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As the second leading cause of cancer-related deaths world-
wide, colorectal cancer (CRC) accounts for approximately 
900,000 deaths annually1–5. Incidence is still increas-

ing worldwide, largely due to lifestyle and environmental factors, 
which severely affect the CRC-associated gut microbiota6,7. A grow-
ing body of literature demonstrates the dysregulated microbial 
structure in individuals with CRC, especially for bacterial micro-
biota3,8–11. For example, putatively procarcinogenic bacteria, includ-
ing Fusobacterium nucleatum, Escherichia coli, enterotoxigenic 
Bacteroides fragilis and Peptostreptococcus spp., are increased in the 
faeces from patients with CRC. In contrast, protective genera, such 
as Clostridium, Roseburia, Faecalibacterium and Bifidobacterium are 
deminished9,12–14.

However, non-bacterial microorganisms including fungi, archaea 
and viruses, were also altered in CRC, adding further complexity 
to CRC microbiome association studies2,15. Nakatsu et al.16 found 
increased diversity of gut viromes in patients with CRC and revealed 
the contribution of an altered fungal ecology and co-occurrence 
interactions between fungi and bacteria to CRC17. Coker et al.18 also 
demonstrated the potential use of halophilic archaea in CRC diag-
nosis and the contribution of interactions between CRC-enriched 
archaea and bacteria in colon carcinogenesis.

The above studies highlighted the important roles of 
multi-kingdom microorganisms in CRC microbiota dysbiosis, 
while their fluctuations across different and large-scale popula-
tions are unexplored16–19. Moreover, discrepant results have been 
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published20, which may be related to different biological factors and 
inconsistent standards for metagenomic data generation and pro-
cessing. Recently, several attempts were made to identify the core 
CRC-associated bacterial microbiome signatures by meta-analysis 
using published shotgun metagenomic sequencing datasets. These 
studies provide an unbiased evaluation of CRC-associated bacte-
rial microbiomes across multiple cohorts12,13,21. However, they did 
not determine the consistency, or potential inconsistency, of a 
multi-kingdom microbiome across different populations in CRC.

Although traditional screenings reportedly aid in reducing CRC 
incidence and mortality, the high false positive rate of faecal occult 
blood or faecal immunochemical tests, as well as the risk and expense 
of gold standard colonoscopy, represent relevant concerns22–26. Thus, 
major efforts have been made to explore complementary strategies 
of CRC diagnosis, including the potential application of gut micro-
biomes as non-invasive biomarkers for CRC. However, the clinical 
implementation of microbial-based diagnostic tools is challenging 
due to the heterogeneity of patient populations and associated high 
costs. For the time being, diagnostic tools based on multi-kingdom 
microbiome analysis should be used as a supplement to traditional 
CRC screening methods. Therefore, cross-cohort, multi-kingdom 
studies are urgently needed to provide integrated and robust assess-
ment of CRC and multi-kingdom microbiome association.

In this study, we performed a comprehensive analysis of metage-
nomic datasets to assess the collective predictability of single- and 
multi-kingdom microbiota across eight distinct geographical 
cohorts. We took advantage of meta-analysis methods with a uni-
form pipeline for heterogeneity (MMUPHin) and a machine learning 
algorithm to identify multi-kingdom microbial markers. Our study 
demonstrates that diagnostic models with multi-kingdom markers 
perform better than models based on single-kingdom markers. A 
minimal panel with 16 multi-kingdom microbial features diagnosed 
patients with CRC with an area under the receiver operating char-
acteristic curve (AUROC) of 0.83 and maintained accuracy across 
3 independent cohorts. Moreover, exploration of the metagenomic 
functions in CRC highlighted the elevated metabolic potentials of 
D-amino acid and butanoate metabolism. Interestingly, the diag-
nostic model based on functional genes achieved high accuracy 
(AUROC = 0.86). Collectively, these findings uncover common and 
comprehensive CRC-associated microbiota and reveal the potential 
of multi-kingdom and functional markers as powerful CRC diag-
nosis tools and, potentially, as therapeutic targets for the treatment 
of CRC.

Results
Characterization of multi-cohort CRC and processing of shotgun 
metagenomic sequencing data. We collected multi-cohort CRC 
metagenomic data from 1,368 samples, consisting of population  

data from 7 publicly available cohorts and one new Chinese (CHN_
SH) cohort (Supplementary Data 1 and Fig. 1a). To identify repro-
ducible microbial markers for diagnosing patients with CRC, the 
discovery dataset consisted of samples with broader geographical 
heterogeneity and genetic background, including 491 individuals 
with CRC and 494 tumour-free controls across 5 countries (Austria, 
France, Germany, China and Japan) (Fig.  1a). Accordingly, the 
independent validation dataset consisted of 193 patients with CRC 
and 190 controls covering 3 countries (China, Italy and the USA) 
(Fig.  1a). To reduce technical bias in the bioinformatics analy-
sis, all raw shotgun sequencing data were processed consistently 
(Supplementary Data 2).

Integrated analysis of CRC-associated microbial species in four 
kingdoms. We first assessed changes in alpha diversity of patients 
with CRC and healthy controls. Decreased microbial alpha diver-
sity assessed by the Shannon Index was observed for CRC (false 
discovery rate (FDR) = 2.579 × 10−4; Fig.  1b). Notably, differ-
ences in beta diversity varied not only according to disease sta-
tus (P = 0.001, Fig. 1c) but also across cohorts (P = 0.001; Fig. 1c). 
Regarding microbial composition, we found different microbial 
alterations across all four kingdoms for the CRC samples at the 
phylum level (Supplementary Discussion, Extended Data Fig. 1 and 
Supplementary Data 3).

To identify specific microbial markers for potential CRC diag-
nosis, we next examined species composition. Although differential 
microbial species varied greatly in different cohorts, some species 
with consistent alterations were identified, such as the bacteria 
Alistipes onderdonkii, Parvimonas micra and Gemella morbillorum 
(Fig. 1d) and the fungi Aspergillus rambellii and Trichophyton men-
tagrophytes (Fig.  1e). However, the differential species of archaea 
(Extended Data Fig. 2a) and viruses (Extended Data Fig. 2b) dis-
played substantial variations without consistent differential species 
across cohorts. These findings necessitate an integrated analysis to 
identify universal microbial markers for CRC. Our analysis iden-
tified 88 bacterial, 108 fungal, 38 archaeal and 115 viral species, 
with differential abundances between individuals with CRC and 
controls, respectively (P < 0.05; Supplementary Data 4). Consistent 
with reported bacterial alterations in CRC, 48 bacterial species 
with elevated abundances in patients with CRC were identified 
(Extended Data Fig. 3), including the widely reported F. nucleatum, 
P. micra, Porphyromonas asaccharolytica, Desulfovibrio desulfuri-
cans and Akkermansia muciniphila. In particular, protective species 
from butyrate-producing bacteria, such as Clostridium butyricum, 
Roseburia intestinalis and Butyrivibrio fibrisolvens, were decreased 
in patients with CRC compared to controls.

Apart from gut bacteria, emerging studies suggest the impor-
tance of other microbial kingdoms in gastrointestinal disease17,27. 

Fig. 1 | Overview of the patient populations with CRC included in this study and their associated gut microbiome compositions. a, Global map 
representing a total of 1,368 samples from 8 patient populations with faecal shotgun metagenomic data. The discovery data populations included 
Austria (AUS, PRJEB7774), France (FRA, PRJEB6070), Germany (GER, PRJEB27928), China (CHN_HK, PRJEB10878) and Japan (JPN, PRJDB4176). 
The validation data populations included the United States (USA, PRJEB12449), Italy (ITA, SRP136711) and China (CHN_SH, in-house). The numbers in 
brackets represents sample size. Details are shown in Supplementary Data 1. b, Alpha diversity measured by Shannon index of patients with CRC (red, 
n = 491) and control individuals (blue, n = 494). Adjusted P value (FDR = 2.579 × 10−4, two-sided test) was calculated by MMUPHin. Data are shown via 
the interquartile ranges (IQRs) with the median as a black horizontal line and the whiskers extending up to the most extreme points within 1.5× the IQR; 
outliers are represented as dots. c, Principal coordinate analysis (PCoA) of samples from all five cohorts based on Bray–Curtis distance, which shows that 
microbial composition was different between groups (P = 0.001) and cohorts (P = 0.001). P values of beta diversity based on Bray–Curtis distance were 
calculated with PERMANOVA by 999 permutations (two-sided test). The group is colour-coded and the cohort is indicated by different shapes. d, UpSet 
plot showing the number of differential bacterial species identified via MaAsLin2 in each population and shared by combinations of datasets. The number 
above each column represents the size of differential species. The set size on the right represents the number of differential species in each cohort and 
the connected dots represent the common differential species across connected cohorts. e, UpSet plot showing the number of differential fungal species 
identified via MaAsLin2 in each population and shared by combinations of datasets. The number above each column represents the size of differential 
species. The set size on the right represents the number of differential species in each cohort and the connected dots represent the common differential 
species across connected cohorts.
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Intriguingly, the abundance of 93 out of 108 fungal species was 
increased in patients with CRC compared to controls (Fig.  2a), 
including Candida pseudohaemulonis, Aspergillus ochraceoroseus, 
A. rambellii and Malassezia globosa. In contrast, the abundances of 

Aspergillus niger, Macrophomina phaseolina, Talaromyces islandicus 
and Sistotremastrum niveocremeum were decreased in patients with 
CRC. Moreover, we also identified 38 archaeal species and 133 viral 
species with significantly differential abundances between patients 
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with CRC and controls (Supplementary Discussion, Supplementary 
Data 4 and Extended Data Fig. 4).

Single microbial kingdom markers for CRC diagnosis. Recently, 
bacterial markers for CRC diagnosis have achieved satisfactory accu-
racy12,13. However, the predictive value of archaea, fungi and viruses 
is underestimated, especially across different cohorts. Hence, this 
comprehensive analysis investigated potential microbial markers 
from different kingdoms for CRC diagnosis (Extended Data Fig. 5). 
Ultimately, we identified 20 fungal (Fig. 2a), 27 bacterial (Extended 
Data Fig. 3), 20 archaeal and 21 viral species (Extended Data Fig. 4) 
as important features including T. islandicus, Sphaerulina musiva,  
A. rambellii, A. niger from the fungi kingdom (Fig. 2a) and F. nuclea-
tum, P. micra and P. asaccharolytica from the bacteria kingdom 
(Extended Data Fig. 3).

We next constructed fivefold cross-validation random forest 
models with features from each single kingdom. As expected, fea-
tures from each kingdom showed capabilities for identifying patients 
with CRC (Fig. 2b). The extensively studied bacterial models dis-
played the strongest ability to detect CRC across all cohorts with an 
average score of the AUROC of 0.80, ranging from 0.73 to 0.85. In 
comparison, the model for fungal features showed the second high-
est score with an average AUROC of 0.77. The archaeal- (average 
AUROC = 0.74) and virus-based models (average AUROC = 0.73) 
displayed relatively inferior distinguishing capability. Notably, the 
diagnostic capabilities showed great variation across different geo-
graphical cohorts (Supplementary Discussion; Fig. 2b), suggesting 
distinct gut microbiome characteristics for these patients with CRC, 
most likely due to dietary differences9. Overall, our results highlight 
that apart from bacteria and fungi, archaea and viruses also repre-
sent potential markers for CRC diagnosis.

To evaluate whether the above features could be applied uni-
versally for CRC diagnosis and overcome geographical hetero-
geneity, we performed cohort-to-cohort transfer analysis and 
leave-one-cohort-out (LOCO) analysis as described previously11. 
Overall, the AUROC scores based on the cohort-to-cohort trans-
fer analysis were slightly reduced compared to the cross-validation 
models, while the AUROC values of LOCO were increased 
compared to those from the cohort-to-cohort transfer analysis 
(Supplementary Discussion, Fig.  2c and Extended Data Fig.  5a), 
probably due to the larger size of the ‘training’ dataset. Collectively, 
our findings demonstrate that marker features from different king-
doms provide unbiased predictive capabilities for CRC diagnosis 
across various populations.

Improved predictability based on combined multi-kingdom 
features. Since all single-kingdom features displayed diagnostic 
potential for patients with CRC, we next explored the predictabil-
ity of models combining individual multi-kingdom features. In 
line with our hypothesis, improved CRC detection was obtained 
by combining multi-kingdom features, suggesting an addi-
tive predictive value for the combination of different kingdom 
features. Compared to single-kingdom diagnostic models, the 
AUROC values of two-kingdom features were improved, rang-
ing from 0.75 to 0.83 (Fig. 3a). Specifically, the cross-validation 
models combining bacteria- and archaea-based features (AB 
model) achieved an average AUROC of 0.83, which is higher 
than any single-kingdom model (AUROC = 0.80 for bacteria 
and 0.74 for archaea; Fig.  2b). The predictive value of models 
combining bacteria- and fungi-based features (BF model) also 
reached an average AUROC of 0.83. Specifically, the AUROC 
scores across different cohorts were 0.86 (AUS), 0.85 (FRA), 0.90 
(GER), 0.79 (CHN) and 0.74 (JPN). Consistent improvements 
could be observed for other two-kingdom features. Furthermore, 
the transferability of multi-kingdom models was also enhanced 
(Supplementary Discussion, Figs. 2c and 3b and Extended Data 
Fig. 5b).

We then examined the predictive performance of models with 
three-kingdom feature combinations, which revealed no further 
improvements. All three-kingdom models achieved an average 
AUROC of 0.83, except for the archaea-fungi-virus (AFV) model 
(average AUROC = 0.79), which maintained the same accuracy as 
the best two-kingdom model, namely the BF (Fig. 3a). Consistently, 
the AUROCs for models based on four-kingdom features (ABFV 
model) only slightly improved (average AUROC = 0.84; Fig.  3a). 
Importantly, however, transferability for cohort-to-cohort 
(approximately 0.76 on average) and LOCO analysis (maximum 
AUROC = 0.80 for the ABV, BFV and ABFV models) was slightly 
improved for the three- and four-kingdom models, respec-
tively (Extended Data Fig.  5b). In summary, the AUROCs of the 
multi-kingdom models significantly improved than those of the 
single-kingdom models (Supplementary Data 5).

Intrigued by our finding that the AUROCs did not markedly 
improve beyond the two-kingdom models with the addition of 
more markers, we sought to investigate the underlying reasons 
(Supplementary Discussion and Supplementary Data 6). We found 
that the ABFV models with a total 41 features contained 13 bacte-
rial, 5 fungal, 1 archaeal and 1 viral marker as the top 20 features 
(Fig.  3c). Collectively, most of the predictable information was 

Fig. 3 | Performance of predictive models constructed with combined multi-kingdom features and the integrated importance of these essential features 
in each geographical cohort. a, Heatmap showing the AUROC values of the models built with multi-kingdom features in each cohort. The values refer 
to an average value of 20× repeated fivefold cross-validation. The asterisk represents the significance of models assessed with 1,000 permutations 
(two-sided test). *P = 0.001. A, Archaea; B, Bacteria; F, Fungi; V, Virus. b, Box plots showing the AUROC values of cohort-to-cohort transfer validation for 
the models using multi-kingdom features. Data are shown via the IQRs with the median as a black horizontal line and the whiskers extending up to the 
most extreme points within 1.5× the IQR (n = 4). c, Importance of each listed feature (belonging to the four-kingdom model) by the cross-validation of 
predictive performance for each population dataset as estimated using the internal random forest ‘Gini importance’ method. The ‘aggregation’ column 
shows the integrated ranks (using a rank aggregation algorithm) of listed markers within each cohort along with changes in abundance (differentials), 
with red indicating a species increase and blue indicating a species decrease in patients with CRC compared to controls. d, AUROC matrix of models built 
with the panel of 16 multi-kingdom features for CRC detection. Values on the diagonal refer to the average AUROC of 20× repeated fivefold stratified 
cross-validations. Values off the diagonal refer to the AUROCs obtained by training the model on the population of the corresponding row and applying 
it to the population of the corresponding column. The LOCO row refers to the performances obtained by training the model on the 16 microbial features 
using all but the population dataset of the corresponding column and applying it to the dataset of the corresponding column. The asterisk represents 
the significance of models assessed with 1,000 permutations (two-sided test). *P = 0.001. e, AUROC matrix of models built with the panel of 16 
multi-kingdom features for CRC early detection. Values on the diagonal refer to the average AUROC of 20× repeated fivefold stratified cross-validations. 
Values off the diagonal refer to the AUROCs obtained by training the model on the population of the corresponding row and applying it to the population 
of the corresponding column. The LOCO row refers to the performances obtained by training the model on the 16 microbial features using all but the 
population dataset of the corresponding column and applying it to the dataset of the corresponding column. The asterisk represents the significance of 
models assessed with 1,000 permutations (two-sided test). *P = 0.001.
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provided by bacterial and fungal markers. Thus, multi-kingdom 
models did not further enhance the performance of our diagnostic 
models.

Identification of the best-performing panel of features 
derived from multi-kingdoms. Since models constructed with 
four-kingdom markers were the most effective for CRC diagnosis,  
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particularly with respect to transferability between cohorts, we 
next aimed to identify the essential features of the four-kingdom 
models (Fig.  3c and Supplementary Data  7). First, bacterial spe-
cies, that is, G. morbillorum, P. micra, Ruminococcus bicirculans, 
R. intestinalis and F. nucleatum9,12,13, were among the top five and 
seventh most important contributors to the predictive value of 
our four-kingdom models. Meanwhile, fungal species, such as  
A. rambellii, Sistotremastrum suecicum, T. islandicus and A. niger, 
were also identified as important features (4th, 6th, 8th and 13th 
rank, respectively). Three archaeal species (features), Pyrobaculum 

arsenaticum, Nitrosotalea devanaterra and Pyrobaculum neutro-
philum ranked 12th, 23rd and 27th, respectively. Additionally, the 
butyrate-producing bacteria Butyricimonas faecalis, Flavonifractor 
plautii, C. butyricum and the fungal species (features) Erysiphe 
pulchra and Moniliophthora perniciosa also contributed to the pre-
dictability of the four-kingdom model. We also identified five viral 
species, although these achieved only lower ranks in our predictive 
model. Thus, our feature ranking analysis highlighted the need to 
combine features from multi-kingdoms, particularly those from the 
bacterial and fungal kingdoms, for maximized predictive value.
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Fig. 4 | Coabundance correlations among multi-kingdom species in patients with CRC and controls. a, Coabundance networks involving combined 
differential species from all four kingdoms in the CRC and control samples. The colours of nodes indicate species from bacteria (green), fungi (orange), 
archaea (blue) and viruses (purple). Only significant (FDR < 0.00001, two-sided tests of 1,000 permutations) absolute correlations above 0.3 are shown, 
which are considered as fair correlations. The purple lines indicate positive species interactions; the grey lines indicate negative interactions.  
b, Moderate coabundance networks in controls and patients with CRC, with absolute correlations above 0.6 and with a significance cut-off of 
FDR < 0.00001 (two-sided tests of 1,000 permutations). The edges are coloured according to the magnitude of the association in the moderate networks 
as shown by the colour bar.
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To identify a minimal panel of microbial markers, we succes-
sively added features according to their ranking (Gini importance). 
The average AUROC values maxed out after adding the top 16 fea-
tures with an AUROC of 0.83, which included 11 bacterial features, 
4 fungal features and 1 archaeal feature (Fig. 3d and Supplementary 
Data 8). This 16-feature multi-kingdom model also showed good 
performance in single populations. In all cohort models, CRC 
samples were identified with an accuracy above 0.82 except for the 
JPN cohort (AUROC = 0.73; Fig. 3d). The GER cohort showed the 
highest predictability with an AUROC of 0.92. The models also 
displayed an acceptable transferability across cohorts (Fig.  3d). 
Therefore, our analysis revealed a minimum panel of 16 features 
derived from bacteria, fungi and archaea kingdoms as a stool-based 
non-invasive tool for CRC diagnosis.

Performance of 16 multi-kingdom marker panel for early CRC 
diagnosis. Diagnosing cancer at an early stage could significantly 
increase survival rates. Therefore, we investigated the predicative 
performance of a 16-marker multi-kingdom panel in early-stage 
(stage I and II) patients with CRC. Notably, the abundance of the 
16 markers was significantly different not only between controls 
and patients with advanced CRC but also between controls and 
patients with early-stage CRC (Extended Data Fig.  6). This find-
ing suggested the potential use of our marker panel for the early 
diagnosis of CRC. After adjusting for the unbalanced numbers of 
patients with early-stage CRC versus controls, our panel was able 
to distinguish patients with early-stage CRC from controls with an 
average AUROC of 0.78, which also showed excellent diagnostic 
transferability across cohorts with an average LOCO AUROC of 
0.82 (Fig. 3e).

Validation of the 16-marker multi-kingdom panel in indepen-
dent cohorts. To externally validate the predictive performance 
of our 16-marker multi-kingdom panel and avoid overoptimistic 
reporting of model accuracy, we analysed 3 independent datasets 
(Supplementary Data 1 and 2) from China (CHN_SH, 86 controls 
and 80 patients with CRC), Italy (ITA, 52 controls and 61 patients 
with CRC) and the United States (USA, 52 controls and 52 patients 
with CRC) (Extended Data Fig.  7a). The average AUROC of the 
cross-validation models was 0.88 for the CHN_SH cohort and 0.81 
for the ITA cohort, respectively, while the AUROC was relatively 
lower for the USA (0.68 on average). The latter may be related to 
long-time frozen storage of samples (over 25 years). The average 
AUROC for the cohort-to-cohort analysis was relatively decreased 
(CHN_SH:0.75, ITA:0.71 and USA:0.66; Extended Data Fig.  7b), 
while the AUROCs for the LOCO analysis were slightly improved, 

ranging from 0.70 to 0.76 (Extended Data Fig.  7c). Altogether, 
this additional cohort analysis validated the robustness of our 
multi-kingdom marker panel across a total of eight cohorts from 
seven countries.

Specificity of the CRC predictive models based on the 
multi-kingdom marker panel. In light of shared microbiota altera-
tions across various diseases28, it is necessary to verify the disease 
specificity for the identified microbial biomarkers panel, thereby 
ensuring a low false positive rate for CRC diagnosis. For this pur-
pose, several non-CRC disease datasets were assessed, including 
those from gastrointestinal disease (inflammatory bowel disease 
(IBD)) and non-gastrointestinal diseases (type 2 diabetes (T2D) 
and Parkinson’s disease (PD)) (Extended Data Fig. 7d–f). AUROC 
values were significantly lower for non-CRC diseases compared to 
our independent cohort of patients with CRC. Particularly, diag-
nostic accuracy sharply decreased in patients with IBD, T2D and 
PD compared to that in the CHN_SH and ITA cohorts with CRC. 
Overall, these results support the notion that our 16-biomarker 
multi-kingdom panel is highly specific to CRC.

Alterations of the multi-kingdom coabundance network between 
patients with CRC and controls. To gain an insight into the poten-
tial interplay between multi-kingdom species and their potential 
role in CRC pathogenesis, we performed a coabundance association 
analysis based on the abundance of differential species. Generally, 
the ecological network of patients with CRC (272 species and 2,338 
associations) was more complex compared to that of controls (236 
species and 1,804 associations). Apart from intensive correlations 
between intrakingdom species, we found substantial associations 
between interkingdom species, especially between the bacteria and 
fungi kingdoms (Fig. 4a).

In addition, there were many increased correlations in the CRC 
network compared to the network in controls, including 1,161 
intrakingdom and 706 interkingdom associations (Supplementary 
Data  9), which may play a role in CRC pathogenesis. In particu-
lar, emerged interkingdom interactions were discovered in the 
CRC microbiome, for example, correlations between the fungal 
markers T. islandicus and differential bacteria species, namely 
Clostridium saccharobutylicum, Hungateiclostridium clariflavum, 
Clostridium baratii and Faecalibaculum rodentium. Consistently, 
a similar pattern was also observed in networks with moderate 
associations (r > 0.6). Specifically, the network of controls con-
sisted of 273 coabundance correlations among 112 species, while 
the CRC network contained 360 coabundance correlations among 
120 species (Fig. 4b). Several markers belonging to the bacteria and 

Fig. 5 | CRC-associated functional alterations and performance of models constructed with KO genes. a, The box plots (left) show the relative abundance 
of the pathway of controls (blue bar) and patients with CRC (red bar) in each cohort. The number of samples was AUS (patients with CRC = 46, 
controls = 63), FRA (patients with CRC = 53, controls = 61), GER (patients with CRC = 60, controls = 65), CHN (patients with CRC = 80, controls = 86), 
JPN (patients with CRC = 258, controls = 251), respectively. All box plots represent the 25th–75th percentile of the distribution; the median is shown as 
a thick line in the middle of the box; the whiskers extend up to the most extreme points within a 1.5× the IQR and outliers are represented as dots. The 
heatmap (centre) shows the integrated meta-analysis that identified significantly changed KO gene expression in each metabolic pathway examined 
across five geographical populations. The cell colour and intensity represent the generalized abundance fold change of KO genes. The significant differential 
KO gene (P < 0.05, two-sided test) was identified via MMUPHin. P values are shown in the cells. b, Normalized log abundance for the functional genes 
bdhA/B (K00100), oraE (K17898) and oraS (K17899) is compared between controls (n = 494) and patients with CRC (n = 491). Statistical significance was 
determined via MMUPHin with treating age, BMI and sex as covariates (two-sided test). c,d, Expression of bdhA and bdhB in the butanoate metabolism 
pathway (c) and oraE and oraS in the D-arginine and D-ornithine metabolism pathway (d) were upregulated in patients with CRC (n = 24) than controls 
(n = 24) determined via qPCR with gDNA. Data are presented as the mean ± s.d. of three biological replicates. P values were calculated using a two-sided 
Wilcoxon signed-rank test and were Bonferroni-adjusted. The box plots show the IQRs as boxes, with the median as a black horizontal line and the 
whiskers extending up to the most extreme points within the 1.5× the IQR. e, AUROC matrix of models built with the 175 important EggNOG genes. Values 
on the diagonal refer to the average AUROC of 20× repeated fivefold stratified cross-validations. Values off the diagonal refer to the AUROCs obtained 
by training the model on the population of the corresponding row and applying it to the population of the corresponding column. The LOCO row refers 
to the performances obtained by training the model using all but the cohort dataset of the corresponding column and applying it to the dataset of the 
corresponding column. The asterisk represents the significance of models assessed with 1,000 permutations (two-sided test). *P = 0.001.
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fungi kingdoms were presented in the moderate networks, such as  
G. morbillorum, P. micra, F. nucleatum, T. islandicus and A. rambellii.  
However, there were only a few associations or weak correlations 
between diagnostic markers, probably due to their limited predic-
tive value for the diagnostic models. Taken together, these findings 
suggest an important role for both intra- and interkingdom interac-
tions in gut microbiota for CRC pathogenesis.

Microbial functional alterations in CRC. Owing to the vast 
interindividual heterogeneity of the microbiota, it seems plausible 
that distinct strains in different individuals can trigger a similar 
pathology by utilizing common pathways. Therefore, targeting 
their wide-spanning metagenomic functions, rather than spe-
cific taxa, may represent a more effective strategy to investigate 
microbiome-mediated tumorigenesis in CRC.
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For this purpose, we explored the functional alterations at 
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology 
(KO) genes and pathway levels and identified 1,053 differential 
KO genes, including 612 KO genes with increased abundance in 
patients with CRC compared to controls (Supplementary Data 10). 
At the pathway level, we identified 49 differential pathways: 26 were 
increased and 23 were decreased in patients with CRC, respec-
tively (Supplementary Data 11). Pathways involved in carbohydrate 
metabolism, such as butanoate, ascorbate and aldarate metabolism, 
were increased in patients with CRC (Fig.  5a). While D-arginine 
and D-ornithine metabolism was also enhanced (Fig.  5a), 
branched-chain amino acids (valine, leucine and isoleucine) and 
lipid metabolism, such as phospholipase D, were decreased in 
patients with CRC (Supplementary Data  11). Moreover, associa-
tions between these differential pathways and differential species 
across four kingdoms were identified via HAlla (Supplementary 
Discussion and Extended Data Figs. 8 and 9).

The data above clearly support the notion that 
microbiota-mediated functions are altered in CRC, which also 
relates to multi-kingdom species. We next focused on key genes 
related to enhanced D-arginine, D-ornithine and butanoate metabo-
lism. The abundance of bdhA/B (P = 0.0002, I2 = 0%; Supplementary 
Data 10) in butanoate metabolism and oraE (P = 0.004, I2 = 28.7%; 
Supplementary Data 10), oraS (P = 0.009, I2 = 32.6%; Supplementary 
Data 10) in D-arginine and D-ornithine metabolism, respectively 
was significantly increased compared to controls (Fig. 5b), suggest-
ing increased metabolic potentials of aminobutyrate and D-amino 
acids. Notably, changes in these key genes could be validated in 
gDNA extracted from the 48 faecal samples of the CHN_SH cohort 
by exploiting the targeted quantification assay for these genes based 
on a quantitative PCR (qPCR) protocol developed by Wirbel et al.13. 
The key butanoate metabolism-associated genes, for example, 
bdhA and bdhB, were upregulated in patients with CRC (Fig. 5c); 
D-arginine and D-ornithine metabolism-associated genes, for 
example, oraE and oraS, were also more abundant in patients with 
CRC compared to controls (Fig. 5d).

Finally, we assessed the diagnostic capability of differential func-
tions at the EggNOG gene, KO gene and pathway level, respectively. 
The best predictive accuracy for CRC was achieved by models that 
were based on 175 EggNOG genes, with an average cross-validation 
AUROC of 0.86 (Fig. 5e). The average AUROC for models based on 
differentially expressed KO genes and pathways was 0.82 (Extended 
Data Fig.  10a) and 0.74 (Extended Data Fig.  10b), respectively. 
This difference might be rationalized by the fact that individual 
genes provide more original information than pathways because 
aggregation of genes into broad functional categories neutralizes 
variations. Moreover, the gene-based classifier was superior to the 
species-based classifier, probably due to the greater variability and 
sensitivity to perturbation of gene-based functional omics29.

Discussion
Most studies have primarily focused on the bacterial microbiota 
and its effects on human health and disease12,13,30,31. Recently, inves-
tigations have revealed the critical roles of non-bacterial microor-
ganisms in human diseases32,33 (Supplementary Discussion). In this 
study, we performed a comprehensive analysis on the multi-kingdom 
microbiome using CRC metagenomic datasets across eight different 
cohorts. We discovered a series of both bacterial and non-bacterial 
markers and evaluated their performance in detecting patients with 
CRC across cohorts. We showed that fungal, archaeal and viral spe-
cies could separate patients with CRC and healthy controls across 
multiple geographical cohorts (Fig. 2 and Extended Data Figs. 2–4). 
However, the predictive value of different kingdom models varied 
and the bacteria- and fungi-based models, respectively, showed 
superior accuracy over the archaea- and virus-based models gen-
erally (Fig. 2b). Notably, these models showed some preferences at 

the population scale (Fig. 2b,c), which may be due to differences in 
geography and lifestyle (Supplementary Discussion). Nevertheless, 
our findings emphasize the need for integrated analysis to iden-
tify universal cross-cohort microbial features for accurate CRC 
diagnosis.

Previous studies proposed paradigms to identify reproducible 
microbial biomarkers across multiple datasets and populations 
by developing machine learning models, followed by cross-study 
and leave-one-out likely validations12,13. Similarly, we devel-
oped diagnostic models with multi-kingdom species that signifi-
cantly improved predictive accuracy (Supplementary Discussion, 
Fig. 3 and Extended Data Fig. 5). Moreover, models based on the 
16-feature panel achieved very high predictive values for CRC 
diagnosis (average AUROC = 0.83; Fig.  3d), especially early diag-
nosis (average AUROC = 0.96; Fig.  3e). The panel included some 
extensively reported bacterial biomarkers (Supplementary Data 7), 
such as F. nucleatum, P. micra, G. morbillorum, Pseudobutyrivibrio 
xylanivorans and R. bicirculans. In addition, fungal species such 
as T. islandicus, A. rambellii, S. suecicum and A. niger were identi-
fied as the top 13 important features, highlighting the pivotal roles 
of non-bacterial microorganisms as diagnostic CRC biomark-
ers (Supplementary Discussion). The association among distinct 
microbial species may develop into the multi-kingdom ecological 
drivers of microbiota assembly when adapting to the host micro-
environment34–36 (Supplementary Discussion). However, as yet, the 
broad cross-species associations during CRC development and pro-
gression have not been functionally investigated. It would be inter-
esting to explore whether these associations are merely a bystander 
effect or contribute to colorectal carcinogenesis.

The functional microbiome is now becoming a prerequisite 
for host phenotype and physiology and growing efforts have been 
made to connect the functional traits and mechanisms of organisms 
to their environments to predict survival, reproduction and com-
munity structure13,37. It is interesting to note that models based on 
functional elements also showed good performance in diagnosing 
CRC (Fig. 5e and Extended Data Fig. 10), especially the EggNOG 
gene models achieving an average cross-validation AUROC of 0.86, 
which is even better than species-based models (Supplementary 
Discussion).

In addition, through broad functional metagenomic analysis, 
we revealed that bacterial–fungal interactions could contribute to 
CRC pathogenesis via upregulation of D-arginine and D-ornithine 
and stimulation of the butanoate metabolism pathways. We dem-
onstrated that two marker genes in the D-arginine metabolism 
pathway, oraS and oraE, are upregulated in CRC samples com-
pared to controls. Interestingly, the less-studied butanoate metabo-
lism pathway, strongly activated in CRC38, was also identified. The 
CRC driver–passenger model indicates that F. nucleatum promotes 
colorectal tumorigenesis and butanoic acid from the butanoate 
metabolism pathway plays a critical role in supporting the tumour 
microenvironment39. In line with previous studies40–42, we further 
confirmed a significant enrichment of bdhA and bdhB in the CRC 
metagenome. These metabolic disturbances by bacteria, fungi or 
their associations may indicate the differential host–microbe inter-
actions that could be critical for CRC progression (Supplementary 
Discussion). Moreover, specific bacterial–fungal interactions are 
now being explored as a tool to maintain intestinal homoeostasis.

In conclusion, this study presents the most comprehensive 
metagenomic sequencing-based microbiome study with the largest 
sample size to date in patients with CRC. We not only systemically 
explored CRC-associated microbiota, encompassing bacteria, fungi, 
viruses and archaea, but also identified combined microbial features 
and provided potential functional insights. Although the applica-
tion of marker microbes to CRC diagnosis is challenging, especially 
in asymptomatic individuals, we certainly observed a superior 
prediction performance of combined multi-kingdoms compared 
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to single kingdoms. Our growing understanding of the role of 
multi-kingdom microbiomes in patients with CRC could provide 
hypotheses for the field and inspire investigations into potential 
applications for CRC diagnosis.

Methods
Participant enrollment, informed consent, sample collection and processing of 
the Chinese cohort. The Chinese cohort in Shanghai (CHN_SH) was recruited to 
validate the performance of our classification models. Patients were recruited at an 
initial CRC diagnosis; therefore, patients had not yet received any treatment before 
their faecal sample collection. Patients with hereditary CRC syndromes or with a 
previous history of CRC were excluded from the study. Following these criteria, we 
acquired a cohort of 80 patients with CRC. This study was approved by the Ethics 
Committee of the School of Life Science of Fudan University and Fudan University 
Shanghai Cancer Center (ethical approval no. 1809191-7). Healthy controls (86 
individuals) with a similar age and sex ratio were selected from the Taizhou Imaging 
Study (TIS)43–45, which is an ongoing longitudinal study intended to explore the 
aetiology and risk factors of cerebrovascular disease and dementia in three villages 
that previously showed high response rates from Taixing, China. TIS individuals 
without physician-diagnosed dementia, stroke, cancer, cardiovascular disease, 
psychiatric disorders or other serious illnesses were recruited. Written informed 
consent was obtained from all individuals before data and biospecimen collection. 
Use of TIS individuals was approved by the Ethics Committee of the School of Life 
Sciences, Fudan University (institutional review board approval no. 496).

Stool samples were collected in faecal collection tubes and were immediately 
transferred to a −80 °C freezer until time for use. The gDNA of the faecal 
specimens was extracted with a Stool Genomic DNA kit (catalogue no. CW2092S; 
CWBIO) according to the manufacturer’s instructions except for the modification 
of step 4 with bead-beating for 10 min (Glass beads, acid-washed; catalogue no. 
G8772; Sigma-Aldrich) to better extract fungal DNA. The details of the DNA 
extraction method are given in the Supplementary Methods. Sequencing libraries 
were generated with the NEBNext Ultra DNA Library Prep Kit for Illumina 
(New England Biolabs) and library quality was confirmed with an Agilent 2100 
Bioanalyzer and quantified using real-time PCR. Whole-genome sequencing was 
carried out on the NovaSeq 6000 system (Illumina). All samples were paired-end 
sequenced with a 150-base pair (bp) read length to a targeted data set size of 12 Gb. 
No statistical methods were used to predetermine sample size but our sample sizes 
are similar to those reported in previous publications11–13.

Public populations of patients with CRC and controls. Raw sequencing data of 
eight populations from seven countries were downloaded from the Sequence Read 
Archive (SRA) (details shown in Supplementary Data 1), mainly from two recently 
published CRC papers12,13 and the Japanese cohort9. Metadata were manually 
curated from the published papers.

Study design. We included a total of 1,368 samples from 9 geographical 
populations of faecal shotgun metagenomic sequencing data, including publicly 
available and in-house (CHN_SH) sequencing data. To obtain universal microbial 
features across different countries, we divided these samples into discovery 
and validation datasets, with broad regional origin (Supplementary Data 1). 
Sequencing data of the populations from Austria (AUS, PRJEB7774), France (FRA, 
PRJEB6070), Germany (GER, PRJEB27928), China (CHN, PRJEB10878) and Japan 
(JPN, PRJDB4176) were included in our discovery dataset. In total, there were 494 
controls and 491 patients with CRC, which included 318 patients with early-stage 
(stages I and II) and 173 patients with advanced-stage CRC (stages III and IV). The 
validation dataset consisted of populations from the USA (USA, PRJEB12449), 
Italy (ITA, SRP136711) and China (CHN_SH, in-house).

Sequencing data preprocessing. The KneadData (http://huttenhower.sph.
harvard.edu/kneaddata) v.0.6 tool was used to ensure data consisting of 
high-quality microbial reads free from contaminants. Low-quality reads were 
removed using Trimmomatic (v0.39) (SLIDINGWINDOW:4:20 MINLEN:50 
LEADING:3 TRAILING:3). The remaining reads were mapped to the mammalian 
genome (hg38, felCat8, canFam3, mm10, rn6, susScr3, galGal4 and bosTau8; 
UCSC Genome Browser) and 21,288 bacterial plasmids (National Center for 
Biotechnology Information (NCBI) RefSeq database accessed in January 2020), 
3,890 complete plastomes (NCBI RefSeq database accessed in January 2020) and 
6,093 UniVec sequences (NCBI RefSeq database accessed in January 2020) by 
bowtie2 v.2.3.5 (ref. 46); matching reads that were potentially host-associated and 
laboratory-associated sequences were removed as contaminant reads.

Microbial taxonomic and functional profiles. Taxonomic profiling. Taxonomic 
classification of bacteria, archaea, fungi and viruses was assigned to metagenomic 
reads using Kraken2, an improved metagenomic taxonomy classifier that utilizes 
k-mer-based algorithms47. A custom database consisting of 18,756 bacterial, 
359 archaeal and 9,346 viral reference genomes from the NCBI RefSeq database 
(accessed in January 2020) and 1,094 fungal reference genomes from the NCBI 
RefSeq database (accessed in January 2020), FungiDB (46) (http://fungidb.org) 

and Ensemble (accessed in January 2020) (http://fungi.ensembl.org) (accessed in 
January 2020) was built using Jellyfish (v2.3.0) by counting distinct 31-mers in 
the reference libraries, with each k-mer in a read mapped to the lowest common 
ancestor of all reference genomes with exact k-mer matches. Thereafter, each query 
was classified to a specific taxon with the highest total k-mer hits matched by 
pruning the general taxonomic trees affiliated with the mapped genomes. Bracken 
(v2.5.0) was used to accurately estimate taxonomic abundance, especially at the 
species and genus level based on Kraken2 (ref. 48). The read counts of species were 
converted into relative abundance for further analysis.

Functional profiling. High-quality reads were preprocessed and assembled into 
contigs with Megahit v.1.2.9 using ‘meta-sensitive’ parameters; contigs less than 
500 bp were discarded from further analysis. Prodigal v.2.6.3 was used to predict 
genes via the metagenome mode (-p meta). A non-redundant microbial gene 
reference was constructed with CD-HIT using a sequence identity cut-off of 0.95 
and a minimum coverage cut-off of 0.9 for the shorter sequences. The reference 
was annotated with EggNOG mapper v.2.0.1 based on EggNOG orthology data. 
Moreover, gene abundance was estimated with CoverM v.0.4.0 (https://github.com/
wwood/CoverM) by mapping high-quality reads to reference sequences. An index 
was created against contigs from the non-redundant genes that originated via the 
Burrows–Wheeler Aligner (BWA). Clean reads were then mapped to the contig 
index (BWA MEM) and SAM files were converted into BAM files via SAMtools. 
Then, CoverM was used to calculate the coverage of genes in the original contigs 
(coverm contig). The relative abundances of EggNOG genes, KEGG KO groups or 
pathways were estimated by summing the relative abundances of genes annotated 
to belong to the same KOs or pathways.

Integrated analysis to identify differential microbial species and functions. 
Microbial ecological analysis. Alpha diversity metrics, such as Shannon and 
Simpson Indices of all kingdoms were calculated for each sample. The alpha 
diversity changes between CRC and control cases were estimated with MaAsLin2 
(ref. 49), where ‘cohort’ was treated as the fixed effect and body mass index (BMI), 
sex and age were treated as the random effects. Potential confounding factors with 
continuous values were transformed into discrete variables either as quartiles, or 
in the case of BMI into lean (>25), overweight (25–30) and obese (>30) according 
to conventional cut-offs. In addition, beta diversity was assessed based on Bray–
Curtis distance; permutational multivariate analysis of variance (PERMANOVA) 
was performed to investigate the microbial community differences between disease 
groups or cohorts with 999 permutations.

Differential signature identification. Since microbial profiles are compositional 
and sparse and heterogeneity exists among different cohorts, MMUPHin50 was 
performed to identify CRC-related differential microbial species, which enables 
the normalization and combination of multiple microbial community studies. In 
the MMUPHin analysis, microbial community batch effects among cohorts were 
corrected with a Combat-like extended method. Microbial profile was arcsine 
square root-transformed and the age, sex and BMI of individuals were treated as 
covariates. MMUPHin provides meta-analysis by aggregating individual study 
results with established fixed effect models to identify consistent overall effects. 
Species with P < 0.05 were identified as differential species and used as candidate 
features for the CRC diagnosis models. Differential EggNOG gene KOs and 
pathways were identified as the same pipeline.

Construction and evaluation of the CRC diagnostic model based on 
microbial signatures. Overview of model construction and evaluation. Based on 
differential microbial signatures, including multi-kingdom species and multiple 
functional levels, a comprehensive analysis was performed to investigate potential 
microbial markers from different dimensions for CRC diagnosis, which mainly 
included cross-validation model construction and model evaluation, such as 
cohort-to-cohort, LOCO evaluation and independent validation (Supplementary 
Fig. 1). To construct a better diagnostic model, we first assessed multiple machine 
learning algorithms based on our data, such as random forest, neural network 
and stochastic gradient boosting. The random forest was selected for this study 
because of its better performance compared to the other approaches in our data 
(Supplementary Fig. 2) and other studies11,12.

Feature selection and model construction. For the purpose of distinguishing patients 
with CRC from healthy controls based on microbial data, we first performed 
feature selection with the Boruta package (v7.0.0) in R with default parameters 
(pValue = 0.05, mcAdj = T, maxRuns = 1,000), which iteratively removes features 
proved by a statistical test to be less relevant than random probes. Correlations 
between ‘confirmed features’ identified by Boruta were then calculated and only 
features with a correlation <0.7 were selected to further model construction 
and avoid colinearity issues. Next, to construct predictive models, we tuned 
hyperparameters (for example, mtry, ntree, nodesize, maxnodes) using the caret 
package (v6.0-88). Finally, with the best combination of hyperparameters, we 
constructed a fivefold cross-validation model to avoid overfitting issues; the model 
was constructed with each cohort and repeated 20 times. Model significance was 
accessed with 1,000 permutations with the A3 package (v1.0.0).
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Generalization of microbial markers. To further test the generalization of CRC 
microbial markers across technical and geographical differences in multiple 
populations, we extensively validated the diagnostic models with cohort-to-cohort 
transfer validation and LOCO validation as described previously12,13. Briefly, in 
cohort-to-cohort transfer validation, the models were trained on a single cohort 
and their performances were assessed. In LOCO validation, four out of five cohorts 
in the discovery dataset were pooled as a training set and the remaining cohort was 
used as an external validation set.

Independent validation with external datasets. Furthermore, we used three additional 
datasets from Italy (ITA), the USA and China (CHN_SH) to perform independent 
validation analysis and test the robustness of features as CRC diagnostic markers. Like 
model construction in the discovery cohorts, fivefold cross-validation models were 
constructed with the identified best panel of multi-kingdom microbial markers and 
evaluated with the average AUROC. Additionally, we performed cohort-to-cohort 
and LOCO analyses to further test the robustness of the identified markers. In 
cohort-to-cohort analysis, models were trained with each cohort in the discovery 
dataset and tested with each cohort in the validation dataset; in LOCO analysis, 
models were trained with the combined five cohorts from the discovery dataset and 
tested with each cohort in the validation dataset.

Specificity of microbial markers in non-CRC disease. To avoid false positives in 
clinical diagnoses, we estimated the specificity of microbial markers for CRC 
by testing the AUROC values of the models constructed with the best panel of 
features. These non-CRC diseases included IBD (144 cases and 69 controls from 
PRJEB1220), T2D (53 cases and 43 controls from PRJEB1786) and PD (31 cases 
and 28 controls from PRJEB17784).

Coabundance analysis of multiple kingdoms. To investigate the associations 
between differential species, FastSpar (v1.0.0)51 was performed to construct a 
compositionality-corrected microbial interactions network capable of estimating 
correlation values from compositional data. Interactions were calculated with 20 
refining interactions, after which the statistical significance of each interaction was 
estimated within 1,000 permutations. To explore the meta-analysis of coabundance 
networks in relation to CRC disease, this procedure was performed on each single 
cohort considering potential heterogeneity among different cohorts; then, we 
used the Fisher method to combine these independent P values in the survcomp 
package (v1.44.1) and adjusted them with the FDR. Similarly, we calculated the 
median magnitude of the same interaction partners as the combined association 
magnitude. Associations with an FDR < 0.00001 were included in the downstream 
analysis. Network was visualized with Gephi v0.9.2.

Associations between species and function. Spearman associations between 
microbial species and their functions were performed using the Hierarchical 
All-against-All method v.0.8.17 (http://huttenhower.sph.harvard.edu/
halla), a computational method used to find multi-resolution associations in 
high-dimensional, heterogeneous datasets. Associations with an FDR < 0.01 were 
included in the downstream analysis.

qPCR of potential CRC-associated genes. To quantify the abundance of the oraS, 
oraE, bdhA and bdhB genes, qPCR as outlined by Wirbel et al.13 was performed 
on a subset of gDNA prepared from randomly selected samples of the CHN_SH 
cohort (24 controls and 24 patients with CRC). The primers used for validation are 
listed in Supplementary Data 12 and the patient characteristics are summarized in 
Supplementary Data 13.

Total microbial DNA was extracted using a Stool Genomic DNA kit according 
to the manufacturer’s instructions; DNA concentration was determined using 
NanoDrop. The PCR reactions were prepared with the TB Green Premix Ex Taq II 
(Tli RNaseH Plus) (catalogue no. RR820A; Takara Bio) containing 0.6 μM of primer 
and 5 ng of gDNA in a 25 μl final reaction volume. Reactions were performed on 
a CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories). The cycling 
programme was set as indicated: initial denaturation at 95 °C for 30 s; 40 cycles of 
95 °C for 5 s; 55 °C for 30 s; and 72 °C for 30 s, followed by melting curve analysis.

Gene expression levels were evaluated using the Ct method described 
previously13. Ct values were calculated as the difference between target gene and 
16S ribosomal RNA Ct values. P values were obtained using a one-tailed Wilcoxon 
signed-rank test.

Statistics and reproducibility. No statistical method was used to predetermine 
sample size since this is an integrated analysis based on public metagenome data 
with enough samples. No data were excluded from the analyses. The experiments 
were not randomized because statistical analyses depended on information 
about cancer status. Data collection and analysis were not performed blind to 
the conditions of the experiments. Considering microbial data are sparse with a 
non-normal distribution, relevant statistics were performed with a non-parametric 
test, such as the Wilcoxon signed-rank test.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The metagenomic sequencing data of the China-SH validation cohort are 
deposited in both the NCBI SRA under accession no. PRJNA731589 and the 
National Omics Data Encyclopedia under accession no. OEP001340. The other raw 
metagenomic data are available in the SRA (https://www.ncbi.nlm.nih.gov/sra) and 
European Nucleotide Archive (https://www.ebi.ac.uk/ena/) under accession nos. 
PRJEB7774, PRJEB10878, PRJEB6070, PRJEB27928, PRJDB4176, PRJEB12449 and 
PRJNA447983. Source data are provided with this paper.

Code availability
The code and scripts are available on GitHub (https://github.com/jiaonall/
CRC-multi-kingdom.git). The customized code was written in R v.4.0.3.
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Extended Data Fig. 1 | Overview of microbial composition in four kingdoms across populations. Microbial composition of four kingdoms in CRC and 
control (CTR) group, respectively. Composition of bacteria, fungi and archaea was shown at phylum level and composition of virus was shown at family 
level. Only the abundant phyla are shown in the pie chart and the rare family are summed into others.
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Extended Data Fig. 2 | Differential species of archaea and virus among populations. a, UpSet plot showing the number of differential archaea species 
identified via MaAsLin2 in each population and shared by combinations of datasets. The number on top of each column represents the size of differential 
species. The set size on the right represents the number of differential species in each cohort and connected dots represent the common differential 
species across connected cohorts. b, UpSet plot showing the number of differential viral species identified via MaAsLin2 in each population and shared by 
combinations of datasets. The number on top of each column represents the size of differential species. The set size on the right represents the number of 
differential species in each cohort and connected dots represent the common differential species across connected cohorts.
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Extended Data Fig. 3 | Differential bacterial species across populations and prediction performances of models constructed with each single-kingdom 
features. Phylogenetic tree showing the union of different bacterial species (88 in total), grouped by the phyla grouped in the phyla Actinobacteria, 
Basidiomycota, Proteobacteria, Bacteroidetes, Firmicutes and so on. The outer circles are marked for significant differential species (p < 0.05, two-sided 
test) in each population and the meta-analysis results identified via MMUPHin with orange for increased species and green for decreased species. Species 
marked with purple stars were features selected in the classification model. Bar plots show the abundances fold change (FC) normalized by log of marker 
features in each population. The number represents the marker number marked with star. Color represents population and red bars are FC of all subjects in 
CRC and CTR.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Differential archaeal species across populations and prediction performances of models constructed with each single-kingdom 
features. a, Phylogenetic tree showing the union of differential archaeal species (38 in total), grouped by the phyla grouped in the phyla Crenarchaeota, 
Euryarchaeota, Thaumarchaeota and Candidatus Korarchaeota. The outer circles are marked for significant differential species (p < 0.05, two-sided test) 
in each population and the meta-analysis results identified via MMUPHin with orange for increased species and green for decreased species. Species 
marked with purple stars were features selected in the classification model. Bar plots show the abundances fold change (FC) normalized by log of marker 
features in each population. The number represents the marker number marked with star. Color represents population and red bars are FC of all subjects 
in CRC and CTR. b, Bar plots show the abundances fold change (FC) normalized by log of viral marker features in each population. Color represents 
population and red bars are FC of all subjects in CRC and CTR.
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Extended Data Fig. 5 | Performance of LOCO analysis in single- and multi-kingdom models. The AUROC values of LOCO analysis in single-kingdom (a) 
and multi-kingdom (b) models. The asterisk represents the significance of models assessed with 1000 permutations (two-sided test). *: p = 0.001. A: 
Archaea; B: Bacteria; F: Fungi and V: Virus.
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Extended Data Fig. 6 | The abundance changes of the best panel of 16 multi-kingdom features changes in CTR (n = 494), early- stage CRC (n = 318) 
and advanced CRC (n = 173). The p values were calculated via MMUPHin (two-sided test). Data were showed via the interquartile ranges (IQRs) with the 
median as a black horizontal line and the whiskers extending up to the most extreme points within 1.5-fold IQR, and outliers are represented as dots.
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Extended Data Fig. 7 | Validation of the multi-kingdom markers panel in independent cohorts and Specificity for CRC. The diagnostic accuracy based 
on the multi-kingdom markers for independent cohorts one from China, two from Italy and one from USA, is indicated by the (a) cross-validation, (b) 
cohort-to-cohort and (c) LOCO analysis, which was trained with cohorts in discovery datasets. Bar height for cross-validation corresponds to the average 
of 20 time repeats (the error bars indicate the s.d., n = 20), and the bar height for cohort-to-cohort analysis corresponds to the average of five models 
(the error bars indicate the mean ± SD, n = 5). The diagnostic accuracy based on the multi-kingdom markers for CRC in independent cohorts and non-CRC 
disease, including IBD, T2D and PD. The AUROC values of CHN_SH (d) and ITA (e) were significantly higher than that of non-CRC disease. The AUROC 
values of USA (f) were significantly higher than T2D and PD but with no difference with IBD. Bar height for analysis corresponds to the average of 20 
times for five-fold cross-validation models (the error bars indicate the mean ± SD, n = 20). All the p value was adjusted by ‘Bonferroni’ via two-sided dunn 
test after Kruskal-Wallis test.
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Extended Data Fig. 8 | Associations between differential species from four-kingdom and differential functional pathways. Heatmap shows Spearman 
correlations between bacterial or fungal species and different metabolic pathways as identified with HAlla.

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Articles Nature MicrobiologyArticles Nature Microbiology

Extended Data Fig. 9 | Associations between multi-kingdom markers and differential functional pathways. Heatmap shows Spearman correlations 
between bacterial or fungal species and different metabolic pathways as identified via HAlla with default parameters. The p value was estimated from 
two-sided Benjamini-Hochberg-Yekutieli and exact p-value was shown in cells.
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Extended Data Fig. 10 | AUROC matrix of models built with the (a) 47 important KO genes and (b) 20 KEGG pathways. Values on the diagonal refer to 
the average AUROC of 20-times repeated five-fold stratified cross-validations. Off-diagonal values refer to the AUROCs obtained by training the model 
on the population of the corresponding row and applying it to the population of the corresponding column. The LOCO row refers to the performances 
obtained by training the model using all but the cohort dataset of the corresponding column and applying it to the dataset of the corresponding column.
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