 applies to each of the μ > 1 partitions. Hence, from Theorem 15, we know that the
time taken for the cth (for 1 ≤ c ≤ μ) partition is O(|Sc|π̂cr

3(n−T
2 )T

2 ). Hence, the time complexity
of the simultaneous procedure is O(|Sz|π̂zr

3(n − T
2 )T

2 ). Also, from Theorem 5, it follows that the
simultaneous procedure may not generate a Pareto optimal outcome. Finally, from Theorem 17 we
know that the simultaneous procedure has a unique equilibrium outcome if the condition C5 is true.

5.3 The Sequential Procedure

First, Theorem 14 applies to each of the μ > 1 partitions. Thus, for the sequential procedure, if
negotiation for the cth (for 1 ≤ c ≤ μ) partition starts at time tc, then it ends at the earliest at time
tc and at the latest by tc + min(2r − 1, n). Second, it follows from Theorem 15 that the time taken
for the sequential procedure is O(|Sz|π̂zr

3(n − T
2 )T

2 ). Third, the sequential procedure may not
generate a Pareto optimal outcome (see Theorem 5). Finally, the conditions for uniqueness are the
same as those for the simultaneous procedure.

5.4 The Optimal Procedure

It follows from Theorem 13 that, for each agent, the optimal procedure is the package deal. These
results are summarised in Table 4.

6. Multi-Issue Negotiation for Interdependent Issues

For the independent issues case of Section 4, an agent’s utility for issue c (for 1 ≤ c ≤ m) depends
only on its share for that issue and is independent of other issues. However, in many cases, an
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Package deal Simultaneous Sequential
Time of Earliest: 1 Earliest: 1 For the cth partition

agreement Latest: min(2r − 1, n) Latest: min(2r − 1, n) tec = tsc
for all m issues for all m issues tlc = tsc + min(2r − 1, n)

for 1 ≤ c ≤ μ

Time to compute O(mπ̂r3 T
2 (n − T

2 )) O(|Sz|π̂zr
3(n − T

2 )T
2 ) O(|Sz|π̂zr

3(n − T
2 )T

2 )
equilibrium

Pareto optimal? Yes No No
Unique equilibrium? If ¬C3 ∨ C4 If C5 If C5

Table 4: A comparison of the expected outcomes for the three multi-issue procedures for the asym-
metric information setting (for the sequential procedure, tsc denotes the start time for the
cth partition, tec the earliest possible time of agreement, and tlc the latest possible time of
agreement).

agent’s utility from an issue depends not only on its share for the issue, but also on its share for
others (Klein et al., 2003). Given this, in this section we focus on such interdependent issues.
Specifically, we model interdependence between the issues as follows. Consider a package [xt, yt].
For this package, for an agent a of type i, the utility from issue c at time t is now of the form:

ua
ic([x

t, yt], t) =

{
Kicxc + Σm

j=1χij(xc − xj) if t ≤ n

0 otherwise
(20)

and that for an agent b of type i, it is:

ub
ic([x

t, yt], t) =

{
Kicyc + Σm

j=1χij(yc − yj) if t ≤ n

0 otherwise
(21)

where Kic denotes a constant positive real number and χij a constant real number that may be
either positive or negative. As before, an agent’s cumulative utility is the sum of its utilities from
the individual issues:

Ua
i ([xt, yt], t) =

{
Σm

c=1K̄icx
t
c if t ≤ n

0 otherwise
(22)

U b
i ([xt, yt], t) =

{
Σm

c=1K̄icy
t
c if t ≤ n

0 otherwise
(23)

Here K̄ denotes a vector analogous to the vector K except that the individual elements of the
latter are all constant positive real numbers, while those of the former may be positive or negative.
Note that in Equations 5 and 6, all the coefficients are positive (i.e., Kic > 0 for 1 ≤ i ≤ r and
1 ≤ c ≤ m). But in Equations 22 and 23, the coefficient (K̄ic) may be a positive or a negative real
number.
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The above cumulative utility functions are linear (see Pollak, 1976; Charness & Rabin, 2002;
Sobel, 2005, for other forms of utility functions for interdependent preferences10). As mentioned
before, we chose the linear form for reasons of computational tractability.

In this setting the vector K̄ and the functions P a and P b are common knowledge to the nego-
tiators. Also, each agent knows its own type, but not that of its opponent. In addition, each agent
knows r, δ, n, and m. In other words, there is symmetric uncertainty about the opponent’s utility
(as we will see in Section 6.4, the results for the asymmetric case can easily be obtained from the
following analysis for the symmetric case).

6.1 The Package Deal Procedure

For the cumulative utilities defined in Equations 22 and 23, Theorem 18 characterises the equilib-
rium for the package deal.

Theorem 18 For the package deal procedure, the following strategies form a sequential equilib-
rium. The equilibrium strategies for t = n are:

a(i, n) =
{

OFFER [δn−1, 0] IF a’s TURN
ACCEPT IF b’s TURN

b(i, n) =
{

OFFER [0, δn−1] IF b’s TURN
ACCEPT IF a’s TURN

for 1 ≤ i ≤ r. For all preceding time periods t < n, if [xt, yt] denotes the offer made at time t, then
the equilibrium strategies are defined as follows:

a(i, t) =

⎧⎪⎪⎨
⎪⎪⎩

OFFER tradeoffa1(K̄, δ,eub(ψ, t), i, ψ,m, t, P a, P b) IF a’s TURN
If offer gets rejected UPDATE BELIEFS
RECEIVE OFFER and UPDATE BELIEFS IF b’s TURN
If (Ua

i ([xt, yt], t) ≥ eua(i, t)) ACCEPT else REJECT

b(i, t) =

⎧⎪⎪⎨
⎪⎪⎩

OFFER tradeoffb1(K̄, δ,eua(φ, t), i, φ, m, t, P a, P b) IF b’s TURN
If offer gets rejected UPDATE BELIEFS
RECEIVE OFFER and UPDATE BELIEFS IF a’s TURN
If (U b

i (xt, yt], t) ≥ eub(i, t)) ACCEPT else REJECT

for 1 ≤ i ≤ r. Here, ψ = opta(i, t) and φ = optb(i, t). The earliest possible time of agreement
is t = 1 and the latest possible time is t = min(2r − 1, n).
Proof: As Theorem 8. The only difference between the independent issues setting of Theorem 8
and the present interdependent issues one is in terms of the definition for cumulative utilities: in
Equations 5 and 6, all the coefficients are positive (i.e., Kic > 0 for 1 ≤ i ≤ r and 1 ≤ c ≤ m).
But in Equations 22 and 23, the coefficient (K̄ic) may be a positive or a negative real number.
However, the greedy method (given in Theorem 1) for solving the fractional knapsack problem of
Equation 15 works for both positive and negative coefficients (Martello & Toth, 1990; Cormen et al.,
2003). Hence, the proof of Theorem 8 applies to this setting as well. �
10. Although in (Pollak, 1976; Charness & Rabin, 2002; Sobel, 2005) these forms are discussed in the context of how

an agent’s utility depends on the utility of other agent’s, they may equally well be interpreted for the case where an
agent’s utility for an issue depends on its share for other issues.
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Theorem 19 The time complexity of computing the equilibrium offers for the package deal proce-
dure is O(mπ̂r3T (n − T

2 )) where T = min(2r − 1, n).
Proof: As Theorem 11. Since the method for making tradeoffs is the same as that for the setting
with symmetric uncertainty and independent issues (i.e., SUI ), the time complexity is the same as
in Theorem 11. �

It is obvious that Theorems 9 and 12 extend to this setting as well.

6.2 The Simultaneous Procedure

It follows from above that all the results of Section 4.2 apply to this setting as well.

6.3 The Sequential Procedure

It also follows from above that the results of Section 4.3 apply to this setting as well.

6.4 The Optimal Procedure

It follows from Theorem 13 that the package deal remains the optimal procedure even if the issues
are interdependent. The results for this setting are the same as those in Section 4 and are summarised
in Table 3.

Finally, consider the asymmetric information setting of Section 5 but in the current context
of interdependent issues. From the above analysis for symmetric uncertainty with interdependent
issues, it is clear that the method for making tradeoffs remains the same irrespective of whether
the information is symmetric or asymmetric. Consequently, for the case of asymmetric information
with interdependent issues, we get the same results as those in Section 5.

Recall that this analysis was done for linear cumulative utilities. We now discuss how our
results would hold for more complex utility functions that are non-linear11. For cumulative utilities
that are nonlinear, the tradeoff problem becomes a global optimization problem with a nonlinear
objective function. Due to their computational complexity, such nonlinear optimization problems
can only be solved using approximation methods (Horst & Tuy, 1996; Bar-Yam, 1997; Klein et al.,
2003). In contrast, our tradeoff problem is a linear optimization problem, the exact solution to
which can be found in polynomial time (as shown in Theorems 1 and 2). Although our results
apply to linear cumulative utilities, it is not difficult to see how they would hold for the nonlinear
case. First, the time of agreement for our case would hold for other (nonlinear) functions. This
is because this time depends not on the actual definition of the agents’ cumulative utilities but
on the information setting (i.e., whether or not the information is complete). Second, let O(ω)
denote the time complexity of TRADEOFFA1 for nonlinear utilities for the package deal with μ = 1,
and O(ωc) that for the cth partition. Also, let Sz denote the partition for which O(ωz) is the
highest between all partitions. Then, we know from Theorem 11 that the time complexity of the
package deal for the setting with symmetric uncertainty is O(ωr3T (n− T

2 )). Consequently, the time
complexity of both the simultaneous and the sequential procedures is O(ωzr

3T (n − T
2 )). Third,

while the package deal outcome for our additive cumulative utilities is Pareto optimal, the package
deal outcome for nonlinear utilities may not be Pareto optimal. This is because (as stated above)

11. Note that bilateral bargaining for which the players’ utility functions are nonlinear has been studied by Hoel (1986)
in the context of a single issue as opposed to the multi-issue case which is the focus of our study.
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nonlinear optimization problems can only be solved using approximation methods while the linear
optimization problem can be solved using an exact method (as in proof of Theorem 1). Finally,
since the conditions for a unique solution depend on the actual definition of cumulative utilities, the
conditions given in Tables 1 2, 3, and 4 may not hold for other forms of utility functions.

7. Related Work

Since Schelling (1956) first noted the fact that the outcome of negotiation depends on the choice of
negotiation procedure, much research effort has been devoted to the study of different procedures
for negotiating multiple issues. For instance, Fershtman (1990) extended the model developed by
Rubinstein (1982), for splitting a single pie, to sequential negotiation for two pies. However, this
model assumes complete information, imposes an agenda exogenously, and then studies the relation
between the agenda and the outcome of the sequential bargaining game. In more detail, for two pies
of different sizes, he analyses the effect of going first on the large and the small pie.

A number of researchers have also studied negotiations with an endogenous agenda (Inderst,
2000; In & Serrano, 2003; Bac & Raff, 1996). In Inderst (2000) players have discount factors,
but no deadlines. For independent issues, this work assumes complete information and studies
three different negotiation procedures: package deal, simultaneous, and sequential negotiation with
endogenous agenda. Their main result is that the package deal is the optimal procedure and that for
each procedure there exist multiple equilibria. In and Serrano (2003) extend this work by finding
conditions under which the equilibrium becomes unique. Note that our work differs from both of
these in that we analyse negotiations with both discount factors and deadlines, which we consider
to be much more common with automated negotiations. Moreover, we do this for both independent
and interdependent issues without making the complete information assumption.

Bac and Raff (1996) also developed a model that has an endogenous agenda. They extended
the model developed by Rubinstein (1985) for single pie bargaining with incomplete information
by adding a second pie. In this model, the players have discount factors, but no deadlines. The
size of the pie is known to both agents and the discounting factor is assumed to be equal for all
the issues for both agents. Also, there is asymmetric information: one of the players knows its
own discounting factor and that of its opponent, while the other player knows its own discounting
factor, but is uncertain of its opponent’s. In more detail, this factor can take one of two values, δH

with probability x, and δL with probability 1 − x. These probabilities are common knowledge. For
this model, the authors determine the equilibrium for the package deal and the sequential procedure.
They show that, under certain conditions, the sequential procedure can be the optimal one. However,
there are three key differences between this model and ours. First, we analyse both symmetric and
asymmetric information settings, while Bac and Raff analyse only the latter. Second, the negotiators
in our model have a deadline, while in Bac and Raff they do not. Again, we believe our analysis
covers situations that often occur in automated negotiation settings. Finally, Bac and Raff focus on
independent issues, but we analyse both independent and interdependent issues.

A slightly different approach (from the above ones) was taken by Busch and Horstmann (1997).
Again, they extended the model developed by Rubinstein (1985), but by adding a preliminary period
in which the agents bargain over the agenda. The outcome of this stage is then used as the agenda for
negotiating over the issues. In this complete information model, there are two pies for bargaining.
Furthermore, these two issues become available for negotiation at different time points. The players
have discount factors or fixed time costs, but no deadlines. Since there are two issues, there are two
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possible agendas. The outcome for these two agendas is compared with that for the package deal.
Their main result is that the players may have conflicting preferences over the optimal agenda. Note
that a key difference between this model and ours is that all the issues in our model are available
from the beginning, while in their model the two issues become available at different time points.
Furthermore, Busch and Horstman assume complete information, while we do not.

From all the models mentioned above, perhaps the one that is closest to ours is the one developed
by Inderst (2000). Unlike our work, Inderst assumes complete information and independent issues.
Also, it does not model player deadlines, while we do. However, Inderst does model players’ time
preferences as discount factors. Also, just like our model, all the issues for negotiation are available
at the beginning of negotiation. In terms of results, Inderst shows that the package deal is the
optimal procedure. Our study also shows that the package deal is the optimal procedure for both
agents. Finally, our work provides a detailed analysis of the attributes of the different procedures
(such as the time of agreement, the time complexity, the Pareto optimality, and the conditions for
uniqueness), while Inderst does not.

In summary, all the aforementioned models for multi-issue negotiation differ from ours in at
least one of three major ways. The players in our model have both discount factors and deadlines,
but a general characteristic of the above models is that the players only have discount factors but no
deadlines12. Negotiation with deadlines has been studied by Sandholm and Vulkan (1999) (in the
context of a single issue) and by Fatima et al. (2004) for the sequential procedure with μ = m. Given
this, our contribution lies firstly in finding the equilibrium for all the three procedures. Second, we
analyse both asymmetric and symmetric information settings, while previous work analyses only
the former. Third, we analyse both independent and interdependent issues while previous work
focuses primarily on independent issues. Furthermore, the existing literature does not compare the
different multi-issue procedures in terms of their attributes (viz. time complexity, Pareto optimality,
uniqueness, and time of agreement). By considering these, our study allows a more informed choice
to be made about a wider range of tradeoffs that are involved in determining which is the most
appropriate procedure.

Finally, we would like to point that in Fatima et al. (2006), we considered independent issues
and carried out the same study as we do in this work, but in a symmetric information setting with
uncertainty about the negotiation deadline (as opposed to uncertainty over the agents’ utility func-
tions that is the focus of this work). The key result of (Fatima et al., 2006) is similar to the result of
our current work, namely that the optimal procedure in (Fatima et al., 2006) is the package deal.

8. Conclusions and Future Work

This paper studied bilateral multi-issue negotiation between self-interested agents in a wide range of
settings. Each player has time constraints in the form of deadlines and discount factors. Specifically,
we considered both independent and interdependent issues and studied the three main multi-issue
procedures for conducting such negotiations: the package deal, the simultaneous procedure, and the
sequential procedure. We determined equilibria for each procedure for two different information
settings. In the first, there is symmetric uncertainty about the opponent’s utility. In the second,
there is asymmetric uncertainty about the opponent’s utility. We analysed both settings for the
case of independent and interdependent issues. For each setting, we compared the outcomes of the

12. (Fatima et al., 2004) studies a multi-issue model with deadlines, but it focuses on determining the equilibrium for one
specific sequential procedure: the one in which each partition has a single issue.
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different procedures and showed that the package deal is optimal for each agent. We then compared
the three procedures in terms of four attributes: the time complexity of the procedure, the Pareto
optimality of the equilibrium solution, the uniqueness of the equilibrium solution, and the time of
agreement (see Table 1).

In more detail, our study shows that the package deal is in fact the optimal procedure for each
party. We also showed that although the package deal may be computationally more complex than
the other two procedures, it generates Pareto optimal outcomes (unlike the other two procedures), it
has similar earliest and latest possible times of agreement as the simultaneous procedure (which is
better than the sequential procedure), and that it (like the other two procedures) generates a unique
outcome only under certain conditions (which we defined).

There are several interesting directions for extending the current analysis. First, in this work, we
modelled the players’ time preferences in the form of discount factors which is the most common
basis for such analysis. However, existing literature (Busch & Horstman, 1997) shows that the
outcome for negotiation with discount factors can differ from the outcome for negotiation with
fixed time costs. It will, therefore, be interesting to extend our results to negotiations with fixed
time costs. Second, our present work analysed the setting with uncertainty about utility functions.
Generalisation of our results to scenarios with other sources of uncertainties such as the agents’
discount factors is another direction for future work.
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Appendix A. Summary of Notation

a, b The two negotiating agents.

n Negotiation deadline for both agents.

m Total number of issues.

S The set of m issues.

Sc A subset of S (Sc ⊆ S).

M Number of issues in the largest partition.

μ Number of partitions for the simultaneous and sequential procedures.

δc Discount factor for issue c (for 1 ≤ c ≤ m).

δ An m element vector that represents the discount factor for the m issues.

xt An m element vector that denotes a’s share for each of the m issues at time t.

yt An m element vector that denotes b’s share for each of the m issues at time t.

[xt, yt ] The package offered at time t.

at
c Agent a’s share for issue c in the equilibrium offer for time period t.

bt
c Agent b’s share for issue c in the equilibrium offer for time period t.

at An m element vector that denotes a’s share for each of the m issues in equilibrium at time t.

bt An m element vector that denotes b’s share for each of the m issues in equilibrium at time t.

[at, bt ] The equilibrium package offered at time t.

Ua
i Cumulative utility function for agent a of type i.

U b
i Cumulative utility function for agent b of type i.

ua(t) Agent a’s cumulative utility from the equilibrium offer for time t.

ub(t) Agent b’s cumulative utility from the equilibrium offer for time t.

a(i, j, t) Agent a’s equilibrium offer for time t if a is of type i assuming b is type j.

b(i, j, t) Agent b’s equilibrium offer for time t if b is of type i assuming a is type j.

a(i, t) Equilibrium strategy for an agent a of type i at time t.

b(i, t) Equilibrium strategy for an agent b of type i at time t.

eua(i, t) Cumulative utility that an agent a of type i expects to get from b’s equilibrium offer at
time t (i.e., a is the receiving agent and b the offering agent at t).
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eub(i, t) Cumulative utility that an agent b of type i expects to get from a’s equilibrium offer at
time t (i.e., b is the receiving agent and a the offering agent at t).

eua(i, j, t) Agent a’s expected cumulative utility from its equilibrium offer for time t if a is type i
and assuming that b is type j.

eub(i, j, t) Agent b’s expected cumulative utility from its equilibrium offer for time t if b is type i
and assuming a is type j.

r Number of types for agent a (and also the number of types for agent b).

T a
t Set of possible types for agent a at time t.

T b
t Set of possible types for agent b at time t.

P a The probability distribution function for ka.

P b The probability distribution function for kb .

K A vector of r vectors each element of which is in turn a vector of m positive reals.

Sij
p A subset of S (Sij

p ⊆ S where i denotes a’s type and j that of b) such that |Sij
p | > 1 and

∀
c,d∈Sij

p

Kic
Kjc

= Kid
Kjd

.

tradeoffa Agent a’s function for making tradeoffs in the complete information setting.

tradeoffb Agent b’s function for making tradeoffs in the complete information setting.

tradeoffa1 Agent a’s function for making tradeoffs in the four incomplete information settings:
SUI , SUD, AUI , AUD.

tradeoffb1 Agent b’s function for making tradeoffs in the four incomplete information settings:
SUI , SUD, AUI , AUD.

π̂ Maximum number of packages that tradeoffa1 (or tradeoffb1) will have to search to find
the one that maximises a’s (or b’s) expected cumulative utility (considering all possible types
of a and b).

paij
t The set of all possible packages that tradeoffa1 can return at time t (i denotes a’s type and

j that of b).

pbij
t The set of all possible packages that tradeoffb1 can return at time t (i denotes a’s type and

j that of b).
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