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Abstract
In recent years there has been a lot of interest in designing principled classification algorithms
over multiple cues, based on the intuitive notion that usingmore features should lead to better
performance. In the domain of kernel methods, a principled way to use multiple features is the
Multi Kernel Learning (MKL) approach.

Here we present a MKL optimization algorithm based on stochastic gradient descent that has
a guaranteed convergence rate. We directly solve the MKL problem in the primal formulation. By
having a p-norm formulation of MKL, we introduce a parameterthat controls the level of sparsity
of the solution, while leading to an easier optimization problem. We prove theoretically and exper-
imentally that 1) our algorithm has a faster convergence rate as the number of kernels grows; 2) the
training complexity is linear in the number of training examples; 3) very few iterations are sufficient
to reach good solutions. Experiments on standard benchmarkdatabases support our claims.
Keywords: multiple kernel learning, learning kernels, online optimization, stochastic subgradient
descent, convergence bounds, large scale

1. Introduction

In recent years there has been a lot of interest in designing principled classification algorithms
over multiple cues, based on the intuitive notion that using more features should lead to better
performance. Moreover, besides the purpose of decreasing the generalization error, practitioners
are often interested in more flexible algorithms which can perform feature selection while training.
This is for instance the case when a lot of features are available but amongthem noisy ones are
hidden. Selecting the features also improves the interpretability of the decisionfunction.

This has been translated into various algorithms, that dates back to the ’90s (Wolpert, 1992),
based on a two-layers structure. There a classifier is trained for each cue and then their outputs
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are combined by another classifier. This approach has been re-invented many times, with different
flavors (Nilsback and Caputo, 2004; Sanderson and Paliwal, 2004; Jieet al., 2010a; Gehler and
Nowozin, 2009b; Jin et al., 2010). In general, the two layers approaches use Cross-Validation (CV)
methods to create the training set for the second layer (Wolpert, 1992; Gehler and Nowozin, 2009b).
If the second layer is a linear classifier, these methods are equivalent to alinear combination of the
single classifiers.

Focusing on the domain of the Support Vector Machines (SVM) (Cristianiniand Shawe-Taylor,
2000), the use of multiple cues corresponds to the use of multiple kernels. Hence, instead of com-
bining kernel classifiers, the focus of research has moved on how to build an optimal new kernel as
a weighted combination of kernels.

A recent approach in this field is to use a two-stage procedure, in which thefirst stage finds
the optimal weights to combine the kernels, using an improved definition of the kernel alignment
(Cristianini et al., 2002) as a proxy of the generalization error, and a standard SVM as second
stage (Cortes et al., 2010). This approach builds on the previous workson the maximization of the
kernel alignment to combine kernels (Lanckriet et al., 2004). However inthis approach, even if
theoretically principled, the global optimality is not guaranteed, because the optimization process
split in two phases.

A different approach with a joint optimization process is Multi Kernel Learning (MKL) (Lanck-
riet et al., 2004; Bach et al., 2004; Sonnenburg et al., 2006; Zien and Ong, 2007; Rakotomamonjy
et al., 2008; Varma and Babu, 2009; Kloft et al., 2009). In MKL one solves a joint optimization
problem while also learning the optimal weights for combining the kernels. MKL methods are
theoretically founded, because they are based on the minimization of an upper bound of the gen-
eralization error (Kakade et al., 2009; Cortes et al., 2010), like in standard SVM. In most of these
approaches the objective function is designed to impose sparsity on the weights of the combina-
tion using anl1-norm constraint (Bach et al., 2004; Sonnenburg et al., 2006; Zien and Ong, 2007;
Rakotomamonjy et al., 2008; Varma and Babu, 2009). However solving it is far more complex
than training a single SVM classifier. In fact, thel1 norm is not smooth, so it slows down the opti-
mization process. The original MKL problem by Lanckriet et al. (2004) was cast as a semidefinite
programming (SDP). SDP are known to have poor scalability, hence much of the subsequent re-
search focused on devising more efficient optimization procedures. Thefirst step towards practical
MKL algorithms was to restrict the weights coefficients to be non-negative. In this way, it was
possible to recast the problem as a much more efficient semi-infinite linear programming (SILP)
(Sonnenburg et al., 2005; Rubinstein, 2005). This has allowed to solve the MKL problem with al-
ternating optimization approaches (Sonnenburg et al., 2006; Rakotomamonjyet al., 2008; Xu et al.,
2008; Nath et al., 2009), first optimizing over the kernel combination weights, with the current
SVM solution fixed, then finding the SVM solution, given the current weights. One advantage of
the alternating optimization approach is that it is possible to use existing efficientSVM solvers,
such as Joachims (1999) and Chang and Lin (2001), for the SVM optimization step. On the other
hand, for these algorithms, it is usually not possible to prove a bound on themaximum number of
iterations needed, even if they are known to converge. In fact, to the best of our knowledge, none of
the existing MKL algorithms provides theoretical guarantees on the convergence rate. For the same
reason it is not possible to know the asymptotic computational complexity of thesealgorithms, and
often these dependencies are estimated numerically for the specific implementation at hand. For
example, multiclass MKL SILP algorithm (Sonnenburg et al., 2006; Zien and Ong, 2007) seems
to depend polynomially on the number of training examples and number of classes with an expo-
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nent of∼ 2.4 and∼ 1.7 respectively. For the other algorithms these dependencies are not clear.
Another disadvantage is that they need to solve the inner SVM problem till optimality. In fact, to
guarantee convergence, the solution needs to be of a high enough precision so that the kernel weight
gradient computation is accurate. On the other hand the learning process isusually stopped early,
before reaching the optimal solution, based on the common assumption that it is enough to have
an approximate solution of the optimization function. Considering the fact that the current MKL
algorithms are solved based on their dual representation, this might mean being stopped far from
the optimal solution (Hush et al., 2006), with unknown effects on the convergence.

An important point is that, very often, these approaches fail to improve muchover the naive
baseline of just summing all the kernels (Kloft et al., 2009). Recently, researchers start to realize
that when the optimal Bayes classifier is not sparse, brutally imposing sparsity will hurt the gen-
eralization performance. Motivated by this, thelp-norm constraint has been proposed (Kloft et al.,
2009; Orabona et al., 2010; Vishwanathan et al., 2010), instead ofl1-norm constrain, to be able to
tune the level of sparsity of the solution and to obtain an easier problem too. In particular Vish-
wanathan et al. (2010) derived the dual of a variation of thelp MKL problem for p > 1, suited to
be optimized with the popular Sequential Minimal Optimization algorithm (Platt, 1999).However
even for their algorithm it is not clear how the convergence rate dependson p and how to generalize
the algorithm to generic loss functions, such as the structured losses (Tsochantaridis et al., 2004).
This limitation on the use of particular loss functions is common to all the recent MKLoptimization
algorithms. An alternative way to be able to tune the sparsity of the MKL solution,inspired by the
elastic-net regularization, has been proposed by Tomioka and Suzuki (2010).

The main contribution of this paper is a new optimization algorithm to solve efficientlythe lp-
MKL problem, with a guaranteed convergence rate to the optimal solution. We minimize it with a
two-stage algorithm. The first one is an online initialization procedure that determines quickly the
region of the space where the optimal solution lives. The second stage refines the solution found
by the first stage, using a stochastic gradient descent algorithm. Boundson the convergence rate
are proved for the overall process. Notably different from the othermethods, our algorithm solves
the optimization problem directly in the primal formulation, in both stages. This allowsus to use
anyconvex loss function, as the multiclass loss proposed by Crammer and Singer(2002) or general
structured losses (Tsochantaridis et al., 2004), without any change to the core of the algorithm.
Using recent approaches in optimization theory, the algorithm takes advantage of the abundance of
information to reduce the training time (Shalev-Shwartz and Srebro, 2008).In fact, we show that
the presence of a large number of kernels helps the optimization process instead of hindering it,
obtaining, theoretically and practically, a faster convergence rate with more kernels. Our algorithm
has a training time that depends linearly on the number of training examples, with aconvergence
rate sub-linear in the number of features/kernels used, when a sparse solution is favored. At the
same time, it achieves state-of-the-art performance on standard benchmark databases. We call this
algorithm OBSCURE, Online-Batch Strongly Convex mUlti keRnel lEarning.

The rest of the paper presents the theory and the experimental results supporting our claims.
Section 2 revises the basic definitions of Multi Kernel Learning and generalizes it to thelp-norm
formulation. Section 3 presents the OBSCURE algorithm and Section 4 shows our theoretical
guarantees, while Section 5 reports experiments on categorization tasks. We conclude the paper
with discussions and future works.
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2. p-norm Multi Kernel Learning

In this section we first introduce formally the MKL framework and its notation, then its p-norm
generalization.

2.1 Definitions

In the following we define some notations and we also introduce some conceptsof convex analysis.
For a more thorough introduction see, for example, Boyd and Vandenberghe (2004).

2.1.1 NOTATION

We indicate matrices and vectors with bold letters. We also introduce two notationsthat will help
us to synthesize the following formulas. We indicate by[w j ]F1 :=

[
w1,w2, · · · ,wF

]
, and with a

bar, for example, ¯w, the vector formed by the concatenation of theF vectorsw j , hence ¯w =
[w1,w2, · · · ,wF ] = [w j ]F1 .

We consider closed convex functionsf : S→ R, where in the followingS will always denote
a proper subset ofX, an Euclidean vector space.1 We will indicate the inner product between two
vectors ofX, w andw′, asw·w′. Given a convex functionf : S→R, its Fenchel conjugatef ∗ : X→
R is defined asf ∗(u) = supv∈S(v·u− f (v)). A generic norm of a vectorw∈ X is indicated by‖w‖,
and its dual‖ ·‖∗ is the norm defined as‖y‖∗ = sup{x·y : ‖x‖ ≤ 1}. A vectorx is a subgradient of a
function f atv, if ∀u∈S, f (u)− f (v)≥ (u−v) ·x. The differential set off atv, indicated with∂ f (v),
is the set of all the subgradients off atv. If f is convex and differentiable atv then∂ f (v) consists of
a single vector which is the gradient off atv and is denoted by∇ f (v). A function f : S→R is said
to beλ-strongly convex with respect to a convex and differentiable functionh iff for any u,v ∈ S
and any subgradient∂ f (u), f (v)≥ f (u)+∂ f (u) · (v−u)+λ(h(v)−h(u)− (v−u) ·∇h(v)), where
the terms in parenthesis form the Bregman divergence betweenv andu of h.

2.1.2 BINARY AND MULTI -CLASS CLASSIFIERS

Let {xi ,yi}N
i=1, with N ∈N, xi ∈X andyi ∈Y, be the training set. Consider a functionφ(x) : X→H

that maps the samples into a high, possibly infinite, dimensional space. In the binary caseY =
{−1,1}, and we use the standard setting to learn with kernels,2 in which the prediction on a sample
x is a function of the scalar product between an hyperplanew and the transformed sampleφ(x). With
multiple kernels, we will haveF corresponding functionsφ j(·), i = 1, · · · ,F, andF corresponding
kernelsK j(x,x′) defined asφ j(x) ·φ j(x′).

For multiclass and structured classificationY = {1, . . . ,M}, and we follow the common ap-
proach to use joint feature mapsφ(x,y) : X×Y→ H (Tsochantaridis et al., 2004). Again, we will
haveF functionsφ j(·, ·), i = 1, · · · ,F, andF kernelsK j((x,y),(x′,y′)) asφ j(x,y) · φ j(x′,y′). This
definition includes the case of trainingM different hyperplanes, one for each class. Indeedφ j(x,y)
can be defined as

φ j(x,y) = [0, · · · ,0,φ′ j(x)
︸ ︷︷ ︸

y

,0, · · · ,0],

1. We allow the functions to assume infinite values, as a way to restrict their domains to proper subsets ofX. However
in the following the convex functions of interest will always be evaluated onvectors that belong to their domains.

2. For simplicity we will not use the bias here, but it can be easily added modifying the kernel definition.
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whereφ′ j(·) is a transformation that depends only on the data. Similarlyw will be composed by
M blocks,[w1, · · · ,wM]. Hence, by construction,w ·φ j(x, r) = wr ·φ′ j(x). According to the defined
notation,φ̄(x,y) = [φ1(x,y), · · · ,φF(x,y)]. These definitions allow us to have a general notation for
the binary and multiclass setting.

2.1.3 LOSSFUNCTION

In the following we consider convex Lipschitz loss functions. The most commonly used loss in
binary classification is the hinge loss (Cristianini and Shawe-Taylor, 2000).

ℓHL (w,x,y) = |1−yw̄· φ̄(x)|+,

where|t|+ is defined as max(t,0). We also consider the following multi-class loss function (Cram-
mer and Singer, 2002; Tsochantaridis et al., 2004), that will be used to specialize our results.

ℓMC (w,x,y) = max
y′ 6=y

|1− w̄· (φ̄(x,y)− φ̄(x,y′))|+ . (1)

This loss function is convex and it upper bounds the multi-class misclassification loss.

2.1.4 NORMS AND DUAL NORMS

Forw∈ R
d andp≥ 1, we denote by‖w‖p the p-norm ofw, that is,‖w‖p = (∑d

i=1 |wi |p)1/p.

The dual norm of‖ · ‖p is ‖ · ‖q, wherep andq satisfy 1/p+1/q= 1. In the followingp andq
will always satisfy this relation.

2.1.5 GROUPNORM

It is possible to define a(2, p) group norm‖w̄‖2
2,p on w̄ as

‖w̄‖2,p :=
∥
∥
[
‖w1‖2,‖w2‖2, · · · ,‖wF‖2

]∥
∥

p ,

that is thep-norm of the vector ofF elements, formed by 2-norms of the vectorsw j . The dual norm
of ‖·‖2,p is‖·‖2,q (Kakade et al., 2009). These kind of norms have been used asblock regularization
in the LASSO literature (Yuan and Lin, 2006).

2.2 Multi Kernel Learning

The MKL optimization problem was first proposed by Bach et al. (2004) and extended to multiclass
by Zien and Ong (2007). It can be written as

min
w j

λ
2

(
F

∑
j=1

‖w j‖2

)2

+
1
N

N

∑
i=1

ξi

s.t. w̄ · (φ̄(xi ,yi)− φ̄(xi ,y))≥ 1−ξi ,∀i,y 6= yi . (2)
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An equivalent formulation can be derived from the first one through a variational argument (Bach
et al., 2004)

min
w j ,α j≥0

λ
2

(
F

∑
j=1

‖w j‖2

α j

)2

+
1
N

N

∑
i=1

ξi

s.t. w̄ · (φ̄(xi ,yi)− φ̄(xi ,y))≥ 1−ξi , ∀i,y 6= yi

‖α‖2
1 ≤ 1 . (3)

This formulation has been used by Bach et al. (2004) and Sonnenburg et al. (2006), while
the formulation proposed by Rakotomamonjy et al. (2008) is slightly different,although it can be
proved to be equivalent. The reason to introduce this variational formulation is to use an alternating
optimization strategy to efficiently solve the constrained minimization problem. However in the
following we will show that it is possible to efficiently minimize directly the formulation in(2), or
at least one variation of it.

We first rewrite (2) with group norms. Using the notation defined above, wehave

min
w̄

λ
2
‖w̄‖2

2,1+
1
N

N

∑
i=1

ℓMC (w̄,xi ,yi) , (4)

wherew̄ = [w1,w2, · · · ,wF ]. The (2,1) group norm is used to induce sparsity in the domain of
the kernels. This means that the solution of the optimization problem will select a subset of the
F kernels. However, even if sparsity can be desirable for specific applications, it could lead to a
decrease in performance. Moreover the problem in (4) is not strongly convex (Kakade et al., 2009),
so its optimization algorithm is rather complex and its rate of convergence is usually slow (Bach
et al., 2004; Sonnenburg et al., 2006).

We generalize the optimization problem (4), using a generic group norm anda generic convex
loss function

min
w̄

λ
2
‖w̄‖2

2,p+
1
N

N

∑
i=1

ℓ(w̄,xi ,yi) , (5)

where 1< p≤ 2. We also definef (w̄) := λ
2‖w̄‖2

2,p+
1
N ∑N

i=1ℓ(w̄,xi ,yi) andw̄∗ equals to the optimal
solution of (5), that is ¯w∗ = argminw̄ f (w̄). The additional parameterp allow us to decide the level
of sparsity of the solution. Moreover this formulation has the advantage of being λ/q-strongly
convex (Kakade et al., 2009), whereλ is the regularization parameter in (5). Strong convexity is a
key property to design fast batch and online algorithms: the more a problem isstrongly convex the
easier it is to optimize it (Shalev-Shwartz and Singer, 2007; Kakade et al., 2009). Many optimization
problems are strongly convex, as the SVM objective function. Whenp tends to 1, the solution gets
close to the sparse solution obtained by solving (2), but the strong convexity vanishes. Settingp
equal to 2 corresponds to using the unweighted sum of the kernels. In thefollowing we will show
how to take advantage of the strong convexity to design a fast algorithm to solve (5), and how to have
a good convergence rate even when the strong convexity is close to zero. Note that this formulation
is similar to the one proposed by Kloft et al. (2009). Indeed, as for (2) and (3), using Lemma 26
in Micchelli and Pontil (2005) it is possible to prove that they are equivalent through a variational
argument.

We have chosen to weight the regularization term byλ and divide the loss term byN, instead
of the more common formulation with only the loss term weighted by a parameterC. This choice
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simplifies the math of our algorithm. However the two formulations are equivalentwhen setting
λ = 1

CN, hence a big value ofC corresponds to a small value ofλ.

3. The OBSCURE Algorithm

Our basic optimization tool is the framework developed in Shalev-Shwartz andSinger (2007);
Shalev-Shwartz et al. (2007). It is a general framework to design andanalyze stochastic sub-
gradient descent algorithms for any strongly convex function. At eachstep the algorithm takes
a random sample of the training set and calculates a sub-gradient of the objective function eval-
uated on the sample. Then it performs a sub-gradient descent step with decreasing learning rate,
followed by a projection inside the space where the solution lives. The algorithm Pegasos, based
on this framework, is among the state-of-art solvers for linear SVM (Shalev-Shwartz et al., 2007;
Shalev-Shwartz and Srebro, 2008).

Given that the(2, p) group norm is strongly convex, we could use this framework to design
an efficient MKL algorithm. It would inherit all the properties of Pegasos (Shalev-Shwartz et al.,
2007; Shalev-Shwartz and Srebro, 2008). In particular a Pegasos-like algorithm used to minimize
(5) would have a convergence rate, and hence a training time, proportional to q

λ . Although in
general this convergence rate can be quite good, it becomes slow whenλ is small and/orp is close
to 1. Moreover it is common knowledge that in many real-world problems (e.g., visual learning
tasks) the best setting forλ is very small, or equivalentlyC is very big (the order of 102 − 103).
Notice that this is a general problem. The same problem also exists in the other SVM optimization
algorithms such as SMO and similar approaches, as their training time also depends on the value of
the parameterC (Hush et al., 2006).

Do et al. (2009) proposed a variation of the Pegasos algorithm called proximal projected sub-
gradient descent. This formulation has a better convergence rate for small values ofλ, while retain-
ing the fast convergence rate for big values ofλ. A drawback is that the algorithm needs to know
in advance an upper bound on the norm of the optimal solution. Do et al. (2009) solve this problem
with an algorithm that estimates this bound while training, but it gives a speed-up only when the
norm of the optimal solution ¯w∗ is small. This is not the case in most of the MKL problems for
categorization tasks.

Our OBSCURE algorithm takes the best of the two solutions. We first extend the framework
of Do et al. (2009) to the generic non-Euclidean norms, to use it with the(2, p) group norm. Then
we solve the problem of the upper bound of the norm of the optimal solution using a new online
algorithm. This is designed to take advantage of the characteristics of the MKLtask and to quickly
converge to a solution close to the optimal one. Hence OBSCURE is composed of two steps: the
first step is a fast online algorithm (Algorithm 1), used to quickly estimate the region of the space
where the optimal solution lives. The second step (Algorithm 2) starts from the approximate solution
found by the first stage, and exploiting the information on the estimated region,it uses a stochastic
proximal projected sub-gradient descent algorithm. We also found that, even if we cannot guarantee
this theoretically, empirically in many cases the solution found by the first stage isextremely close
to the optimal one. We will show this in the experiments of Section 5.6.

3.1 Efficient Implementation

The training time of OBSCURE is proportional to the number of steps required toconverge to the
optimal solution, that will be bounded in Theorem 3, multiplied by the complexity of each step. This
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Algorithm 1 OBSCURE stage 1 (online)
1: Input: q,η
2: Initialize: θ̄1 = 0, w̄1 = 0
3: for t = 1,2, . . . ,T do
4: Sample(xt ,yt) at random
5: z̄t = ∂ℓ(w̄t ,xt ,yt)
6: θ̄t+1 = θ̄t −ηz̄t

7: w j
t+1 =

1
q

(
‖θ j

t+1‖2

‖θ̄t+1‖2,q

)q−2

θ j
t+1, ∀ j = 1, · · · ,F

8: end for
9: return θ̄T+1, w̄T+1

10: return R=
√

‖w̄T+1‖2
2,p+

2
λN ∑N

i=1ℓ(w̄T+1,xi ,yi)

Algorithm 2 OBSCURE stage 2 (stochastic optimization)
1: Input: q, θ̄1, w̄1, R, λ
2: Initialize: s0 = 0
3: for t = 1,2, . . . ,T do
4: Sample(xt ,yt) at random
5: z̄t = ∂ℓ(w̄t ,xt ,yt)
6: dt = λt +st−1

7: st = st−1+0.5

(√

d2
t +q

( λ
q‖θ̄t‖2,q+‖z̄t‖2,q)2

R2 −dt

)

8: ηt =
q

λt+st

9: θ̄t+ 1
2
= (1− ληt

q )θ̄t −ηt z̄t

10: θ̄t+1 = min

(

1, qR
‖θ̄

t+ 1
2
‖2,q

)

θ̄t+ 1
2

11: w j
t+1 =

1
q

(
‖θ j

t+1‖2

‖θ̄t+1‖2,q

)q−2

θ j
t+1, ∀ j = 1, · · · ,F

12: end for

in turn is dominated by the calculation of the gradient of the loss (line 5 in Algorithms1 and 2).
This complexity, for example, for the multiclass hinge lossℓMC is O(NFM), given that the number
of support vectors is proportional toN. Note that this complexity is common to any other similar
algorithm, and it can be reduced using methods like kernel caching (Changand Lin, 2001).

Following (Shalev-Shwartz et al., 2007, Section 4), it is possible to use Mercer kernels without
introducing explicitly the dual formulation of the optimization problem. In both algorithms, θ̄t+1

can be written as a weighted linear summation ofφ̄(xt , ·). For example, when using the multi-
class loss functionℓMC, we have that̄θt+1 = −∑t ηt z̄t = ∑t ηt(φ̄(xt ,yt)− φ̄(xt , ŷt)). Therefore, the
algorithm can easily storeηt , yt , ŷt , andxt instead of storinḡθt . Observing line 7 in Algorithm 1
and line 11 in the Algorithm 2, we have that at each round,w j

t+1 is proportional toθ j
t+1, that is

w j
t+1 = α j

t θ j
t+1. Hencew̄t+1 can also be represented usingα j

t ηt , yt , ŷt andxt . In prediction the

dot product between ¯wt and φ̄(xt , ·) can be expressed as a sum of terms ¯w j
t · φ j(xt , ·), that can be

calculated using the definition of the kernel.
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Algorithm 3 Proximal projected sub-gradient descent
1: Input: R, σ, w1 ∈ S
2: Initialize: s0 = 0
3: for t = 1,2, . . . ,T do
4: Receivegt

5: zt = ∂gt(wt)

6: st = st−1+

√

(ασt+st−1)2+
αLt
R2 −ασt−st−1

2
7: ηt =

1
σt+ st

α
8: wt+1 = ∇h∗(∇h(wt)−ηtzt)

9: end for

Another important speed-up can be obtained considering the nature of theupdates of the second
stage. If the optimal solution has a loss equal to zero or close to it, when the algorithm is close to
convergence most of the updates will consist just of a scaling. Hence it ispossible to cumulate the
scalings in a variable, to perform the scaling of the coefficients just before an additive update must
be performed, and to take it into account for each prediction. Moreover, when using the multiclass
loss (1), each update touches only two classes at a time, so to minimize the numberof scalings we
can keep a vector of scaling coefficients, one for each class, instead of a single number. For more
details on the implementation, we refer the reader to the MATLAB implementation of OBSCURE
in DOGMA (Orabona, 2009).

4. Analysis

We now show the theorems that give a theoretical guarantee on the convergence rate of OBSCURE
to the optimal solution of (5). The following lemma contains useful properties to prove the perfor-
mance guarantees of Algorithm 1 and 2.

Lemma 1 Let B∈ R
+, define S= {w̄ : ‖w̄‖2,p ≤ B}. Let h(w̄) : S→ R defined asq

2‖w̄‖2
2,p, define

alsoProj(w̄,B) = min
(

1, B
‖w̄‖2,p

)

w̄, then

1. ∇h(w̄) = q

[(
‖w j‖2
‖w̄‖2,p

)p−2
w j

]F

1
, ∀w̄∈ S

2. ∇h∗(θ̄) = Proj

(

1
q

[(
‖θ j‖2

‖θ̄‖2,q

)q−2
θ j
]F

1
,B

)

3. ‖w̄‖2,p =
1
q‖∇h(w̄)‖2,q, ∀w̄∈ S

Proof All the proofs of these relations use the equality 1/p+1/q = 1. The first one can be ob-
tained differentiatingh. The second relation is obtained using Lemma 2 in Shalev-Shwartz and
Singer (2007), through lengthy but straightforward calculations. The last one is obtained from the
first one.

We now introduce Algorithm 3, that forms the basis for Algorithm 2, and a lemma that bounds
its performance, that is a generalization of Theorem 1 in Do et al. (2009) togeneral norms, using
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the framework in Shalev-Shwartz and Singer (2007). Hence it can be seen as a particular case of the
mirror descent algorithm (Beck and Teboulle, 2003), with an adaptive tuning of the learning rate.

Lemma 2 Let h(·) = α
2‖ · ‖2 be a 1-strongly convex function w.r.t. a norm‖ · ‖ over S. Assume

that for all t, gt(·) is a σ-strongly convex function w.r.t. h(·), and ‖zt‖∗ ≤ Lt . Let R∈ R
+ such

that ‖w−w′‖ ≤ 2R for any w,w′ ∈ S. Then for any u∈ S, and for any sequence of non-negative
ξ1, . . . ,ξT , Algorithm 3 achieves the following bound for all T≥ 1,

T

∑
t=1

(gt(wt)−gt(u))≤
T

∑
t=1

[

4ξtR
2+

L2
t

σt + ∑t
i=1 ξi

α

]

.

Proof Defineg′t(w) = gt(w)+
st
2‖w−wt‖2, wherew,wt ∈ S, and the value ofst will be specified

later. Using the assumptions of this Lemma, we have thatg′t is (σ+ st
α )-strongly convex w.r.t. toh.

Moreover we have that∂g′t(wt) = ∂gt(wt), because the gradient of the proximal regularization term
is zero when evaluated atwt (Do et al., 2009). Hence we can apply Theorem 1 from Shalev-Shwartz
and Singer (2007) to have

T

∑
t=1

gt(wt)−
T

∑
t=1

(

gt(u)+
st

2
‖u−wt‖2

)

=
T

∑
t=1

g′t(wt)−
T

∑
t=1

g′t(u)≤
1
2

T

∑
t=1

L2
t

σt + ∑t
i=1 si

α

.

Using the hypothesis of this Lemma we obtain

T

∑
t=1

gt(wt)−
T

∑
t=1

gt(u)≤
1
2

T

∑
t=1

(

st‖u−wt‖2+
αL2

t

ασt +∑t
i=1si

)

≤ 1
2

T

∑
t=1

(

4stR
2+

αL2
t

ασt +∑t
i=1si

)

.

Using the definition ofst in the algorithm and Lemma 3.1 in Bartlett et al. (2008), we have

T

∑
t=1

gt(wt)−
T

∑
t=1

gt(u)≤ min
ξ1,...,ξT≥0

T

∑
t=1

(

4ξtR
2+

αL2
t

ασt +∑t
i=1 ξi

)

.

Hence these settings ofst give us a bound that is only 2 times worse than the optimal one.

With this Lemma we can now design stochastic sub-gradient algorithms. In particular, setting
‖ · ‖2,p as the norm,h(w̄) = q

2‖w̄‖2
2,p, andgt(w̄) = λ

qh(w̄)+ ℓ(w̄,xt ,yt), we obtain Algorithm 2 that

solves thep-norm MKL problem in (5). The updates are done on the dual variablesθ̄t , in lines
9-10, and transformed into ¯wt in line 11, through a simple scaling. We can now prove the following
bound on the convergence rate for Algorithm 2.

Theorem 3 Suppose that‖∂ℓ(w̄,xt ,yt)‖2,q ≤ L and‖w̄∗‖2,p ≤ R, wherew̄∗ is the optimal solution
of (5), that isw̄∗ = argmin

w̄
f (w̄). Let1< p≤ 2, and c= λR+L, then in expectation over the choices

of the random samples we have that, after T iterations of the 2nd stage of the OBSCURE algorithm,
the difference between f(w̄T) and f(w̄∗), is less than

c
√

q
√

1+ logT min

(
c
√

q
√

1+ logT

λT
,

4R√
T

)

.
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Proof Let h(w̄) : S→ R defined asq
2‖w̄‖2

2,p, whereS= {w̄ : ‖w̄‖2,p ≤ R}. Define alsogt(w̄) =
λ
2‖w̄‖2

2,p+ ℓ(w̄,xt ,yt) =
λ
qh(w̄)+ ℓ(w̄,xt ,yt). Using Lemma 1 in Shalev-Shwartz and Singer (2007),

we can see that these two functions satisfy the hypothesis of Lemma 1, withα = q, σ = λ
q . It is

easy to verify that ¯wt+1 is equal to∇h∗(∇h(w̄t)−ηtzt). In fact, taking into account Properties 1-3
in Lemma 1 with withB= R, lines 9-11 in Algorithm 2 are equivalent to

w̄t+1 = ∇h∗(θt −ηtzt)

θ̄t+1 = ∇h(w̄t+1) .

We also have that

‖∂gt(w̄)‖2,q ≤
λ
q
‖∇h(w̄t)‖2,q+‖z̄t‖2,q = λ‖w̄t‖2,p+‖z̄t‖2,q ≤ c,

where the equality is due to Property 3 in Lemma 1. So we have

T

∑
t=1

(gt(w̄t)−gt(w̄
∗))≤ min

ξ1,··· ,ξT

T

∑
t=1

[

4ξtR
2+

qc2

λt +∑t
i=1 ξi

]

.

Reasoning as in Shalev-Shwartz et al. (2007), we divide byT, take the expectation on both sides.
So we obtain that

E[ f (w̄T)− f (w̄∗)]≤ min
ξ1,··· ,ξT

1
T

T

∑
t=1

[

4ξtR
2+

qc2

λt +∑t
i=1 ξi

]

.

Settingξi = ξ, i = 1, . . . ,T, the last term in the last equation can be upper bounded by

AT = min
ξ

[

4ξR2+
1
T

T

∑
t=1

qc2

t(λ+ξ)

]

.

This term is smaller than any specific setting ofξ, in particular if we setξ to 0, we have that

AT ≤ qc2(1+logT)
λT . On the other hand setting optimally the expression overξ and over-approximating

we have thatAT ≤ 4cR
√

q
√

1+logT√
T

. Taking the minimum of these two quantities we obtain the stated
bound.

The most important thing to note is that the converge rate is independent fromthe number of
samples, as in Pegasos (Shalev-Shwartz et al., 2007), and the relevantquantities on which it depends
areλ andq. Given that for most of the losses, each iteration has a linear complexity in thenumber
of samples, as stated in Section 3.1, the training time will be linearly proportional tothe number of
samples.

The parameterR is basically an upper bound on the norm of the optimal solution. In the next
Section we show how to have a good estimate ofR in an efficient way. The theorem first shows that
a good estimate ofRcan speed-up the convergence of the algorithm. In particular if the first term is
dominant, the convergence rate isO(qlogT

λT ). If the second term is predominant, the convergence rate

is O(R
√

qlogT√
T

), so it becomes independent fromλ. The algorithm will always optimally interpolate
between these two different rates of convergence. Note thatR can also be set to the trivial upper
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bound of∞. This would result in a standard Pegasos-like optimization. In fact,st would be equal
to 0 in Algorithm 2, so the learning rate would be1λt and the convergence rate would beO(qlogT

λT ).
We will see in Section 5.3 that a tight estimate ofRcan improve dramatically the convergence rate.
Another important point is that Algorithm 2 can start from any vector, while this is not possible in
the Pegasos algorithm, where at the very first iteration the starting vector is multiplied by 0 (Shalev-
Shwartz et al., 2007).

As said before, the rate of convergence depends onp, throughq. A p close to 1 will result in a
sparse solution, with a rate of at mostO(R

√
qlogT√

T
). However in the experiment section we show that

the best performance is not always given by the most sparse solution.
This theorem and the pseudocode in Algorithm 2 allows us to design fast andefficient MKL

algorithms for a wide range of convex losses. If we consider the multiclass lossℓMC with normalized

kernels, that is,‖φ j(xt ,yt)‖2 ≤ 1,∀ j = 1, · · · ,F, t = 1, · · · ,N, we have thatL≤
√

2F
1
q . Instead, if we

use the hinge lossℓHL for binary classification, we have thatL ≤ F
1
q . Hence, in both cases, ifp< 2,

the convergence rate has a sublinear dependency on the number of kernels,F , and if the problem
is linearly separable it can have a faster convergence rate using more kernels. We will explain this
formally in the next section.

4.1 Initialization Through an Online Algorithm

In Theorem 3 we saw that if we have a good estimate ofR, the convergence rate of the algorithm can
be much faster. Moreover starting from agoodsolution could speed-up the algorithm even more.

We propose to initialize Algorithm 2 with Algorithm 1. It is the online version of problem (5)
and it is derived using a recent result in Orabona and Crammer (2010).It is similar to the 2p-norm
matrix Perceptron of Cavallanti et al. (2008), but it overcomes the disadvantage of being used with
the same kernel on each feature.

We can run it just for few iterations and then evaluate its norm and its loss. InAlgorithm 1 R is
then defined as

R :=

√

‖w̄T+1‖2
2,p+

2
λN

N

∑
i=1

ℓ(w̄T+1,xi ,yi)≥
√

‖w̄∗‖2
2,p+

2
λN

N

∑
i=1

ℓ(w̄∗,xi ,yi)≥ ‖w̄∗‖2,p,

where we remind that ¯w∗ is solution that minimizes (5), as defined in Section 2.2. So at any moment
we can stop the algorithm and obtain an upper bound on‖w̄∗‖2,p. However if the problem is linearly
separable we can prove that Algorithm 1 will converge in a finite number of updates. In fact, as in
Cavallanti et al. (2008), for Algorithm 1 it is possible to prove a relative mistake bound. See also Jie
et al. (2010b) and Jin et al. (2010) for similar algorithms for online MKL, witha different update
rules and different mistake bounds.

Theorem 4 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples where xt ∈ X, y∈ Y. Suppose that
the loss functionℓ has the following properties

• ‖∂ℓ(w̄,x,y)‖2,q ≤ L, ∀ w̄∈ X, xt ∈ X, yt ∈ Y;

• ℓ(ū,x,y)≥ 1+ ū·∂ℓ(w̄,x,y), ∀ ū∈ X, w̄∈ X : ℓ(w̄,x,y)> 0, x∈ X, y∈ Y;

• w̄ ·∂ℓ(w̄,x,y)≥−1, ∀ w̄∈ X, x∈ X, y∈ Y.
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Denote byU the set of rounds in which there is an update, and by U its cardinality. Then,for any
ū, the number of updates U of Algorithm 1 satisfies

U ≤ q(2/η+L2)‖ū‖2
2,p+ ∑

t∈U
ℓ(ū,xt ,yt)+‖ū‖2,p

√

q(2/η+L2)
√

∑
t∈U

ℓ(ū,xt ,yt) .

In particular, if the problem (5) is linearly separable by a hyperplanev̄, then the Algorithm 1 will
converge to a solution in a finite number of steps less than q(2/η+ L2)‖v̄‖2

2,p. In this case the

returned value of R will be less than(2+ηL2)‖v̄‖2,p.

Proof The bound on the number of updates can be easily derived using a recent result in Orabona
and Crammer (2010), that we report in Appendix for completeness. Leth(w̄) : X → R defined as
q
2‖w̄‖2

2,p. Notice that, differently from the proof of Theorem 3, here the domain of the functionh is
the entire Euclidean spaceX. Using Property 2 in Lemma 1 withB= ∞, we have that line 7 in the
algorithm’s pseudo-code implies that ¯wt = ∇h∗(θ̄t). Using Lemma 5 in the Appendix, we have that

U ≤ ∑
t∈U

ℓ(ū,xt ,yt)+
√

q‖ū‖2,p

√

∑
t∈U

(

‖z̄t‖2
2,q−

2w̄t · z̄t

η

)

≤ ∑
t∈U

ℓ(ū,xt ,yt)+
√

q‖ū‖2,p

√

U

(

L2+
2
η

)

.

Solving forU and overapproximating we obtain the stated bound.
For the second part of the Theorem, using (Kakade et al., 2009, Corollary 19), we know that

h∗(w̄) is 1-smooth w.r.t.‖ · ‖2,q. Hence, we obtain

‖θ̄T+1‖2
2,q ≤ ‖θ̄T‖2

2,q−2qηw̄T · z̄T +qη2‖z̄T‖2
2,q ≤ η2q ∑

t∈U

(

‖z̄t‖2
2,q−

2w̄t · z̄t

η

)

≤ η2qU

(
2
η
+L2

)

.

So we can write

‖θ̄T+1‖2,q ≤ η
√

qU(2/η+L2),

and using the bound ofU and the hypothesis of linear separability, we have

‖θ̄T+1‖2,q ≤η
√

q2‖ū‖2
2,p(2/η+L2)2 = q‖ū‖2,p

(
2+ηL2) .

Using the relation‖w̄t‖2,p =
1
q‖θ̄t‖2,q, that holds for Property 2 in Lemma 1 withB= ∞, we have

the stated bound onR.

From the theorem it is clear the role ofη: a bigger value will speed up the convergence, but it will
decrease the quality of the estimate ofR. Soη governs the trade-off between speed and precision of
the first stage.

The multiclass lossℓMC and the hinge lossℓHL satisfy the conditions of the Theorem, and, as
noted for Theorem 1 whenp is close to 1, the dependency on the number of kernels in this theorem
is strongly sublinear.

239



ORABONA, JIE AND CAPUTO

Note also that the separability assumption is far from being unrealistic in our setting. In fact the
opposite is true: in the greater majority of the cases the problem will be linearly separable. This is
due to the fact that in MKL to have separability it is sufficient that only one ofthe kernel induces
a feature space where the problem is separable. So, for example, it is enough to have no repeated
samples with different labels and at least one kernel that always produces kernel matrices with full
rank, for example, the Gaussian kernel.

Moreover, under the separability assumption, if we increase the number ofkernels, we have that
‖ū‖2

2,p cannot increase, and in most of the cases it will decrease. In this case we expect Algorithm 1
to converge to a solution which has null loss on each training sample, in a finite number of steps
that is almost independent onF and in some cases evendecreasingwhile increasingF . The same
consideration holds for the value ofR returned by the algorithm, that can decrease when we increase
the number of kernels. A smaller value ofRwill mean a faster convergence of the second stage. We
will confirm this statement experimentally in Section 5.

5. Experiments

In this section, we study the behavior of OBSCURE in terms of classification accuracy, compu-
tational efficiency and scalability. We implemented our algorithm in MATLAB, in theDOGMA
library (Orabona, 2009). We focus on the multiclass lossℓMC, being it much harder to be optimized
than the binary hinge lossℓHL, especially in the MKL setting. Although our MATLAB implemen-
tation is not optimized for speed, it is already possible to observe the advantage of the low runtime
complexity. This is particularly evident when training on data sets containing large numbers of cat-
egories and lots of training samples. Except in the synthetic experiment where we setp= 1.0001, in
all the other experiments the parameterp is chosen from the set{1.01,1.05,1.10,1.25,1.50,1.75,2}.
The regularization parameterλ is set through CV, as1

CN, whereC∈ {0.1,1,10,100,1000}.
We compare our algorithm with the binary SILP algorithm (Sonnenburg et al.,2006), the

multi class MKL (MC-MKL) algorithm (Zien and Ong, 2007) and the p-norm MKL algorithm
(Kloft et al., 2009), all of them implemented in the SHOGUN-0.9.2 toolbox.3 For p-norm MKL,
it is possible to convert from ourp setting to the equivalent setting in Kloft et al. (2009) using
pp-norm= pOBSCURE/(2− pOBSCURE). In our experiments, we will compare between OBSCURE and
p-norm MKL using the equivalentp parameter. We also compare with the SimpleMKL algo-
rithm4 (Rakotomamonjy et al., 2008). To train with the unweighted sum of the kernels with an
SVM, we use LIBSVM (Chang and Lin, 2001). The cost parameter is selected from the range
C∈ {0.1,1,10,100,1000} for all the baseline methods. For all the binary classification algorithms,
we use the 1-vs-All strategy for their multiple class extensions.

In the following we start by briefly introducing the data sets used in our experiments. Then we
present a toy problem on a synthetic data which shows that it is more appropriate to use a multiclass
loss instead of dividing the multiclass classification problem into several binary subproblems. We

3. Available athttp://www.shogun-toolbox.org , implemented in C++.
4. Available at http://asi.insa-rouen.fr/enseignants/ ˜ arakotom/code/mklindex.html , implemented in

MATLAB. SimpleMKL is more efficient than SILP when uses the same SVM solver (Rakotomamonjy et al., 2008).
However, in practice, no efficient SimpleMKL implementation is available. SILP runs much faster compared to Sim-
pleMKL, especially when the size of the problem grows. Moreover, the performance of SimpleMKL and SILP are
the same because both algorithm solve an equivalent optimization problem (Rakotomamonjy et al., 2008). Therefore,
we only use SILP algorithm as ourl1-norm MKL baseline in experiments whose size of training samples are large
than 1000.
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then study the convergence rate of OBSCURE and compare it with the original Pegasos algorithm
(Shalev-Shwartz et al., 2007; Shalev-Shwartz and Srebro, 2008) aswell as the p-norm MKL (Kloft
et al., 2009) (Section 5.3). Following that, we study the behaviors of OBSCURE w.r.t different
value of p and different number of input kernels (Sections 5.5 and 5.6). Finally we show that
OBSCURE achieves state-of-art performance on a challenging image classification task with 102
different classes, and we show its scalability.

5.1 Data Sets

We first briefly introduce the data sets used in this section, and we describehow their kernel matrices
are generated.

5.1.1 THE OXFORD FLOWER DATA SET (NILSBACK AND ZISSERMAN, 2006)

contains 17 different categories of flowers. Each class has 80 images with three predefined splits
(train, validation and test). The authors also provide 7 precomputed distance matrices.5 These
distance matrices are transformed into kernel using exp(−γ−1d), whereγ is the average pairwise
distance andd is the distance between two examples. It results in 7 different kernels.

5.1.2 THE PENDIGITS DATA SET (GÖNEN AND ALPAYDIN , 2010)

is on pen-based digit recognition (multiclass classification with 10 classes) and contains four differ-
ent feature representations.6 The data set is split into independent training and test sets with 7494
samples for training and 3498 samples for testing. We have generated 4 kernel matrices, one matrix
for each feature, using an RBF kernel, exp(−γ−1‖xi − x j‖2). For each feature,γ is equal to the
average of the squared pairwise distances between the examples.

5.1.3 THE KTH-IDOL2 DATA SET (PRONOBIS ET AL., 2010)

contains 24 image sequences acquired using a perspective camera mounted on two mobile robot
platforms. These sequences were captured with the two robots moving in an indoor laboratory
environment consisting of five different rooms under various weather and illumination conditions
(sunny, cloudy, and night) and across a time span of six months. For experiments, we used the same
setup described in Pronobis et al. (2010); Jie et al. (2010a). We considered the 12 sequences acquired
by robot Dumbo, and divided them into training and test sets, where each training sequence has a
corresponding one in the test sets captured under roughly similar conditions. In total, we considered
twelve different permutations of training and test sets. The images were described using three visual
descriptors and a geometric feature from the Laser Scan sensor, as in Jie et al. (2010a), which forms
4 kernels in total.

5.1.4 THE CALTECH-101 DATA SET (FEI-FEI ET AL ., 2004)

is a standard benchmark data set for object categorization. In our experiments, we used the pre-
computed features and kernels of Gehler and Nowozin (2009b) which theauthors made available
on their website,7 with the same training and test split. This allows us to compare against them

5. Available atwww.robots.ox.ac.uk/ ˜ vgg/research/flowers/ .
6. Available athttp://mkl.ucsd.edu/dataset/pendigits .
7. Available atwww.vision.ee.ethz.ch/ ˜ pgehler/projects/iccv09/ .
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directly. Following that, we report results using all 102 classes of the Caltech-101 data set using
five splits. There are five different image descriptors, namely, PHOG Shape Descriptors (PHOG)
(Bosch et al., 2007), Appearance Descriptors (App) (Lowe, 2004), Region Covariance (RECOV)
(Tuzel et al., 2007), Local Binary Patterns (LBP) (Ojala et al., 2002) and V1S+ (Pinto et al., 2008).
All of them but the V1S+ features were computed in a spatial pyramid as proposed by Lazebnik
et al. (2006), using several different setup of parameters. This generates several kernels (PHOG, 8
kernels; App, 16 kernels; RECOV, 3 kernels; LBP 3 kernels; V1S+, 1kernels). We also compute a
subwindow kernel, as proposed by Gehler and Nowozin (2009a). In addition to the 32 kernels, the
products of the pyramid levels for each feature results in other 7 kernels,for a total of 39 different
kernels For brevity, we omit the details of the features and kernels and refer to Gehler and Nowozin
(2009a,b).

5.1.5 THE MNIST DATA SET (LECUN ET AL ., 1998)

is a handwritten digits data set. It has a training set of 60,000 gray-scale 28x28 pixel digit images
for training and 10,000 images for testing. We cut the original digit image into four square blocks
(14×14) and obtained an input vector from each block. We used three kernels on each block: a
linear kernel, a polynomial kernel and a RBF kernel, resulting in 12 kernels.

5.2 Multiclass Synthetic Data

Multiclass problems are often decomposed into several binary sub-problems using methods like
1-vs-All, however solving the multiclass learning problem jointly using a multiclassloss can yield
much sparser solutions. Intuitively, when al1-norm is used to impose sparsity in the domain of ker-
nels, different subsets of kernels can be selected for the different binary classification sub-problems.
Therefore, the combined multiclass classifier might not obtain the desired properties of sparsity.
Moreover, the confidence outputs of the binary classifiers may not lie in thesame range, so it is not
clear if the winner-takes-all hypothesis is the correct approach for combing them.

To prove our points, we have generated a 3-classes classification problem consisting of 300
samples, with 100 samples for each class. There are in total 4 different features, the kernel matrices
corresponding to them are shown in Figure 1 (top). These features aregenerated in a way that Ker-
nels 1–3 are useful only for distinguishing one class (class 3, class 1 and class 2, respectively) from
the other two, while Kernel 4 can separate all the 3 classes. The corresponding kernel combination
weights obtained by the SILP algorithm using the 1-vs-All extension and ourmulticlass OBSCURE
are shown in Figure 1 (bottom). It can be observed that each of the binary SILP classifiers pick two
kernels. OBSCURE selects only the 4th kernel, achieving a much sparser solution.

5.3 Comparison with 1
t Learning Rate

We have compared OBSCURE with a simple one-stage version that uses a1
t learning rate. This can

be obtained settingst = 0, ∀t, in Algorithm 2. It can be considered as a straightforward extension
of the original Pegasos algorithm (Shalev-Shwartz et al., 2007; Shalev-Shwartz and Srebro, 2008)
to the MKL problem of (5), so we denote it Pegasos-MKL.

We first compare the running time performance between OBSCURE and Pegasos-MKL on the
Oxford flowers data set. Their generalization performance on the testing data (Figure 2(Top, left)) as
well as the value of the objective function (Figure 2(Top, right)) are shown in Figure 2. In the same
Figure, we also present the results obtained using SILP, SimpleMKL, p-norm MKL and MC-MKL.
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Figure 1: (top) Kernel matrices of the 3-classes synthetic experiments correspond to 4 different
features. Sample 1–100, 101–200 and 201–300 are from class 1, 2 and 3 respectively.
(bottom) Corresponding kernel combination weights, normalized to have sumequal to 1,
obtained by SILP (binary) and by OBSCURE (last figure).

We see that OBSCURE converges much faster compared to Pegasos-MKL. This proves that, as
stated in Theorem 3, OBSCURE has a better convergence rate than Pegasos-MKL, as well as faster
running time than SILP and SimpleMKL. Note that all the feature combination methods achieve
similar results on this data set.

Similar results are shown in Figure 2(Bottom, left) and (Bottom, right) on the Pendigits data sets.

5.4 Comparison with p-norm MKL and Other Baselines

We compare OBSCURE with p-norm MKL (Kloft et al., 2009). Figure 3 reports the results ob-
tained by both algorithms for varying values ofp on the Pendigits data set. We can see that all the
algorithms (OBSCURE, SILP and p-norm MKL) are order of magnitudes faster than MC-MKL.
OBSCURE and p-norm MKL achieve similar performance, but OBSCURE achieve optimal perfor-
mance in a training time much faster (101 and 102). The performance of SILP and p-norm MKL
are quite close, and their classification rate seems to be more stable on this data set. The difference
between OBSCURE and p-norm MKL may be due to the different types of multiclass extension
they use.

5.5 Experiments with Different Values ofp

This experiment aims at showing the behavior of OBSCURE for varying value of p. We consider
p∈ (1,2], and train OBSCURE on the KTH-IDOL2 and Caltech-101. The results forthe two data
sets are shown in Figure 4 (top).

For the IDOL2 data set (Figure 4 (top, left)), the best performance is achieved whenp is large,
which corresponds to give all the kernels similar weights in the decision. On the contrary, a sparse
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Figure 2: Comparison of running time performance (Left) and objective function value (Right) on
the Oxford flowers data set (Top) and Pendigits data set (Bottom).

solution achieves lower accuracy. It indicates that all the kernels carrydiscriminative information,
and excluding some of them can decrease the performance.

For the Caltech-101 data set (Figure 4 (top, right)), following Gehler andNowozin (2009b), we
consider four PHOG (Bosch et al., 2007) kernels computed at different spatial pyramid level. It
can be observed that by adjustingp it is possible to improve the performance—sparser solutions
(i.e., whenp tends to 1) achieve higher accuracy compared to non-sparse solutions (when p tends
to 2). However, the optimalp here is 1.10. In other words the optimal performance is achieved for
a setting ofp different from 1 or 2, fully justifying the presence of this parameter.

Furthermore, Figure 4 (bottom) shows the running time of OBSCURE using the same four
kernels, with varying values ofp. The dashed lines in the figure correspond to the results obtained
by the first online stage of the OBSCURE algorithm. It can be observed thatthe online stage of
OBSCURE converges faster whenp is large, and this is consistent with Theorem 4. The online step
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Figure 3: (Best viewed in color.) Comparison of OBSCURE and p-norm MKL with varying value
of p on Pendigits.

of OBSCURE converges in a training time orders of magnitudes faster (101 to 103) compared to
the full training stage, and in certain cases (p≤ 1.10) it can also achieve a performance close to the
optimal solution.

5.6 Experiments on Different Number of Kernels

Figure 5 (left) reports the behavior of OBSCURE for different numbersof input kernels. It shows
that the algorithm achieves a given accuracy in less iterations when more kernels are given. The
dashed line in the figure again corresponds to the results obtained by the first online stage of the
OBSCURE algorithm. Figure 5 (right) shows the number of iterations to converge of the online step,
proving that the convergence rate improves when there are more kernels, as stated in Theorem 4.

5.7 Multiclass Image Classification

In this experiment, we use the Caltech-101 data set with all the 39 kernels, and the results are
shown in Figure 6. The best results for OBSCURE were obtained whenp is at the smallest value
(1.01). This is probably because among these 39 kernels many were redundant or not discriminative
enough. For example, the worst single kernel achieves only an accuracy of 13.5%± 0.6 when
trained using 30 images per category, while the best single kernel achieves 69.4%± 0.4. Thus,
sparser solutions are to be favored. The results support our claim in Section 5.2 that multiclass loss
function is more suitable for this type of problem, as all the methods that use the multiclass loss
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Figure 4: Behaviors of the OBSCURE algorithm w.r.t.p: (top, left) the effect of different values of
p on the IDOL2 data set and (top, right) on the Caltech-101 data set using 4 PHOG (Bosch
et al., 2007) kernels; (bottom) running time for different values ofp on Caltech-101 data
set.

outperform SILP and p-norm MKL (p=1.02) using 1-vs-All strategy. MC-MKL is computationally
infeasible for 30 sample per category. Its significant gap from OBSCUREseems to indicate that
it stops before converging to the optimal solution. Figure 6 (left) reports thetraining time for
different algorithms. Again, OBSCURE reaches optimal solution much fasterthan the other three
baseline algorithms which are implemented in C++. Figure 6 (right) reports the results obtained
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Figure 5: Behaviors of the OBSCURE algorithm w.r.t. the number of kernels:(left) the effect of
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Figure 6: Performance comparison on Caltech-101 using different MKLmethods.

using different combination methods for varying size of training samples. Itis also interesting
to note the performance of the solution generated by the online step of OBSCURE, denoted by
“OBSCURE Online”, that is very close to the performance of the full trainingstage, as already
noted above.

5.8 Scalability

In this section, we report the experiments on the MNIST data set using varying sizes of training
samples. Figure 7 shows the generalization performance on the test set achieved by OBSCURE
over time, for various training size. We see that OBSCURE quickly produces solutions with good
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Figure 7: The generalization performance of MNIST data set over different size of training samples.

performance. The performance of the SVM trained using the unweighted sum of the kernels and
the best kernel are also plotted. Notice that in the figure we only show the results of up to 20,000
training samples for the sake of comparison, otherwise we could not cacheall the 12 kernels in
memory. However, by computing the kernel “on the fly” we are able to solve the MKL problem
using the full 60,000 examples: OBSCURE obtains 1.95% error rate after 10epochs, which is
0.45% lower compared to the results obtained by OBSCURE with 20,000 training samples after
500 epochs.

6. Conclusions and Discussion

This paper presents OBSCURE, a novel and efficient algorithm for solving p-norm MKL. It uses
a hybrid two-stages online-batch approach, optimizing the objective function directly in the primal
with a stochastic sub-gradient descent method. Our minimization method allows usto prove conver-
gence rate bounds, proving that the number of iterations required to converge is independent of the
number of training samples, and, when a sparse solution is induced, is sub-linear in the number of
kernels. Moreover we show that OBSCURE has a faster convergencerate as the number of kernels
grows.

Our approach is general, so it can be used with any kind of convex losses, from binary losses to
structure output prediction (Tsochantaridis et al., 2004), and even to regression losses.

Experiments show that OBSCURE achieves state-of-art performance onthe hard problem of
multiclass MKL, with smaller running times than other MKL algorithms. Furthermore, the solution
found by the online stage is often very close to the optimal one, while being computed several orders
of magnitude faster.
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Appendix A.

The following algorithm and Lemma can in found in Orabona and Crammer (2010), stated for the
binary case. Here we state them for generic convex losses and reportthem here for completeness.

Algorithm 4 Prediction algorithm
1: Input: A series of strongly convex functionsh1, . . . ,hT .
2: Initialize: θ1 = 0
3: for t = 1,2, . . . ,T do
4: Receivext

5: Setwt = ∇h∗t (θt)
6: zt = ∂ℓt(wt)
7: θt+1 = θt −ηtzt

8: end for

Lemma 5 Let ht , t = 1, . . . ,T beβt-strongly convex functions with respect to the norms‖·‖h1, . . . ,‖·
‖hT over a set S and let‖ · ‖h∗i be the respective dual norms. Let h0(0) = 0, and x1, . . . ,xT be an
arbitrary sequence of vectors inRd. Assume that algorithm in Algorithm 4 is run on this sequence
with the functions hi . If hT(λu)≤ λ2hT(u), andℓ satisfies

ℓ(u,xt ,yt)≥ 1+u⊤∂ℓt(wt), ∀u∈ S,wt : ℓt(wt)> 0,

then for any u∈ S, and anyλ > 0 we have

T

∑
t=1

ηt ≤ L+λhT(u)+
1
λ

(

D+
T

∑
t=1

(
η2

t

2βt
‖zt‖2

h∗t
−ηtw

⊤
t zt

))

,

where L= ∑t∈M ∪U ηtℓt(u), and D= ∑T
t=1(h

∗
t (θt)−h∗t−1(θt)). In particular, choosing the optimal

λ, we obtain

T

∑
t=1

ηt ≤ L+
√

2hT(u)

√

2D+
T

∑
t=1

(
η2

t

βt
‖zt‖2

h∗t
−2ηtw⊤

t zt

)

.
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