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ABSTRACT The massive attention to the surveillance video-based analysis makes the vehicle re-

identification one of the current hot areas of interest to study. Extracting discriminative visual representations

for vehicle re-identification is a challenging task due to the low-variance among the vehicles that share same

model, brand, type, and color. Recently, several methods have been proposed for vehicle re-identification,

that either use feature learning or metric learning approach. However, designing an efficient and cost-

effective model is significantly demanded. In this paper, we propose multi-label-based similarity learn-

ing (MLSL) for vehicle re-identification obtaining an efficient deep-learning-based model that derives robust

vehicle representations. Overall, our model features two main parts. First, a multi-label-based similarity

learner that employs Siamese network on three different attributes of the vehicles: vehicle ID, color, and

type. The second part is a regular CNN-based feature learner that employed to learn feature representations

with vehicle ID attribute. The model is trained jointly with both parts. In order to validate the effectiveness

of our model, a set of extensive experiments has been conducted on three of the largest well-known datasets

VeRi-776, VehicleID, and VERI-Wild datasets. Furthermore, the parts of the proposed model are validated

by exploring the influence of each part on the entire model performance. The results prove the superiority

of our model over multiple state-of-the-art methods on the three mentioned datasets.

INDEX TERMS Deep convolutional neural network, discriminative features, multi-label-based similarity

learning, metric learning, vehicle re-identification.

I. INTRODUCTION

The task of extracting robust visual representations is the

cornerstone of building all effective algorithms for computer

vision applications. This task differs from one application

to another in its complexity, where some applications con-

sider it as a challenging task due to the minimal vari-

ations that can be extracted to distinguish instance from

another, which can be found apparently in fine-grained clas-

sification, re-identification and face recognition. Recently,

The associate editor coordinating the review of this manuscript and
approving it for publication was Hao Ji.

vehicle image analysis has widely attracted the attention of

researchers due to the revolution in artificial intelligence tech-

niques particularly convolutional neural networks (CNNs).

This revolution leads to a massive improvement in intel-

ligence public security and public transportation systems.

Based on the purpose of vehicle image analysis, many algo-

rithms and deep-learning-based models have been proposed

either for vehicle classification [1]–[4], vehicle detection and

tracking [5]–[7], vehicle license plate verification [8] or for

vehicle retrieval and re-identification [3], [8]–[17]. Neverthe-

less, many challenges are being met while dealing with these

problems such as partial/heavy occlusion in vehicle detection,
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FIGURE 1. Vehicle re-identification in single-label-based similarity and multi-label-based similarity learning. The input raw identities in (a), in (b) the
single-label-based similarity in terms of distance learning. The proposed Multi-Label-Based Similarity Learning (MLSL) is illustrated in (c) where the
additional vehicle attributes, i.e., color and type, are considered for similarity calculation. As an example, the proposed framework pushes the vehicle
images with different IDs, color and type apart more than those vehicle images which they differ in ID while they are sharing same color/type.

and vehicle viewpoint variation in vehicle re-identification.

These challenges indicate that there is still broad room for

the improvement on vehicle image analysis methods. What

makes re-identification problem more challenging in deep

learning is that the algorithms are required to achieve accurate

re-identification performance for unseen identities in training

phase. Unlike classification and detection models which are

trained and tested on a defined number of categories, in the

re-identification problem the models are trained on a defined

number of categories but these models are still required to

re-identify undefined number of identities that are unseen on

training phase.

Several vehicle datasets have been built such as [1], [18]

for vehicle classification, [19] for event-based classification.

[20], [21] for vehicle detection. Many well annotated datasets

[1], [3], [22]–[26] have been built in order to facilitate

the training of the deep-learning-based models for vehicle

re-identification.

Several methods have been proposed for vehicle

re-identification. These methods can be categorized based

on the learning type into semi-supervised/supervised learning

methods [3], [8], [9], [11], [12], [14], [27] and unsupervised

learning methods [15], [16]. The supervised models are

trained either with feature learning [14], [28] or metric learn-

ing [3], [9], [11], [27]. Some supervised feature-learning-

based models are trained with only the vehicle ID label such

as in [17], [27], whereas some models [3], [8], [11], [14] tend

to use different vehicle attributes including color and vehicle

type or vehicle view-point.

Most of the state-of-the-art methods use metric (Simi-

larity) learning scheme either as the cornerstone of their

models or as the most important part. This learning scheme

pushes the neural network to generate more discrimi-

nating features. However, the performance of the most

recent models is still unsatisfactory either in terms of

speed or in the re-identification accuracy. That motivated

us to design a new model which uses a new metric

learning strategy, we call it Multi-Label-Based Similarity

Learning (MLSL), to boost the vehicle re-identification per-

formance. Furthermore, we employ a low-cost base CNN

feature extractor in terms of number of parameters and com-

putational complexity, which in turn facilitates using the

model for the real-time processing in real-world applica-

tions. Our contribution of this work can be summarized

as follows:
1) Introduce a multi-label-based similarity learning for

vehicle re-identification that jointly learns three differ-

ent similarities of the vehicle pairs with the attributes:

vehicle ID, color, and type.

2) Design an efficient model that jointly learns features

and similarities, leading to outperforming multiple

recent state-of-the-art models.

3) Extensive experiments have been conducted to validate

the proposed model’s parts, as well as evaluate the

proposed model against most recent methods.

Unlike the literature methods, where the assigned label of

similarity for each pair of vehicle images should be either 0 or

1 based on only the vehicle ID, our proposedmodel is inspired

by human visual attention mechanism, where it is designed

to minimize the distance of the vehicles with same identity

to 0, whereas the distance between dissimilar vehicles is max-

imized and contributed by each unshared attribute, i.e., ID,

color, and type. The overall idea of the multi-label-based sim-

ilarity learning scheme is illustrated in Fig. 1. We transferred

this idea into an efficient model depicted in detail in Fig. 2.

To validate our learning strategy, our model is evaluated on

three well-known datasets VeRi-776 [22], VehicleID [3] and

VERI-Wild [24]. The results prove the effectiveness of our

model on these datasets.

The rest of this paper is structured as follows: In Section II

we discuss the related work. In Section III we describe our

model in detail. The utilized datasets and the proposed model

training are discussed in Section IV. In the experimental

results Section V we analyze the impact of each part of the

proposed model and evaluate the model performance against

state-of-the-art models.
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FIGURE 2. The proposed vehicle re-identification model. We employ the categorization, i.e., Softmax classifiers in green color, with the proposed
multi-label-based similarity learning to derive high discriminating features (feature vectors in blue color).

II. RELATED WORK

Since a notable advancement is accomplished in intelligent

public security and public transportation systems, the vehi-

cle re-identification becomes a highly demanded task. Sev-

eral vehicle re-identification methods have been developed

with deep learning techniques. Generally, these methods can

be grouped based on the learning approach into two main

groups: feature-based learning [14], [17], [28] and similarity-

based learning [3], [9], [11], [27].

Liu et al. [8] fused the hand-crafted low-level features

with the high-level semantic features to represent each vehi-

cle. A Siamese network is employed for plate verification.

They also employed the temporal data that generated from

different surveillance cameras [22], with assumption that the

vehicle images, with same ID, have a small temporal distance,

whereas the images of vehicles with different IDs have large

distance.

In another way, Shen et al. [9] took advantage of the

data that describe the source surveillance cameras to gen-

erate a set of visual-spatio-temporal path information, seek-

ing an improvement in vehicle re-identification. Then they

employed Long Short-Term Memory units (LSTM) to pro-

cess the candidate path along with Siamese network to esti-

mate the vehicle images similarity score.

Zhu et al. [27] train, Siamese network with classification

and similarity learning jointly on vehicle ID labels.Moreover,

they utilize a hybrid similarity function to calculate the simi-

larities which combine absolute difference and multiplication

in elementwise mode. They claim that this hybrid similarity

function boosts the re-identification performance.

Another work in [3] employed metric learning but with

the triplet loss function. Each input contains two vehicle

image sets, one set contains vehicle images of same ID and

the second set contains several vehicle images with different

IDs. The triplet loss function pulls the vehicle images of same

vehicle ID together and pushes the vehicle of different IDs

apart.

Zhou and Shao [11] employed attention mechanism

in order to pay attention to the shared regions of all

defined vehicle viewpoints, (i.e., front, rear, side, front-side,

rear-side). Moreover, they utilized a generative adversarial

network (GAN) to transform each single-view feature rep-

resentation into multi-view representation.

Zhu et al. [28] designed a quadruple CNN-based model

that extracts visual features of the vehicle images using dif-

ferent CNNs which share the same structure. Each base CNN

learns separately, followed by one of the four directional

average pooling (i.e., horizontal, vertical, diagonal, or anti-

diagonal), and guided by different Softmax classifiers.

LSTM units were utilized in [29] for the purpose of learn-

ing the multi-view vehicle representation. A CNN is used as

a feature extractor followed by LSTM to derive the multi-

view representations. For the same purpose, LSTM layer is

employed in [17]. The authors proposed a variational feature

learning (VFL) by employing KL divergence on the extracted

CNN features to derive the Gaussian distribution by two

fully connected layers. They claimed that re-identification

performance on transformed features to Gaussian distribution

outperforms the re-identification performance on the raw

CNN features.

Although, multi-label learning is commonly employed in

different classification problems [30], [31]. Rossi et al. [32]

used a similarity-based learning for multi-label classification.

However, our approach in this study resorts to employing

multi-labels for similarity distance learning.

Similar to our purpose in some aspects, Wang et al. pro-

posed in [33] a multi-similarity loss for metric learning,

which uses two similarities: self and relative similarities. This

loss is calculated by running sampling and weighting in an

iterative way.

Despite all improvements in object re-identification, vehi-

cle re-identification still does not receive an equivalent atten-

tion that has been paid to person re-identification. Thus,

there is still room for improvement, particularly in the effi-

ciency of the feature extraction for vehicle re-identification

purpose.

III. THE PROPOSED MODEL

The vehicle images of the same vehicle identity are pulled

together while the vehicle images with different IDs are

pushed apart. Several vehicle identities share the same color

or/and type/model, so the limit of pushing these identities
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apart considers these two attributes. Where if two vehi-

cle images belong to different IDs but they share color or

type/model or even both, then the similarity should be greater

than the similarity of vehicle images with different colors and

different types/models.

Our model is composed of two main parts that help to

derive efficient vehicle features. The output feature represen-

tation is learned with two types of supervision, multi-label-

based similarity learning and vehicle categorization learn-

ing. For vehicle categorization learning we employ Softmax

classifier to categorize the vehicles based on their IDs. This

helps the model to derive more efficient features for each

vehicle identity from different viewpoints. The multi-label-

based similarity learning is the second part of our supervised

model, which learns the distance between vehicles based

on their IDs, color, and type. The model jointly learns both

features and multi-label similarity. In this section we explain

the modules of our model in detail.

A. BASE NETWORK

The utilized baseline CNN differs from model to another in

the literature methods. For instance, ResNet feature extrac-

tor is employed in [23], VGG-CNN-M in [3], [24], and

[34], Inception-based feature extractor in [1], [13], and [22],

MobileNet v1 in [17] and [35], DenseNet121 in [23], whereas

in some models, new base networks have been designed such

as in [11] and [27].

In this work, we employ MobileNet v1 [36] as base-CNN

that pre-trained on ImageNet [37].We have chosen this neural

network due to two main reasons: First, MobileNet shows

competitive performance against large and complex neural

networks, because it is small in terms of the number of param-

eters and computational complexity. Utilization of Depthwise

Separable Convolution is the main reason behind that sharp

reduction of parameters and computational cost, which in

turn makes it applicable for real-time processing and feasible

in real-world applications. Second, the huge reduction in

parameters prevents MobileNet from overfitting and makes it

appropriate for different customized classification, detection,

and re-identification problems.

By eliminating the classification part from MobileNet,

the resulting CNN-based feature extractor consists of one

convolutional layer followed by 13 depthwise separable con-

volutional layers. With five stride steps of (2, 2) through dif-

ferent layers, it progressively downsizes the spatial dimension

of the input image Ii of (W ,H ,D), hereW ,H andD denoting

width, height, and depth respectively. The last output feature

map has a spatial dimension of (Ŵ , Ĥ , D̂). Finally, a global

average pooling is applied to end up with an output feature

vector EXi of size D̂ for the input image Ii. The output feature

vector of the base feature extractor is shown in blue color

in Fig. 2.

B. VEHICLE FEATURE LEARNING

For features learning, we employ Softmax classifier on top of

the base network, described in III-A, to learn vehicle identity

representation from different viewpoints. Vehicle ID labels

are used to supervise the categorization training. Figure 2

shows the Softmax classifiers in green color. For the predicted

output vector EO from the input image I with target label T

which represents the vehicle ID, we calculate the classifica-

tion loss Lcls as in (1).

Lcls( EO,T ) = −

C
∑

j=1

Tj(log EOj),

EOj =
e

EOj

∑C
i e

EOi
(1)

where EOj is the Softmax activation from the baseline neural

network. We use one-hot labels that make the loss function

simply formulated as (2).

Lcls( EO,T ) = −log

(

e
EOt

∑C
i e

EOi

)

(2)

where EOt is the hot unit in the target vehicle ID label T .

C. VEHICLE MULTI-LABEL-BASED

SIMILARITY LEARNING

1) SIAMESE NETWORKS

In 1993, the first Siamese network was used for signa-

ture verification [38]. Later on, this type of network learn-

ing is employed for image similarity matching in many

re-identification and verification applications, e.g., face

verification [39], [40], person re-identification [41], vehi-

cle re-identification [9], [27], and image recognition [42].

According to the similarity learning principle, the output

vehicle representations are similar for all images of the same

vehicle ID, regardless of their viewpoints.

Given a set of vehicle image pairs P = {P1, ...,Pz}. The
Siamese base network receives input image pair Pi = (Iai , Ibi )

resulting in a corresponding feature representation pair

( EXai ,
EXbi ). The similarity distance between the output feature

vectors is then calculated, which is explained in Sect. III-C.2.

2) ABSOLUTE SIMILARITY DISTANCE

There are different types of similarity distance measures,

e.g., Euclidean distance, Manhattan distance, Minkowski dis-

tance, and Cosine similarity. For ourmodel, we simply extract

the absolute difference between the input vector pair ( EXai ,
EXbi )

in elementwise mode. The process of mapping the obtained

distance vector ED into 0 or 1 is achieved by sigmoidal units

described in next Section III-C3. The distance calculating is

formulated as in (3).

ED( EXa, EXb)i = ‖EXai − EXbi ‖ (3)

3) SIGMOIDAL MAPPING UNITS

A sigmoidal unit σ is added on top of the similarity distance

layer that maps the similarity distance-vector ED into 0 or 1 as

a binary classification with logistic prediction. Figure 2 illus-

trates these layers, where we add three sigmoidal units each
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TABLE 1. Statistics of the three well-known large-scale datasets for vehicle re-identification.

unit is assigned to one of the three used labeled attributes:

vehicle ID, color, and type. This can be formulated as in (4).

dmi = σ ED( EXa, EXb)i (4)

where m ∈ M , M = {id, clr, typ}.

4) MULTI-LABEL SIMILARITY LOSS

We have adopted the Contrastive Loss introduced in [43] on

top of the similarity mapping layer. We apply this loss jointly

for three attributes, (i.e., vehicle ID, color, and type/model).

Let Y be a binary label assigned to the pair Pi = (Iai , Ibi ) and

the corresponding feature vector pair ( EXai ,
EXbi ). For each pair

of feature vector ( EXai ,
EXbi ), a vector of the absolute element-

wise difference EDi is computed by (3), which in turn mapped

by (4) into dmi . For each d
m
i a corresponding label Ymi . If the

feature vectors EXai and EXbi are similar in terms of the attribute

m, then the Ymi = 0. Contrarily, if they are dissimilar, then

Ymi = 1. The loss can be calculated for the i-th input pair

by (5).

Lver (di, (Y , EXa, EXb)i) =
∑

m∈M

λ
m

(

(1 − Ymi )

LS (d
m
i ) + (Ymi )LD(d

m
i ))

)

(5)

where (Y , EXa, EXb)i is the i-th labeled vehicle pair. Both partial
loss functions, LS of a similar vehicle pair and dissimilar

vehicles pair LD, are constructed to minimize the Lver to

obtain small values of dm for similar vehicle pairs and large

values of dm for dissimilar vehicle pairs. We can formulate

the final verification loss function as in (6).

Lver (di, (Y , EXa, EXb)i) =
∑

m∈M

λ
m

(

(1 − Ymi )
1

2
(dmi )

2

+ (Ymi )
1

2
max(0,margin− dmi )

2

)

(6)

where margin > 0 and λm is the contribution values of each

corresponding loss term of the vehicle attribute in M . In our

experiments, we set it by default to λm = 1 for each m.

Overall, the totaled loss L for each vehicle input pair Pi,

which combines the categorization loss Lclsa ,Lclsb and the

verification loss Lver

L(Pi) = α(Lclsa + Lclsb ) + Lver (7)

where α ≥ 0 is constant to weight the classification loss

contributions in the total loss.

Based on a set of extensive experiments, we found the best

practice for all the modules of our model. In the following

sections, we analyze our model features as well as compare

its performance against most recent state-of-the-art deep-

learning-based models.

IV. TRAINING AND SETTINGS

A. DATASETS

We have used VeRi-776 [22] dataset for evaluating our

model’s modules. Whereas the evaluation against the state-

of-the-art models is conducted on three well-known vehicle

datasets, VeRi-776 [22], VehcielID [3], and VERI-Wild [24].

Table 1 lists the main characteristics of these datasets.

1) VERI-776

VeRi-776 [22] is a large-scale image dataset for vehicle

re-identification. It was captured by 20 cameras in real-world

urban surveillance environments with unconstrained surveil-

lance scenarios. Each image set of each vehicle ID is captured

by 2-18 surveillance cameras in different viewpoints, illumi-

nations, occlusions and resolutions. Each vehicle is labeled

with three attributes, i.e., ID, type, color, and camera ID. The

VeRi-776 dataset consists of a training set containing 37, 778

images of 576 vehicles and testing set with 11, 579 images

of 200 vehicles. The proposed evaluation protocol employs

mean average precision (mAP) and Top-K CumulativeMatch

Characteristic (CMC) scores for Top-1, and Top-5 for evalu-

ating the performance of re-identification.

2) VEHICLEID

VehicleID [3] is another large-scale dataset for vehicle

re-identification that was captured in a small city in China.

Several real-world surveillance cameras are used to collect

the vehicle images with two viewpoints, i.e., front and rear.

VehicleID dataset consists of 221, 763 images of 26, 267

vehicles. VehicleID dataset consists of the training set with

113, 346 images of 13, 164 different vehicles and testing set

with 108, 221 images. Each vehicle image is labeled with

vehicle-id, color, and vehicle model. For the performance

evaluation of the re-identification, the testing set is orga-

nized in six subsets, i.e., Test-800, Test-1600, Test-2400,

Test-3200, Test-6000, and Test-13164. The first three sets

are the most common to be used in several recent related

studies. The Top-K CMC scores for Top-1 and Top-5 are

used for evaluating the performance of re-identification on

this dataset.
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3) VERI-WILD

VERI-Wild [24] is the largest image dataset for vehicle

re-identification and tracking. It was captured by a real

surveillance camera network of 174 cameras that makes this

dataset more diverse as well as more challenging. VERI-

Wild dataset covers different viewpoints, resolutions, illumi-

nations, weather conditions and occlusions. In contrast to the

Veri-776 and VehicleID, VERI-Wild dataset contains images

captured at night. It contains in total 416, 314 images of

40, 671 identities divided into a training set with 277, 797

images of 30, 671 and testing set of 10, 000 vehicle identities

with 128, 517 images. The testing set is further organized in

three different-sized subsets: a small testing subset of 3, 000

identities with 41, 816 images, medium-size testing subset

with 5, 000 identities and 69, 389 images, the large testing

subset with 138, 517 images of 10, 000 identities. Similarly

to VeRi-776 dataset, the mean Average Precision (mAP) and

Top-K CMC scores for Top-1, and Top-5 for evaluating the

performance of re-identification.

B. TRAINING

In this section we explain in detail the proposed model train-

ing on the mentioned vehicle datasets. The proposed model is

trained in two stages: Firstly, we train the base network with

vehicle IDs as a supervised classification problem. Then the

obtained trained model from this stage is used to fine-tune

the proposed model (in Fig. 2) to jointly learn the feature

representations and the similarity distances. Training the base

network and the entire proposed model share some training

hyperparameters. For both stages, the Adam optimizer [44] is

used with the initial learning rate of 0.001 and a momentum

of 0.9. In the first stage, the learning rate is multiplied by 0.1

every 100 epochs, whereas in the second stage the learning

rate is multiplied by 0.1 every 50 epochs. In order tominimize

the effects of model overfitting, we employ input image aug-

mentation and dropout regularization. The proposed model

receives images in dimension of 224 × 224 pixels, that ran-

domly augmented with cropping, brightening, and rotation.

1) BASE NETWORK TRAINING

Three instances of the base network, described in Sect.III-A,

are trained. Each base network instance is trained on one of

the three used datasets VeRi-776, VehicleID, or VERI-Wild.

We add a Softmax classifier on top of the base network as

a convolutional layer with a number of 1 × 1 kernels corre-

sponds to the number of vehicles, 576 in VeRi-776, 13, 164

in VehicleID, and 30, 671 in VERI-Wild. We add a dropout

layer prior to the classification layer with the rate of 0.001.

2) JOINT TRAINING OF FEATURE AND MULTI-SIMILARITY

In the second training stage, we fine-tuned the proposed

model 2 with the base network parameters trained on the

first stage. We apply dropout of rate 0.5 prior to each sig-

moidal unit. The model in this stage is trained jointly by

totaled 5 weighted loss functions: two vehicle classification

loss functions of both Siamese branches a and b, and

three contrastive loss functions each for one of the vehi-

cle attributes (ID, color, type/model), all are weighted with

(0.1, 0.1, 1, 1, 1) respectively. The input image batches are

generated in online mode with an input size of 224 × 224

pixels (described in detail in Sect. IV-C). Similar to the

training of the base network, same hyperparameters are used

in this stage.

C. ONLINE BATCH GENERATOR

In our work, we built an online batch sampler, that prepares

the image pairs, aiming to ensure that each single vehicle

image has the same probability to pair any image in the

training set. Batch generating procedure picks up, randomly,

three images. Two images with the same vehicle identity,

whereas the third image has another vehicle identity, resulting

in two pairs. For each vehicle image pair Pi = (Iai , Ibi ), two

types of labels are generated. The first type is prepared for

categorization training which represents the vehicle IDs for

T ai and T bi . On the other hand, three pair-based binary labels

Y idi ,Y clri ,Y
typ
i are generated representing the similarity labels

of the vehicle ID, color, and the vehicle type respectively.

Batch sampler iterates these steps until the number of gener-

ated pairs match the defined batch size, which in turn needs

to be an event number.

Most Siamesemodels in literature [9], [27], [39]–[42] label

the similarity of an image pair of the same vehicle with 1,

whereas 0 is the pair label with different vehicle IDs. How-

ever, in this paper, we consider the labels Y idi ,Y clri , and Y
typ
i

as the difference distance labels. That leads to assign the label

0 to the pair with images of a similar attribute, and 1 to the

pair of images with dissimilar attribute.

V. EXPERIMENTAL RESULTS

In this section, we study the influence of each part of our

model and its contribution on the entire performance on

VeRi-776 [22] dataset. We begin by studying the influence

of using the proposed multi-label similarity learning against

the regular single-label learning. Then, we analyze the per-

formance of the model that is separately trained in feature-

based, similarity-based and joint learning approaches. Next,

we study the impact of the absolute distance comparing to

other distance metrics, the impact of the sigmoidal units,

and the impact of the dropout regularization. Finally, we

evaluate our model performance against several state-of-the-

art vehicle re-identification models on VeRi [22], VehicleID

[3], and VERI-Wild [24] datasets.

A. MODULES ANALYSIS OF THE PROPOSED MODEL

When we train the proposed model with randomly online

batch generating, we use the number of iterations to stop the

training instead of the number of epochs. For each instance

of the proposed model in the following subsections, we use

a mini-batch of 24 for a total number of 48, 000 iterations.

The learning rate is initialized with 0.001, decreasing it after

162610 VOLUME 7, 2019
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FIGURE 3. The performance comparison of different instances of learning, Plot (a) shows the performance comparison of the Joint
Single-Label-Based Similarity Learning and Classification Learning (SLSL) against the Joint Multi-Label-Based Similarity Learning and Classification
Learning (MLSL). Plot (b) shows the performance comparison of the Feature Learning (FL), the Similarity Learning (SL), and the joint similarity and
classification learning (SLSL). In (c) the performance of the proposed model with sigmoidal unit (SU) and without mapping layer (No-ML) is shown on
VeRi-776 dataset.

FIGURE 4. Feature distributions of feature-based learning (a),
similarity-based learning (b), and joint learning (c) of the MNIST’s testing
set for digit classification.

TABLE 2. Performance of the single-label against multi-label similarity
learning, on VeRi-776 dataset.

24, 000 iterations by multiplying it with 0.1, then decreasing

it for two more times each after 12, 000 iterations.

1) SINGLE-LABEL AGAINST MULTI-LABEL

SIMILARITY LEARNING

In this part, the performance of the regular single-label learn-

ing is compared with the proposed multi-label similarity

learning. The utilized base network is MobileNet V1 that is

pre-trained on the VeRi-776 dataset (see Section IV-B1). Our

default proposed model, illustrated in Fig. 2, is trained with

the vehicle ID attribute for categorization learning, jointly

with the similarity learning that uses vehicle color and vehicle

type along with the vehicle ID. Moreover, we trained the

same model but with only the vehicle ID labels for both

vehicle classification and similarity learning as single-label

learning. We have summarized the mAP, Top-1, and Top-

5 in Table 2, which proves the superior performance of the

multi-metric learning (MLSL) against Single-Label-Based

Similarity Learning (SLSL). Fig. (3,a) shows the CMCplot of

both models.

2) FEATURE LEARNING, SIMILARITY LEARNING,

AND JOINT LEARNING

In this part, we compare the performance of three differ-

ent learning approaches: feature-based learning, similarity-

based learning, and joint learning. For the approaches, we

use MobileNet V1 [36] pre-trained on VeRi-776 dataset

as a base network. In feature-based learning, we follow

the procedure of base network training as a categoriza-

tion classifier explained in Sect. III-B. To test the per-

formance of the similarity-based learning, we train one

instance of the proposed model after eliminating the cat-

egorization component, (i.e., Softmax classifiers), as well

as eliminating the vehicle color and vehicle type simi-

larity learning components in order to use a single-label-

based similarity learning which only uses the binary labels

of the vehicle ID attribute. Finally, with the vehicle ID

labels, we jointly trained an instance of our model which

combines the categorization and the similarity learning

components.

The result on VeRi-776, summarized in Table 3, demon-

strates the effectiveness of the joint-based learning, which

outperforms both feature-based learning and similarity-

based leaning by more than 4% and 21% in terms of

Top-1 respectively. Fig. (3,b) shows the CMC plot of the

feature-based, single-metric-based, and joint-based learning

approaches.

Since the number of vehicle IDs in the testing set of

Veri-776 dataset is 200, it is hard to visualize their fea-

ture distribution. However, we trained the three mentioned

model instances on MNIST [45] which has only 10 classes.

TABLE 3. Performance of feature learning, metric learning, and Joint
learning on VeRi-776 dataset.
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FIGURE 5. Samples of the retrieval performance of the proposed Multi-Label-Based Similarity Learning (MLSL) on testing set of VeRi-776 dataset. The
true positive retrieved vehicle images are bounded with boxes in green color while the mis-retrieved images are bounded in red color.

FIGURE 6. Impact of distance type between two vehicles’ feature vectors on VeRi-776 dataset. Plot (a) shows the performance of the proposed model
with scalar-based distance. Plot (b) shows the performance of the same model but when it uses the proposed distance calculation (vector-based
distance). Plot (c) shows the default utilized distance in our model (i.e., absolute distance), with both distance calculation schemes.

TABLE 4. Comparison of the supervised feature learning against
supervised similarity learning and jointly learning for digit retrieval on
MNIST [45] dataset.

We replaced the base network with a tiny network of 4

convolutional layers with 128 filters of size 3 × 3 except

the last convolutional layer that is prior to classification layer

which is created with 2 filters. The Top-1 and Top-2 retrieval

accuracies of the three models on MNIST are summarized

in Table 4. Note that the feature vector used for matching the

query and gallery images is the convolutional layer with a

size of 2. In order to visualize the feature distribution of the

10 digits as shown in Fig. 4, we use the mentioned layer with

size 2, which allows us to visualize digit features (i.e., one

filter represents x dimension and the second for y dimension

on a graph).

3) SIMILARITY MAPPING

The output vector of the similarity distance, obtained from

the distance metric function, is mapped into one of the binary

similarity labels (0 or 1). In this part, we evaluate the impact

of using the similarity mapping layer. On one hand, we have

trained the proposed model without the similarity mapping

layer. In order to do so, it is required to extract the similarity

distance as a scalar (i.e., as in regular distance calculation)

rather than extracting a similarity distance as a vector. On the

other hand, we evaluate the similarity distance mapping layer

that contains a single Sigmoidal Unit (SU). As it is shown

in Fig. (3,c), the model instance that employs the sigmoidal

unit for similarity mapping outperforms the model instance

that does not employ a mapping layer. The results, in terms

of Top-1, Top-5 and mAP on VeRi-776 dataset, are listed

in Table 5.

TABLE 5. Comparison of the proposed model performance with and
without similarity mapping unit, on VeRi-776 dataset.

4) IMPACT OF DISTANCE CALCULATION SCHEME

Similarity distance calculation is achieved in two different

schemes. As is illustrated in Fig. 7, in (a) the distance calcu-

lation results in a vector of the elementwise distance between

the two input vectors EXa and EXb, whereas in (b) the output is
a single value. Using these two schemes, we have evaluated

the impact of different similarity distances including the abso-

lute distance, the Euclidean distance, and the Element-Wise

Multiplication. By skimming the Table 6 and Fig. 6, we can

realize that the vector-based similarity calculation Fig. (6,b)

performs better than the scalar-based similarity calculation

Fig. (6,a). In Fig. (6,c), we plot the CMC of both vector-based
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TABLE 6. Comparison of the proposed model with different distance types between two vehicle feature vectors on VeRi-776 dataset.

FIGURE 7. Similarity distance calculation, in (a) the output distance is a
vector of the elementwise distance calculation that we use in our model,
in (b) the regular scalar-based distance calculation.

TABLE 7. Performance comparison of the proposed model with different
dropout rates on VeRi-776 dataset.

and scalar-based absolute distance calculation. It is notably

observed that the similarity distance extracted as a vector

helps the mapping layer to guide the model for generating

better discriminative features. As reported in Table 6, among

the three tested similarity calculation functions, the absolute

similarity distance function outperforms the Euclidean and

Elementwise Multiplication functions in terms of Top-1 and

Top-5.

5) IMPACT OF DROPOUT

Although MobileNet V1 [36] is less prone to the problem

of overfitting comparing to those neural networks which use

regular convolution, the model still overfits the datasets. This

is because most objects used to re-identify are semantically

similar. In this part, we evaluate the impact of using different

rates for the dropout layer prior to the similarity mapping

layer. Fig. 8, shows the mAP, Top-1, and Top-5 against the

dropout rate. Table 7 lists the reported results of Top-1, Top-5,

andmAP onVeRi-776 dataset. Apparently, a positive effect is

obtained by applying the dropout for vehicle re-identification,

where the trained model with a dropout of 0.5 gains the best

performance. This is because the ability of the network to

learn a discriminating representation for %50 of the output

feature vector is much easier than to learn %100 of the

output vector in same batch iterations. However, the process

of training with large dropout rates requires more time.

FIGURE 8. Performance of the proposed model with different dropout
rates on VeRi-776 dataset.

B. PERFORMANCE OF THE PROPOSED MODEL

AGAINST RECENT RELATED WORKS

Many methods have been proposed for vehicle

re-identification. We have compared our model with most

recent methods. The reported results show our model superi-

ority over multiple state-of-the-art models on VeRi-776 and

VERI-Wild datasets while obtaining a competitive perfor-

mance on VehicleID dataset.

1) PERFORMANCE EVALUATION ON VERI-776 DATASET

To validate the effectiveness of our model, we have compared

its performance with many recent related works, includ-

ing: Siamese-Visual [9], GoogLeNet [1], FACT [22], Chain

MRF model [9], SCCN-Ft [29], CLBL-8-Ft [29], XVGAN

[46], OIF [13], Siamese-CNN [9], VAMI [11], NuFACT [8],

PROVID [8], VR-PROUD [16], Path-LSTM [9], JFSDL [27],

D-DLF [28], and Mob.VFL-LSTM [17]. Table 8 summarizes

their performance in terms of mAP, Top-1, and Top-5. Obvi-

ously, our model provides the best performance among all

methods.

In many state-of-the-art methods, a combination of multi-

ple networks is used to boost the performance. Some exam-

ples of these combinations are listed in the lower right

part of the Table 8 including: SCCN-Ft + CLBL-8-Ft [29],

FACT + Plate-SNN+ STR [22], OIF+ ST [13], NuFACT+
Plate-REC [8], NuFACT + Plate-SNN [8], Siamese-CNN +
Path-LSTM [9]. The authors in Mob.VFL-LSTM [17] com-

bined Gaussian modeling with LSTM, a remarkable boost

can be observed on the performance. However, our model

outperforms their performance. Retrieved samples by the
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TABLE 8. The performance comparison of different methods on VeRi-776 dataset.

TABLE 9. The performance comparison of different methods on VehicleID dataset.

TABLE 10. The performance comparison of different methods on VERI-Wild dataset.

proposed model on the testing set of the VeRi-776 dataset are

shown in Fig. 5.

2) PERFORMANCE EVALUATION ON VEHICLEID DATASET

The second evaluation of our model against several state-

of-the-art models is conducted on VehicleID dataset. Fol-

lowing the evaluation protocol proposed in [3], the three

testing subsets of size 800, 1600 and 2400 are used to

evaluate the Top-1 and Top-5. Table 9 lists the comparison

between our model and several latest leading models includ-

ing: VGG + Triplet Loss [3], VGG + CLL [3], GoogLeNet

[1], FACT [22],MixedDiff+CLL [3], XVGAN [46], JFSDL

[27], C2F-Rank [47], VAMI [11], and Mob.VFL [17]. The

complex model, VAMI of [11], which employs the atten-

tion mechanism and generative adversarial network (GAN),

obtains competitive performance in terms of the Top-1 and

Top-5 on the Testing-800, while C2F-Rank [47] gains better

performance on Testing-1600 and Testing-2400. Moreover,

Mob.VFL [17] gains the best performance comparing to other

models except our model which exceeds its performance in

terms of Top-1 and Top-5 on Testing-800 subset and Top-5 of

other testing subsets. For example, on Testing-800, the

Top-1 accuracy is increased from 73.37 ofMob.VFL to 74.21.

3) PERFORMANCE EVALUATION ON

VERI-WILD DATASET

The evaluation of ourmodel on the third dataset VERI-Wild is

conducted against several models including GoogLeNet [1],

Triplet [48], Softmax [8], CCL [3], HDC [49], GSTE [34],

and FDA-Net [24]. We follow the evaluation protocol pro-

posed in [24]. Three testing identity subsets of 3000, 5000,

and 10, 000 correspond to 41, 816, 69, 389, and 138, 517

image subsets respectively. Table 10 lists the performance

comparison between our model and several models in the

related works in terms of Top-1, Top-5, and mAP. In this

dataset, we obtain the best performance with impressive

results. A superior performance is given by the proposed

model which improves the Top-1 accuracy in the small testing
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subset by about 22%which is increased from 64.03, obtained

by FDA-Net [24], to 86.03 and mAP from 35.11 to 46.32.

VI. CONCLUSION

In this work, we introduced an efficient deep-learning-based

model that jointly learns vehicle feature and multi-label-

based similarity for vehicle re-identification. Themulti-label-

based similarity learning (MLSL) employs three-vehicle

attributes: ID, color, and type/model. The effectiveness of

our model is validated by extensive experiments. Further-

more, the experiments on three well-known vehicle datasets

show the superior performance of our model against sev-

eral recent state-of-the-art methods. Our purpose of design-

ing this model is to derive high discriminating features by

learning the intra/inter vehicles-id features. This discrimina-

tion is obtained by multi-label-based training. The proposed

model is cost-effective to be applied to real-time vehicle re-

identification applications.

Finally, it is worthy to employ the proposed model for

other re-identification problems particularly for the person

re-identification, which we plan to explore in the future.
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