
 

 

 

 

Multi-item Sales Forecasting with 

Total and Split Exponential Smoothing 

 

James W. Taylor 

Saïd Business School 

University of Oxford 

 

 

Journal of the Operational Research Society, 2011, Vol. 62, pp. 555–563. 
 

 

 

 

 

 

Address for Correspondence: 
 
James W. Taylor 
Saïd Business School 
University of Oxford 
Park End Street 
Oxford  OX1 1HP, UK 
 
Tel: +44 (0)1865 288927 
Fax: +44 (0)1865 288805 
Email: james.taylor@sbs.ox.ac.uk



Multi-item Sales Forecasting with Total and Split Exponential Smoothing  

 

Abstract 

Efficient supply chain management relies on accurate demand forecasting. Typically, 

forecasts are required at frequent intervals for many items. Forecasting methods suitable for 

this application are those that can be relied upon to produce robust and accurate predictions 

when implemented within an automated procedure. Exponential smoothing methods are a 

common choice. In this empirical case study paper, we evaluate a recently proposed seasonal 

exponential smoothing method that has previously been considered only for forecasting daily 

supermarket sales. We term this method ‘total and split’ exponential smoothing, and apply it 

to monthly sales data from a publishing company. The resulting forecasts are compared 

against a variety of methods, including several available in the software currently used by the 

company. Our results show total and split exponential smoothing outperforming the other 

methods considered. The results were also impressive for a method that trims outliers and 

then applies simple exponential smoothing.  
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Introduction 

In production and inventory control systems, forecasts are often required, at frequent 

intervals, for many different products or parts. In this situation, there is strong motivation to 

automate the forecasting process. The robustness and pragmatic appeal of smoothing methods 

has led to their extensive use in forecasting applications where a large number of series 

necessitates an automated procedure (Fildes et al, 2008; Syntetos et al, 2009). Exponential 

smoothing is particularly popular due to its impressive performance in empirical studies 

(Gardner, 2006). In their survey of sales forecasting practitioners, McCarthy et al (2006) 

report a greater level of satisfaction with exponential smoothing than any other method used.  

The main aim of this paper is to provide further insight into the usefulness of a 

seasonal exponential smoothing method that was devised by a supermarket company, and 

presented by Taylor (2007). The method was developed for daily sales forecasting, and 

involves smoothing both the total weekly sales and the split of the total sales for each day of 

the week. We term the method ‘total and split’ exponential smoothing. In Taylor’s empirical 

analysis, the method performed well for daily supermarket sales forecasting, particularly for 

the early lead times considered. In this paper, we apply the method to a dataset consisting of a 

large number of monthly sales series provided by a publishing company. We compare the 

accuracy of the method against a variety of alternatives, including several of the methods 

available in the demand planning module of SAP ERP, which is the enterprise resource 

planning software used by the publishing company. One of the less standard methods 

available in this software involves outlier correction prior to exponential smoothing. 

Inclusion of this method in our study is of particular interest because, in Taylor’s analysis, 

similar outlier correction methods outperformed total and split exponential smoothing beyond 

the early lead times. As we discuss in the next section, outliers are certainly a feature of our 

monthly sales data. 
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The issue of outliers prompts consideration of a robust approach to parameter 

estimation. Given that absolute error is a more robust measure of error magnitude than 

squared error, it may be preferable to optimise exponential smoothing parameters by 

minimising the sum of absolute estimation sample errors, rather than the standard use of the 

sum of squared errors (see Gardner and Diaz-Saiz, 2008). We consider this in our analysis. 

When forecasting a large number of series, one can either use a common method for 

all series or, using an automated procedure, separately select a method for each series, or 

perhaps for each cluster of series. There is no established procedure in the forecasting 

literature for automated method selection (Fildes et al, 2008). Procedures have been proposed 

that use information criteria, but these require statistical models estimated using maximum 

likelihood (see, for example, Hyndman et al, 2008, Chapter 7), and the more accurate 

methods considered in this study do not fall into this category. Gardner (2006, Section 5) 

categorises the other automated method selection procedures as being either based on time 

series characteristics or rule-based expert systems. To select from among exponential 

smoothing methods, typically, such procedures involve ad hoc trend and seasonality tests, 

which are hard to justify. Importantly, empirical studies have not provided convincing 

evidence of the benefit of using automated method selection approaches (Gardner, 2006; 

Fildes et al, 2008). A possible exception to this is the expert system incorporated in the 

forecasting package ForecastPro® (see Makridakis and Hibon, 2000). In this paper, we briefly 

consider a simple ‘cross-validation’ approach to method selection for each series. This 

proceeds by estimating methods using all available data except a final hold-out sample. The 

best performing method for the hold-out sample is chosen as the method to use to forecast 

future values. Billah et al (2006) describe this as a common approach to method selection.  

An alternative to selecting separately a method for each series is to identify clusters of 

series for which a common method would be suitable. Fildes et al (2008) suggest that this is a 

potentially valuable, although challenging, area of research. Our interest in this was prompted 
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by personnel at our collaborating company who suggested that we cluster all titles within a 

given publishing category, such as GMAT study aids or foreign language dictionaries. 

In the next section, we describe the dataset, the structure of our empirical analysis, 

and the accuracy measures that we use to compare forecasting methods. The section that 

follows describes each of the methods that we consider. The rest of the paper describes a 

series of empirical ‘experiments’ that we conducted. We evaluate which methods are 

preferable, if the aim is to choose a single method to apply to all series. The next section 

briefly considers a cross-validation approach that selects a method separately for each series. 

We also briefly evaluate the benefit in assigning a common forecasting method to all series 

belonging to a particular cluster of series. The final section summarises our findings, and 

provides concluding comments. 

 

Data, Structure of Study and Error Measures 

The initial dataset consisted of 3880 monthly time series. The observations in each 

series corresponded to the sales of an individual title, classified by its ISBN. The data had 

been aggregated across markets from a number of different countries. As a result, the sales 

volumes were not low, and so we did not consider forecasting methods for intermittent 

demand (see Syntetos et al, 2009). The titles included books, CDs, DVDs and videos. As 

shown in Figure 1, the series varied greatly in length, ranging from just one observation to 

series of length 127 months. Four of the series are presented in Figures 2 to 5. These plots 

show some of the typical features present in the data. Most series seemed to possess high 

volatility; many series contained outliers with occasional extremely large outliers; few series 

possessed clear trend; and many series seemed to have some degree of seasonality, but the 

seasonality often changed or disappeared over time. Figure 4 shows a series that has demand 

steadily fading to zero. In one part of our empirical analysis, we consider the implications for 

our ranking of methods if we attempt to remove such ‘fading’ series. Figure 5 seems to show 
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signs of seasonality, but there is barely sufficient data to be able to model the seasonality. In 

this paper, we follow the practice of the SAP ERP demand planning module by requiring at 

least 36 months of data in order to fit a seasonal forecasting method.  

----------  Figures 1-5  ---------- 

We considered prediction from 1 to 18 months ahead. Lead times of between 6 to 18 

months are of greatest relevance to the company, but we included the earlier lead times for 

completeness. As the focus of this paper is total and split exponential smoothing, which is a 

seasonal method, we only considered series for which at least 36 months were available for 

the estimation sample. In view of this, the shortest series that we considered consisted of 

36+18=54 months of data. The resulting dataset contained 1849 series. 

In each empirical experiment that we performed, for each series and for each lead 

time, we generated just one forecast from each method. A similar approach has been used in 

several high-profile forecasting competitions (see, for example, Markidakis and Hibon, 

2000). An alternative is to use a rolling origin for each series, which would lead to more than 

one post-sample forecast for each lead time. To summarise a method’s performance for each 

lead time, we averaged the accuracy across the series by calculating the root mean square 

error (RMSE) and the mean absolute error (MAE), which has the appeal of robustness. When 

averaging these measures across series, it is likely that they will be dominated by the higher 

volume series because errors for these series are likely to be larger than those from the lower 

volume series. Although higher volume series may be considered to be of greater importance, 

it is also interesting to consider error measures that are not dominated by these series. An 

appeal of percentage error measures is that they control for the level of the series. However, 

we could not use them in this study because the post-sample period for many of the series 

contained one or more observations close to or equal to zero. As an alternative, we used a 

relative absolute error measure, which, for each series and each lead time, was calculated as 

the absolute error for each method divided by the average of the absolute errors for all the 
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methods. This was then averaged across all the series to deliver the mean relative absolute 

error (MRelAE). We also computed the average of each method’s ranking in terms of 

absolute error (MRankAE). For simplicity in the reminder of this report, we present results in 

terms of only the MAE and MRankAE. The relative performances of the methods were 

broadly similar when compared using the RMSE and MRelAE. 

 

Forecasting Methods 

Total and Split Exponential Smoothing 

The total and split exponential smoothing method is presented by Taylor (2007), who 

provides results that show the method performing well for daily supermarket sales data, 

particularly for short lead times. We are not aware of any other empirical evidence regarding 

the method, and we do not know of commercial software in which the method is 

implemented. In this paper, we apply the method to monthly data. For a series of monthly 

observations, yt, the method involves smoothing the total yearly sales, Tt, and the split, St, of 

the yearly sales across the months of the year. The method has the following formulation:  
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where  and  are smoothing parameters. The forecasts are given by 12)(ˆ  kttt STky  for lead 

times k = 1 to 12, and by 24)(ˆ  kttt STky  for k = 13 to 18. The method can be viewed as a 

hybrid of the ratio-to-moving average seasonal adjustment procedure (see Makridakis and 

Hibon, 2000) and Holt-Winters exponential smoothing with multiplicative seasonality and no 

trend (which, as we explain below, is termed ‘N-M’ exponential smoothing). The total and 

split method replaces the Holt-Winters smoothing of the level by smoothing of the yearly 
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total. In the ratio-to-moving average seasonal adjustment approach, the total and split method 

can be viewed as replacing simple averages by exponentially weighted moving averages.  

We used simple averages of the first few observations to calculate initial values for 

the smoothed components. Taylor (2007) describes how the supermarket company use the 

same subjectively chosen parameter values for all series; =0.7 and =0.1. For our publishing 

sales data, we consider these as well as optimised values. For all exponential smoothing 

methods in this paper, we optimised parameters by minimising the sum of squared one step-

ahead estimation sample forecast errors, as well as minimising the sum of absolute errors. 

Fildes et al (1998) note that using commonly occurring exponential smoothing parameters for 

all series can be preferable to using the values optimised for each series. We implemented the 

total and split method for all series with each parameter set as the median of all the optimised 

values of that parameter. 

 

Non-Seasonal Methods 

As our collaborating publishing company currently uses the demand planning module 

of SAP ERP to produce its forecasts, it seemed natural to use the more attractive methods 

available in this module as benchmarks against which to compare the total and split 

exponential smoothing method. As many of the series did not show clear seasonality, we 

included non-seasonal as well as seasonal methods in our forecast comparison. The nature of 

demand is that it obviously cannot attain a negative value. Therefore, for all methods 

considered in this paper, we imposed the constraint that if a forecast is produced that is 

negative, that forecast is set to zero. We implemented the following non-seasonal methods: 

Naïve - The value at the forecast origin is used as the forecast for all future periods.  

Linear trend - This method uses regression with time as the single regressor.  

Simple exponential smoothing (N-N) - This method involves smoothing the level of 

the series through the use of a single smoothing parameter, . The notation ‘N-N’ indicates 
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no trend and no seasonal component in the classification of exponential smoothing methods 

introduced by Hyndman et al. (2002) and extended by Taylor (2003).  

Trend exponential smoothing (A-N) - This method involves smoothing the level and 

trend of the series through the use of two parameters. The notation ‘A-N’ indicates an 

additive trend and no seasonal component. 

Damped trend exponential smoothing (DA-N) - This method smoothes the level and 

additive trend of the series, and dampens the trend in the forecast function. It is an attractive 

candidate method because of its impressive performance in a number of empirical studies 

(Gardner, 2006). The notation ‘DA-N’ indicates a damped additive trend and no seasonal 

component. 

 

Methods Using Seasonal Adjustment 

A common approach to forecasting seasonal time series is to seasonally adjust the 

data, then apply a non-seasonal method to produce forecasts, and finally incorporate 

seasonality into the forecasts (see, for example, Makridakis and Hibon, 2000). We used the 

seasonal adjustment method based on ratio-to-moving averages. The SAP ERP demand 

planning module enables only the linear trend method to be used as the non-seasonal method. 

In our analysis, we considered this, and the non-seasonal exponential smoothing methods: 

simple (N-N), trend (A-N) and damped trend (DA-N).  

Simple exponential smoothing (N-N) with outlier correction - Many of the series 

contain outliers, so there is strong appeal in using a method that is robust to outliers. Taylor’s 

(2007) results for daily supermarket sales data showed that the total and split exponential 

smoothing method was outperformed beyond about six days ahead by a number of robust 

methods based on quantile forecasting. Several of these methods applied simple exponential 

smoothing to series that had been winsorised. This involves replacing all in-sample 

observations below a chosen estimated lower quantile by the value of this estimated quantile, 
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and all in-sample observations above a chosen estimated upper quantile by this value. For our 

publishing data, we implemented a similar outlier correction method that is available in the 

demand planning module of the SAP ERP software. This method proceeds by fitting an 

exponential smoothing method, and then, for each in-sample period, a tolerance interval is 

constructed as the one-step-ahead forecast plus or minus a ‘correction factor’ multiplied by 

the MAE of the estimation sample one-step-ahead forecast errors. Starting from the 

beginning of the sample, if an observation falls outside the interval, it is replaced by the 

nearest bound of the interval. When this occurs, the exponential smoothing method is refitted, 

and the process is repeated. This continues until the end of the estimation sample. The 

software documentation provided no guidance as to how to choose the correction factor, and 

so, for simplicity, we subjectively selected factors of 1 and 2. As we found benefit in using 

the outlier correction procedure with only simple exponential smoothing, in the remainder of 

this paper, we report results for only this form of the method. We report the results for the 

method applied to seasonally adjusted data, as this led to improved accuracy.  

 

Other Seasonal Methods 

Seasonal naïve - The forecast for a future month is the most recently observed value 

for the same month of the year.  

Seasonal (no trend) exponential smoothing (N-M) - This method smoothes the level 

and seasonality through the use of two smoothing parameters. We considered both additive 

and multiplicative seasonality formulations. We found multiplicative seasonality to be 

superior, and so in the remainder of the paper we report only the results for this version. The 

notation ‘N-M’ indicates no trend and the use of multiplicative seasonality. In our analysis, 

the results for this method were very sensitive to the approach used to initialise the seasonal 

indices. Poor results were produced when we used the initialisation expressions that, 

according to the online manual, are used in the SAP ERP demand planning module. 
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Therefore, in this paper, as with all other exponential smoothing methods, we opted to 

initialise the method using simple averages based on the early observations in each series.   

Seasonal trend exponential smoothing (A-M) - This method smoothes the level, trend 

and seasonality through the use of three smoothing parameters. The notation ‘A-M’ indicates 

additive trend and multiplicative seasonality. 

Seasonal damped trend exponential smoothing (DA-M) - This method smoothes the 

level, trend and seasonality, and dampens the trend in the forecast function. The notation 

‘DA-M’ indicates damped additive trend and multiplicative seasonality. The method involves 

three smoothing parameters and a dampening parameter. 

 

Comparing the Accuracy of Individual Methods  

Experiment 1 - Series with at least 36 months in the estimation sample 

Table 1 presents the MAE and MRankAE post-sample results for methods that have 

each been applied to the 1849 series with at least 36+18=54 months of data. The table 

includes just one exponential smoothing method that had parameters estimated by minimising 

the sum of squared errors. For the other exponential smoothing methods shown, the 

parameters were estimated by minimising the sum of absolute errors. We have the following 

comments regarding the results of Table 1: 

(i) The accuracies of the linear trend method and the non-seasonal exponential smoothing 

methods were each improved by applying the methods with seasonal adjustment.  

(ii) The results for damped trend exponential smoothing (DA-N) show that dampening the 

additive trend delivers improved accuracy, which is consistent with other similar studies.  

(iii) The inclusion of the outlier correction in simple exponential smoothing (N-N) led to 

noticeable improvement in the accuracy of this method. Using a correction factor of 2 was 

more successful than a factor of 1.   
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(iv) Given its simplicity, the naïve seasonal method was surprisingly competitive. Its 

superiority over the naïve method indicates that there is seasonality in many of the series. 

(v) The seasonal (no trend) exponential smoothing method (N-M) was more successful than 

the similar method with trend term included (A-M). The N-M method delivered accuracy 

comparable with the better of the simple exponential smoothing methods with outlier 

correction and seasonal adjustment. 

(vi) It is interesting to compare the results for the three traditional seasonal exponential 

smoothing methods, N-M, A-M and DA-M, with the results for the corresponding three 

methods that involve seasonal adjustment instead of seasonal smoothing, N-N, A-N, DA-N. 

In terms of MRankAE, smoothing seasonality was preferable to seasonal adjustment for all 

three cases. In terms of MAE, using seasonal adjustment was a little better for the damped 

trend method, but smoothing seasonality was more accurate for simple and trend exponential 

smoothing. These results are, perhaps, a little surprising because it tends to be assumed in the 

literature that using seasonal adjustment with N-M, A-M and DA-M is preferable to using the 

corresponding seasonal smoothing methods (see, for example, Makridakis and Hibon, 2000).  

(vii) Estimating the parameters of total and split exponential smoothing by minimising the 

sum of absolute errors was preferable to minimising the sum of squared errors. This was a 

consistent result across all of the exponential smoothing methods. 

(viii) The best results across all lead times were achieved by total and split exponential 

smoothing. We considered outlier correction for this method, but it did not lead to greater 

accuracy. Outliers are difficult to identify in the presence of seasonality, and so it is perhaps 

not surprising that we found that outlier correction was more useful for the non-seasonal 

simple exponential smoothing method than for the seasonal total and split exponential 

smoothing method. 

 (ix) Total and split exponential smoothing with parameters optimised separately for each 

series was slightly outperformed by the method with =0.48 and =0.24 for all 1849 series. 
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These values were the median of the optimised values for all the series, where the 

optimisation was performed by minimising the sum of absolute errors. Interestingly, beyond 

6 months ahead, total and split exponential smoothing was most accurate when the 

subjectively chosen values of =0.7 and =0.1 were used. The reason for the optimised 

parameters being more useful at the early lead times may be due to the parameter 

optimisation using one step-ahead errors. This suggests that it may be useful to optimise 

parameters separately for each lead time using in-sample forecast errors corresponding to that 

lead time. We note that optimising parameters separately for each lead time was considered 

unappealing by those responsible for forecasting at the publishing company. 

----------  Table 1  ---------- 

 

Experiment 2 - Series with between 36 and 72 months in the estimation sample 

Inspection of some of the longer series revealed that the demand level was fading to 

very low values towards the end of the series. An example of this is given in Figure 4. These 

series correspond to titles that are coming to the end of their life cycle. The company were 

curious to know whether the relative performances of methods in Table 1 would be repeated 

if we were to try to eliminate the terminating life cycle feature from the dataset. Although this 

feature was certainly not present in all of the longer series, in our second experiment, we 

decided to repeat the analysis of Experiment 1 using the same 1849 series and a maximum of 

the first 90 observations from each series. This meant that no more than 72 months of each 

series would be used in the estimation sample, with the remaining 18 months used as the 

evaluation sample. We do not present the detailed results of Experiment 2, as they were 

generally consistent with the results of Experiment 1. However, we note the following two 

findings from Experiment 2 that differed from Experiment 1: 



 12

(i) For total and split exponential smoothing, optimising the parameters by minimising the 

sum of absolute errors gave substantially better accuracy than using the subjectively chosen 

values of =0.7 and =0.1. 

(ii) The total and split method, with parameters optimised by minimising the sum of absolute 

errors, delivered similar accuracy to that of seasonal (no trend) exponential smoothing (N-M) 

and simple exponential smoothing (N-N) with outlier correction factor of 2.  

 

Automated Method Selection  

Experiment 3 - Simple Cross-Validation 

In this section, we consider a simple cross-validation approach to method selection for 

each series. This proceeds by estimating methods using all except a final hold-out sample of 

the estimation sample. The method found to be most accurate at forecasting for the hold-out 

sample is chosen as the method to use for that series. We considered method selection from 

the following five methods that performed reasonably well in the earlier analysis: simple 

exponential smoothing (N-N) with seasonal adjustment and outlier correction with a 

correction factor of 2; seasonal naïve; seasonal (no trend) exponential smoothing (N-M); 

seasonal damped trend exponential smoothing (DA-M); and total and split exponential 

smoothing. For each exponential smoothing method, the parameters were estimated by 

minimising the sum of absolute errors. We used 24 months in the cross-validation period, and 

judged forecasting performance in this period using 12 month-ahead MAE, calculated for 

months 12 to 24 in the cross-validation period. Other lead times could have been considered, 

but we chose 12 month-ahead prediction due to its relevance for the company. Having 

selected an individual method in this way, before producing forecasts for the post-sample 

period, we re-estimated method parameters with the cross-validation period included in the 

estimation sample. With at least 36 months of data needed in each estimation sample, 24 

months required for cross-validation, and a further 18 for post-sample evaluation, we 
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restricted our attention to series of length at least 36+24+18=78 months. This resulted in the 

use of 1416 series.  

Post-sample results are presented in Table 2. We have included the performance for 

12 months ahead, as this was the lead time used to select methods. For this lead time, the 

method selection approach is outperformed by the seasonal naïve method. Looking at the 

results across all lead times, we see the seasonal naïve method was the poorest. Overall, the 

most accurate method was the total and split exponential smoothing method. The results 

suggest that cross-validation method selection may well not be able to improve on the use of 

the best individual method used for all series. We reached the same conclusion when 

repeating the experiment with total and split exponential smoothing removed. 

----------  Table 2  ---------- 

 

Automated Selection of a Method for a Cluster of Time Series 

We now consider a method selection approach that allocates the same method to all 

series within a given cluster. The clustering of series is defined by the publishing category 

within which each title lies. These categories are defined by the publishing company, and two 

examples are dictionaries for a particular language and a series of examination study aids.  

 

Experiment 4 - Using post-sample results (cheating) to allocate a method to each cluster 

In this experiment, we essentially cheated by allocating a method to a cluster based on 

post-sample performance of forecasting methods for all series in that cluster. The purpose of 

this analysis is to establish whether finding a common method for all series in a cluster is an 

idea worth pursuing. In this experiment, we used the same 1849 series from Experiment 1, 

and the five individual methods considered in Experiment 3. The experiment proceeded by 

noting the rankings of methods, in terms of 12 month-ahead MAE in the post-sample period 

of 18 months. For each cluster, we averaged the rankings across all series in that cluster, and 
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noted the method with highest average ranking. This method was assigned to all series in that 

cluster. We then used this assignment of methods in a method selection procedure. The 

results are given in Table 3. The underlined entries show that for 12-month-ahead prediction, 

the results for the method selection approach are better than any other method. This indicates 

that using a common method for all series in a cluster is an idea with some potential. 

However, an approach is needed for assigning a method to each cluster using just the 

estimation sample, and we consider this in Experiment 5. It is disappointing to see that the 

method selection approach performed poorly at lead times other than 12 months. This 

suggests that the assignment of a single method to each cluster may only be useful if a 

different method is permitted for different forecast lead times. We note that this was viewed 

as unattractive by those responsible for forecasting at the publishing company. 

----------  Table 3  ---------- 

 

Experiment 5 - Using cross-validation (not cheating) to allocate a method to each cluster 

This experiment involved no cheating, but instead used cross-validation to allocate a 

method to each cluster. For each series, we ranked each method in terms of its 12 month-

ahead MAE for a 24 month cross-validation period. The method allocated to a cluster was the 

one with highest average ranking for the series in that cluster. As in Experiment 3, we used 

the 1416 series that were composed of at least 78 monthly observations. We used the same 

five individual methods considered in Experiments 3 and 4. The results in Table 4 show that, 

overall, the method selection procedure was not able to outperform total and split exponential 

smoothing. 

----------  Table 4  ---------- 
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Summary and Concluding Comments 

Overall, the best results in our study were achieved by the total and split exponential 

smoothing method. Other methods that produced competitive results were seasonal (no trend) 

exponential smoothing (N-M), and simple exponential smoothing (N-N) with seasonal 

adjustment and outlier correction. Indeed, it was interesting to see that the inclusion of the 

outlier correction in simple exponential smoothing led to noticeable improvement in the 

accuracy of this method. In our empirical analysis, an outlier correction factor of 2 led to 

greater accuracy than a factor of 1. However, it would be interesting to consider some form of 

optimisation of this factor. Estimating the parameters of the exponential smoothing methods 

by minimising the sum of absolute errors was preferable to minimising the sum of squared 

errors. For total and split exponential smoothing, the results were mixed for the use of the 

same subjectively chosen parameters (=0.7 and =0.1) for all series, and so we would 

recommend parameter optimisation. An approach that delivered strong results in our study is 

to use, for all series, parameters set as the median of the set of values optimised for each 

series. 

We considered cross-validation for the automated selection of a forecasting method 

for each series. In this procedure, the forecasting method found to be most accurate for the 

hold-out sample is chosen as the method to use for that series. Our results showed that this 

method selection approach was not as accurate as the use of total and split exponential 

smoothing for all series. We also considered a method selection approach that allocates the 

same method to all series within a cluster, defined according to the publishing company’s 

descriptive categorisation of the titles. Although our analysis indicated that using the same 

method for all series in a cluster can lead to improved accuracy, a major issue remains as to 

how to select a method for each cluster. Using cross-validation to select methods for a cluster 

did not lead to results that were better than the best of the individual methods.  
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Further work in the area of method selection would be useful. Another potential area 

for research would be to investigate the appropriate level of aggregation of the data. We used 

data aggregated across a large number of country-specific markets, but even if a forecast at 

the aggregate level is needed, there may be benefit in modelling and producing forecasts at 

the disaggregated market level for each title. In addition to point forecasting, estimates of 

forecast uncertainty, such as prediction intervals, are also important (Datta et al 2007). For 

total and split exponential smoothing, it is straightforward to write out the innovations state 

space model, and from this prediction intervals can be simulated (see Hyndman et al, 2008, 

Chapter 6). One caveat to this is that, for the prediction intervals to be valid, the model 

parameters should be estimated using a statistical procedure, such as maximum likelihood, 

rather than minimising the sum of absolute errors, which we have advocated for point 

forecasting in this paper. This implies a potential need to sacrifice a degree of point forecast 

accuracy to enable the estimation of prediction intervals.  
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Figure 1  Histogram for the lengths of the 3880 time series. 

 

 

 

 

 

 

 

Figure 2  Time series plot for Series 1.     Figure 3  Time series plot for Series 2. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4  Time series plot for Series 3.     Figure 5  Time series plot for Series 4. 
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Table 1  Experiment 1 – Post-sample comparison of methods for 1849 series with at least 36 
months in the estimation sample. (Lower values are better. Bold indicates four lowest values 
in each column. Unless stated to the contrary, exponential smoothing methods estimated 
using absolute errors.) 
 

 MAE  MRankAE 

 Forecast lead time  Forecast lead time 

 1-6 7-12 13-18 All  1-6 7-12 13-18 All 

Non-seasonal methods          

    Naïve 620 586 633 613  10.8 10.2 10.6 10.6 

    Linear trend  487 523 572 527  11.3 10.9 11.1 11.1 

    Simple exp sm (N-N) 447 459 489 465  10.9 10.9 11.3 11.0 

    Trend exp sm (A-N) 458 492 554 501  10.1 9.8 10.3 10.1 

    Damped trend exp sm (DA-N) 429 439 466 445  10.1 9.7 10.1 10.0 

Methods using seasonal adjustment         

   Linear trend 573 710 690 658  11.0 11.5 10.9 11.1 

   Simple exp sm (N-N) 381 491 416 429  10.4 11.1 10.6 10.7 

   Simple exp sm (N-N) 
   with outlier correction factor of 1 

356 471 378 402  10.1 10.7 10.2 10.4 

   Simple exp sm (N-N) 
   with outlier correction factor of 2 

337 447 364 383  9.7 10.3 9.7 9.9 

   Trend exp sm (A-N) 391 519 480 463  9.8 10.1 10.0 10.0 

   Damped trend exp sm (DA-N) 373 490 410 424  9.8 10.0 9.6 9.8 

Other seasonal methods          

   Seasonal naïve 382 457 422 420  10.2 9.8 10.3 10.1 

   Seasonal (no trend) exp sm (N-M)  341 421 386 383  10.0 10.5 10.5 10.3 

   Seasonal trend exp sm (A-M) 359 440 444 414  9.6 9.6 9.9 9.7 

   Seasonal damped trend exp sm (DA-M) 389 480 452 440  9.5 9.6 9.6 9.6 

   Total and split exp sm 313 393 332 346  8.8 8.7 8.7 8.8 

   Total and split exp sm 
   (optimised using squared errors) 

323 414 360 366  9.4 9.6 9.6 9.5 

   Total and split exp sm  
   (= 0.48, = 0.24, median optimised) 

306 378 326 337  9.0 9.0 8.9 9.0 

   Total and split exp sm 
   (= 0.7, = 0.1) 

327 331 285 314  9.4 8.1 8.1 8.5 
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Table 2  Experiment 3 – Post-sample evaluation of the benefit of separate cross-validation 
method selection for each series. (Lower values are better. Bold indicates the lowest value in 
each column. Underlining indicates the results for the forecast lead time used in the cross-
validation. Parameters optimised for each exponential smoothing method using absolute 
errors.) 
 

 MAE  MRankAE 

 Forecast lead time  Forecast lead time 

 12 1-6 7-12 13-18 All  12 1-6 7-12 13-18 All 

Simple exp sm (N-N) 
with outlier correction factor of 2 
after seasonal adjustment 

595 318 448 357 374  3.8 3.6 3.7 3.5 3.6 

Seasonal naïve 487 365 464 419 416  3.3 3.7 3.5 3.7 3.6 

Seasonal (no trend) exp sm (N-M) 570 333 434 395 388  3.8 3.7 3.8 3.8 3.8 

Seasonal damped trend exp sm (DA-M) 554 328 437 377 381  3.5 3.5 3.4 3.5 3.5 

Total and split exp sm 526 292 400 327 340  3.1 3.1 3.1 3.1 3.1 

Method selection based on 12 month-ahead 
cross-validation 

547 322 427 372 374  3.5 3.4 3.4 3.4 3.4 

 
 
 
 
 
Table 3  Experiment 4 – Evaluation of the benefit of using post-sample performance to 
allocate a common method to all series in a cluster. (Lower values are better. Bold indicates 
the lowest value in each column. Underlining indicates the results for the forecast lead time 
used for the method selection. Parameters optimised for each exponential smoothing method 
using absolute errors.) 
 

 MAE  MRankAE 

 Forecast lead time  Forecast lead time 

 12 1-6 7-12 13-18 All  12 1-6 7-12 13-18 All 

Simple exp sm (N-N) 
with outlier correction factor of 2 
after seasonal adjustment 

577 324 427 342 364  3.8 3.5 3.6 3.4 3.5 

Seasonal naïve 481 382 457 422 420  3.5 3.7 3.6 3.7 3.6 

Seasonal (no trend) exp sm (N-M) 539 341 421 386 383  3.9 3.7 3.8 3.8 3.8 

Seasonal damped trend exp sm (DA-M) 538 353 434 404 397  3.6 3.5 3.5 3.5 3.5 

Total and split exp sm 513 313 393 332 346  3.4 3.2 3.2 3.2 3.2 

Method selection based on 12 month-ahead 
post-sample results 

447 330 407 361 366  2.8 3.4 3.3 3.4 3.4 
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Table 4  Experiment 5 – Post-sample evaluation of the benefit of using cross-validation to 
allocate a common method to all series in a cluster. (Lower values are better. Bold indicates 
the lowest value in each column. Underlining indicates the results for the forecast lead time 
used in the cross-validation. Parameters optimised for each exponential smoothing method 
using absolute errors.) 
 

 MAE  MRankAE 

 Forecast lead time  Forecast lead time 

 12 1-6 7-12 13-18 All  12 1-6 7-12 13-18 All 

Simple exp sm (N-N) 
with outlier correction factor of 2 
after seasonal adjustment 

561 303 424 333 353  3.6 3.5 3.6 3.4 3.5 

Seasonal naïve 487 365 464 419 416  3.4 3.7 3.5 3.7 3.6 

Seasonal (no trend) exp sm (N-M) 570 333 434 395 388  3.9 3.8 3.9 3.9 3.9 

Seasonal damped trend exp sm (DA-M) 554 328 437 377 381  3.5 3.6 3.5 3.6 3.5 

Total and split exp sm 526 292 400 327 340  3.2 3.2 3.2 3.2 3.2 

Method selection based on 12 month-ahead 
cross-validation 

533 312 405 351 356  3.4 3.3 3.3 3.2 3.3 

 


