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Abstract Multi-label classification faces with several critical challenges, such as modeling label cor-
relations, mitigating label imbalance, removing irrelevant and redundant features, and reducing the
complexity for large-scale problems. To address these problems, in this paper, we propose a novel
method, polytree-augmented classifier chains with label-dependent features, which models label cor-
relations through flexible polytree structures based on low-dimensional label-dependent feature spaces
learned by a two-stage feature selection approach. First a feature weighting approach is applied to ef-
ficiently remove irrelevant features for each label and mitigate the effect of label imbalance. Second,
a polytree structure is built in the label space using estimated conditional mutual information. Third,
an appropriate label-dependent feature subset is found by taking account of label correlations in the
polytree. Extensive empirical studies on six synthetic datasets and twelve real-world datasets demon-
strate the superior performance of the proposed method. In addition, by incorporating the proposed
two-stage feature selection approach, the multi-label classifiers with label-dependent features achieve
9.4% performance improvement in Exact-Match on average compared with the original classifiers.

Keywords Multi-label classification · Label correlation · polytree-augmented classifier chain ·
Label-dependent feature · Label imbalance

1 Introduction

In recent years we have witnessed the increasing demand of multi-label classification (MLC) in a wide
range of applications, such as text categorization, semantic image annotation, bioinformatics analysis
and audio emotion detection, for which numerous machine learning techniques have been specifically
designed and successfully utilized. Unlike traditional multi-class single-label classification, where each
instance is associated with only a single label, the task of MLC is to assign a label subset to an unseen
instance. The existing MLC methods fall into two broad categories: problem transformation and algo-
rithm adaptation [35]. Problem transformation strategy typically transforms an MLC problem into a
set of single-label classification problems, and learns a family of classifiers for modeling the single-label
memberships. Algorithm adaptation strategy induces conventional machine learning algorithms in the
multi-label settings. A number of MLC methods adopting one of the above two strategies have been
developed and succeeded in dealing with various multi-label problems.

The previous efforts on MLC focus mainly on two aspects: label correlation modeling and dimen-
sionality reduction. Many researches [28, 11] have shown that capturing label correlations is crucial for a
MLC method to achieve competitive classification performance. On the other hand, a variety of dimen-
sion reduction approaches [22, 48, 44] have been proposed for the multi-label problems in order to reduce
the resource consumption and improve performance. However, most of these methods build their models
on the basis of an identical feature space for all labels. Such a universal hypothesis possibly introduces
irrelevant and redundant features, resulting in two problems: decreasing the model’s generalization abil-
ity and increasing its computational complexity for both learning and prediction. Rather, it is natural to
think that each label holds its own specific set of features to distinguish from other labels. For example,
in image annotation, an object typically relates to only a few regions in the high-dimensional feature
space, and in text categorization, one specific topic is probably relevant to a fraction of words from the
massive amounts of vocabulary.

For blinded manuscript
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Hence, in this study we presume that modeling label correlations and mining label-dependent fea-
tures would benefit the generalization ability and prediction accuracy of a MLC method. As in our
previous work [32], the basic idea of Polytree-Augmented Classifier Chains (PACC) has already been
proposed, which is more flexible on modeling label correlations than conventional MLC methods. In
this paper, we improve the PACC by selecting Label-Dependent Features to produce the PACC-LDF
method. We employ a hybrid two-stage feature selection algorithm for the polytree structure. Specifi-
cally, a information gain-based feature weighting algorithm is employed in the first stage to efficiently
remove irrelevant features in each label, and alleviate the label imbalance problem; After construction
of a polytree, in the second stage, a correlation-based feature subset selection algorithm is carried out
to select label-dependent feature subset by incorporating label correlations modeled by the polytree. In
this way, label-dependent features chosen for the polytree structure will be used to learn the classifier
chain and to make prediction on a test instance. The proposed two-stage feature selection algorithm is
also applicable to the other MLC methods, such as Classifier Chains (CC) based methods [28, 7, 43]. Ex-
tensive experiments conducted on both synthetic and real-world datasets demonstrate the performance
superiority of the proposed PACC-LDF method compared with several state-of-the-art MLC methods in
terms of classification performance and time complexity.

The contributions of this work are cast into three-folds.

– The polytree structure is introduced to model label dependency, according to which, we propose
PACC for MLC and present more technical details in this paper than our previous work in [32].

– A two-stage feature selection framework is specifically developed for PACC to select Label-Dependent
Features (LDF), which enables to mitigate the label imbalance problem and save label correlations
modeled in the built polytree structure.

– Empirical studies show that on average MLC methods can be improved 9.4% in Exact-Match by
incorporating LDF. In addition, extensive experimental results demonstrate the efficiency of the
proposed PACC-LDF compared with popular MLC methods.

The remainder of this paper is organized as follows. Section 2 gives the mathematical definition
of MLC. Section 3 discusses the related works. Section 4 states the challenges confronted with MLC
methods. Section 5 illustrates an overview of the system framework, and presents technical details in
two parts: Polytree-Augmented Classifier Chains (PACC) and Label-Dependent Feature (LDF) selection.
Section 6 presents the statistical properties of benchmark multi-label datasets, and defines four metrics
for evaluating multi-label classifiers. The experimental results are reported and discussed in Section 7.
Finally, Section 8 concludes this paper and discusses future work.

2 Multi-label classification

In the scenario of MLC, given a finite set of labels L = {λ1, ..., λL}, an instance is typically represented
by a pair (x,y), which contains a feature vector x = (x1, ..., xM ) as a realization of the random vector
X = (X1, ..., XM ) drawn from the input feature space X = R

M , and the corresponding label vector
y = (y1, ..., yL) drawn from the output label space Y = {0, 1}L. In other words, y = (y1, ..., yL) can be
viewed as a realization of corresponding random vector Y = (Y1, ..., YL), Y ∈ Y, where yj = 1 if label
λj is associated with the corresponding instance x, and yj = 0 otherwise.

Suppose that we are given a dataset of N instances D = {(x(i),y(i))}Ni=1, where y(i) is the label
assignment of the ith instance. The task of MLC is to find an optimal classifier h : X → Y which assigns
an appropriate label vector y to each instance x such that h minimizes a loss function. Given a loss
function loss(Y, h(X)), the optimal h∗ is

h∗ = argmin
h

EP (x,y)loss(Y, h(X)), (1)

where P (x,y) is the joint probability distribution over the feature vector x and label vector y. The
optimal classifier (1) can be rewritten in a pointwise way,

ŷ = h∗(x) = argmin
h

∑

y∈Y

P (y|x)loss(y, h(x)). (2)

For the subset 0-1 loss lossS(y, ŷ) = 1y 6=ŷ, where 1(·) is the indicator function, (2) becomes

ŷ = h∗(x) = argmax
y∈Y

P (y|x). (3)

Similarly, for the hamming loss lossH(y, ŷ) = 1
L

∑L

j=1 1yj 6=ŷj
, we have

ŷj = h∗
j (x) = argmax

yj∈{0,1}

P (yj |x), j = 1, ..., L. (4)
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Fig. 1: Probabilistic graphical models of CC-based methods for a MLC problem with four label variables.

As proved in [8], (4) coincides with (3) in case of conditional independence of labels. In Section 3, we
will show that binary relevance method [3] and several classifier chain based methods [7, 28, 43, 29] are
actually indirect approximations of (3).

3 Related works

In recent years, many efforts in MLC have been paid on two aspects: label correlation modeling and
dimensionality reduction. It has been shown in a number of researches [28, 11] that modeling label corre-
lations is very crucial to perform accurate classification. On the other hand, various dimension reduction
algorithms, including feature selection [22, 13] and feature extraction [48, 44], have been employed in
MLC, in order to simplify the learning phase and overcome the curse of dimensionality.

In terms of label correlation modeling, Classifier chains (CC) based methods have been proposed
at a tractable time complexity, originating from the simple Binary Relevance (BR) method. In the BR
context, a classifier h is comprised of L binary classifiers h1, ..., hL, where each member classifier hj

predicts ŷj ∈ {0, 1}, forming a vector ŷ ∈ {0, 1}L. In the prediction phase, BR collects the result of
the member classifiers, i.e., ŷj ← hj(x), which is identical with (4). In this sense, BR can be seen as a
hamming loss risk minimizer [8]. In CC [28], the label correlation is expressed in an ordered chain. In
the learning phase, according to a predefined chain order, like Y1 → Y2 → · · · → YL, it builds L binary
classifiers h1, h2, ..., hL such that each classifier predicts the correct value of yj by referring to the correct
values of pa(yj) = {y1, y2, ..., yj−1} in addition to x. In the prediction phase, it predicts in turn the value
of yj using the previously estimated values ŷ1, ..., ŷj−1 with x according to:

ŷj = argmax
yj∈{0,1}

P (yj |p̂a(yj),x), j = 1, ..., L. (5)

Finally we have ŷ = (ŷ1, ŷ2, ..., ŷL). Note that CC predicts the presence/absence of a label depending
on previously predicted label set and its prediction is made in only one path. Probabilistic Classifier
Chains (PCC) [7] provides better estimates than CC at the expense of a higher time complexity in the
prediction phase. Although PCC shares the learning model (8) with CC, it chooses the best predictor
by examining all the 2L paths in an exhaustive manner according to the following:

ŷ = argmax
y∈Y

L
∏

j=1

P (yj |p̂a(yj),x). (6)

The exponential cost of PCC in prediction limits its application. To make the prediction tractable
for PCC, several methods [21, 9, 30] have been proposed to to find the approximate MAP maximum a
posterior (MAP) assignment of labels to a test instance. Bayesian Classifier Chains (BCC) [43] introduces
a directed tree as the probabilistic structure over labels. The directed tree is established by randomly
choosing a label as its root and by assigning directions to the remaining edges. It shares the same model
(8) and (5) with CC, but |pa(Yj)| ≤ 1 limits its expression ability on label correlations. Fig. 1 shows an
example of the graphical models of BR, CC, PCC and BCC with four labels. In terms of time complexity,
all these methods hold linear complexity O(LMN) for training if a linear baseline classifier is utilized.
In the prediction phase, BR, CC and BCC have linear complexity O(LM) for testing a single instance,
while PCC needs a time complexity of O(2LLM).

On the other hand, a variety of MLC methods have been proposed to reduce the dimensionality
of multi-label problems. The Multi-Label Naive Bayes (MLNB) method [47] incorporates feature selec-
tion mechanism into a new-designed naive Bayes classifier. Principal component analysis is employed to
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Fig. 2: Label correlation and label imbalance in the Enron dataset (L = 53). (a) Visualization of label
correlations; (b) The label imbalance problem, where 15 most frequent labels are reported.

remove unnecessary features, and then a wrapper approach with genetic algorithm is performed. How-
ever, MLNB is applicable to regular-scale datasets with continuous features due to its feature selection
mechanism. Label specIfic FeaTures (LIFT) [44] extracts label-specific features by conducting k-means
clustering analysis on the positive and negative instances according to a specific label. It obtained com-
petitive results on a broad range of benchmark multi-label datasets, but spent more prediction time
than the MLC methods with linear time complexity. By learning a Hierarchy Of Multi-label classifiER
(HOMER) based on a balanced k-means clustering approach, HOMER [36] partitioned the whole label
set into a series of smaller and more balanced sets following the layers of the label hierarchy. Label
Partition for Sublinear Ranking (LPSR) [39] consists of two-stages: feature space partition and label
assignment. It reduces the prediction complexity by learning a hierarchy over base classifiers, but it has
a higher training cost than the linear complexity in L. To cope with large-scale problems, a tree-based
multi-label method, FastXML, is proposed in [27]. Based on a novel ranking loss function, nDCG, it
developed an efficient alternating minimization algorithm to optimize the objective function. In this way,
it achieved competitive classification accuracy compared with other scalable MLC methods, and could
scale to large-scale datasets even with a million of labels.

For the efficiency, in this paper, we incorporate a two-stage label-dependent feature selection mech-
anism into the learning phase of a novel polytree-augmented classifier chains method [32] in order to
improve its performance on the basis of label-dependent features.

4 Challenges for MLC

4.1 Label correlations

There are two types of label correlations for MLC, marginal and conditional dependency. According to
the structure of a Bayesian network for P (X,Y), we have the marginal distribution and the conditional
distribution given as,

P (Y) =

L
∏

j=1

P (Yj |pa(Yj)), (7)

P (Y|X) =

L
∏

j=1

P (Yj |pa(Yj),X), (8)

where pa(Yj) denotes the parent label set of Yj . Then the definition on label dependence can be induced:

Definition 1 Label random vector Y is called marginally or conditionally independent if ∀Yj : pa(Yj) =
∅ in (7) or (8).

We can see that label-pair correlation is prevalent in many datasets from the values of mutual information
I(Yj ;Yk) for any pair of Yj and Yk. Fig. 2(a) shows the label correlations in the Enron dataset, which is
measured by mutual information.
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Fig. 3: Irrelevant and redundant features in a multi-label setting. (a) shows the label distribution over
the 2D feature space; (b) shows the classification partition strategy for (a); (c) gives the probability
graphical model for (a).

4.2 Label-dependent irrelevant and redundant features

The existence of irrelevant and redundant features for classification increases the computational com-
plexity in both learning and prediction, and moreover often reduces the generalization ability of the
classifiers designed from instances due to the curse of dimensionality. Irrelevant and redundant features
are two distinct concepts, an irrelevant feature has no discriminative information, while a redundant fea-
ture shares the same discriminative information with other features. Removal of these features, therefore,
does not lose the discriminative information. Rather, elimination of irrelevant and redundant features
simplifies the learning phase and prevents from overfitting.

An MLC example with irrelevant and redundant features is shown in Fig. 3. For label Y3, features X1

and X2 are redundant as Y3 could be readily classified by either X1 or X2. If we have prior information of
the presence of Y3, X2 is irrelevant since Y1 can be discriminated from Y2 based only on X1. This example
shows how irrelevant and redundant features can exist in MLC, and how label-dependent features can
be exploited to faciliate the process of classification. Moreover, it shows that the predicted label value
can provide some useful information for the unpredicted labels, which could further compact label-
dependent feature subsets and promote classification. For example, given the absence of Y3, only X2 is
the discriminative feature for labels Y1 and Y2.

4.3 Label imbalance

Multi-label datasets are typically imbalanced, i.e., the number of instances associated with each label
is often unequal. In other words, the ratio of positive instances against the negative ones may be quite
low for some labels. The imbalance problem usually harms the performance of the learned classifier
from two points of view. On one hand, if we aim to minimize hamming loss or ranking loss, we tend to
ignore minority labels. On the other hand, classifiers for minority labels are difficult to design. Such label
imbalance problem becomes more serious in multi-label datasets than in single-label datasets, since a
label comprising of more classes typically has less samples. To depict the imbalance level of a dataset D,
the mean of the Imbalance Ratio (IR) and the Coefficient of Variation of IR (CVIR) [5] are introduced
as follows,

IR =
1

L

L
∑

j=1

IR(Yj), CVIR =
1

IR

√

√

√

√

L
∑

j=1

(IR(Yj)− IR)2

L− 1
, (9)

where IR(Yj) = maxk
∑N

i=1 1y
(i)
k

=1
/
∑N

i=1 1y
(i)
j

=1
. We can see that multi-label datasets are highly imbal-

anced from the values of these two measures (Table 2 of Section 6.1). Fig. 2(b) shows the label imbalance
problem in the Enron dataset (L = 53), where only 15 most frequent labels are reported. A simple way
to mitigate the imbalance level in correlation measurement is to use the normalized mutual information
(defined in (25) of Sec. 7.1), instead of the original mutual information, I(Yj ;Yk). Another way is to
perform undersampling for majority labels and oversampling for minority labels. For more information
on the imbalance problems of MLC, see [5].
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Table 1: Summary of popular MLC methods from four viewpoints (◦: good, △: mod-
erate, ×: bad).

Author Method
Issues to be considered

Label Dimension Label Time
Correlation Reduction Imbalance Complexity

J. Read et al. [28] CC ◦ × × ×
K. Dembczynski et al. [7] PCC ◦ × × ×
M. Zhang et al. [46] MLkNN ◦ × × △

G. Tsoumakas et al. [37] RAkEL ◦ × △ ×
G. Tsoumakas et al. [36] HOMER ◦ ◦∗ △ △

M. Zhang et al. [47] MLNB △ ◦† × ×
J. Weston et al. [39] LPSR ◦ ◦‡ △ △

M. Zhang et al. [44] LIFT × ◦† △ △

Y. Prabhu et al. [27] FastXML ◦ ◦‡ △ ◦
This paper PACC-LDF ◦ ◦† △ △

∗ in the label space
† in the feature space
‡ in both the feature and label spaces

4.4 High complexity for large-scale data

The real applications of MLC often confront with large-scale problems, where either of the number
of labels L, attributes M and instances N might be very large. In such a case, the time complexity
will become an important aspect for evaluating an MLC algorithm, sometimes more important than
classification accuracy for real-world applications.

Up to now, one of the simplest MLC methods is to transform the MLC problem into a series of
single-label classification problems, namely Binary Relevance (BR), which has a linear time complexity
O(LMN) in terms of the complexity of the baseline classifier. However, even such a linear complexity can
be intractable for large-scale MLC problems. To overcome the limitation, as mentioned in Sec. 3, several
dimension reduction approaches are applied in MLC methods so as to attain a sublinear complexity. For
instance, embedding based methods [38, 41, 2] project the label vectors onto a low-dimensional linear or
nonlinear label subspace, leading to a time complexity of O(L̂MN) with L̂≪ L. In this paper, we focus
on reducing the dimensionality of the feature space, to attain a complexity of O(LM̂N) with M̂ ≪M .

Table 1 summarizes several MLC methods evaluated from the four viewpoints discussed in this section.
It shows that most of popular MLC methods enable to cope with only some of the four issues confronted
with MLC. In this paper, we try to deal with all the four aspects with the proposed method.

5 Polytree-augmented classifier chains with label-dependent features

5.1 Polytree-augmented classifier chains

We propose a novel polytree-augmented classifier chains (PACC) as a compromise between the expression
ability and the efficiency. A polytree (Fig. 4) is a directed acyclic graph whose underlying undirected graph
is a tree but a node can have multiple parents [31]. That is, it is more flexible than trees. A causal basin,
as shown in Fig. 4(b), is a subgraph which starts with a multi-parent node and continues following a
causal flow to include all the descendants and their direct parents.

5.1.1 Structure learning

In PACC, the conditional label dependence is obtained by approximating the true distribution P (Y|X)
by another distribution. According to Chou-liu’s proof [6] and our previous work [32], we can have its
feature-conditioned version.

Theorem 1 To approximate a conditional distribution P (Y|X), the optimal Bayesian network B∗ in
K-L divergence is obtained if the sum of conditional mutual information between each variable of Y and
its parent variables given the observation X is maximized.

Proof Here we use Kullback-Leibler (KL) divergence [20], DKL(P ||PB), a quasi distance between two
distributions, to evaluate how close an alternative distribution PB(Y|X) is to P (Y|X), where B denotes
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a Bayesian network:

B∗ =argmin
B

DKL(P (Y|X)||PB(Y|X))

= argmin
B

EP (x,y)
logP (Y|X)

logPB(Y|X)

= argmax
B

EP (x,y) logPB(Y|X). (10)

According to the parents-children relationship in B,

B∗ =argmax
B

EP (x,y) log

L
∏

j=1

PB(Yj |pa(Yj),X)

= argmax
B

L
∑

j=1

EP (x,yj ,pa(yj)) logPB(Yj |pa(Yj),X),

which is maximized if PB(·) = P (·). Then, since P (Yj |X) is independent of the parents of Yj ,

B∗ = argmax
B={pa(Yj)}

L
∑

j=1

EP (x,yj ,pa(yj)) log
P (Yj ,pa(Yj)|X)

P (Yj |X)P (pa(Yj)|X)

= argmax
B={pa(Yj)}

L
∑

j=1

IP (Yj ;pa(Yj)|X), (11)

where IP (Yi;pa(Yj)|X) represents the conditional mutual information between Yj and its parents pa(Yj)

given X in B. As a result, the optimal B∗ is obtained by maximizing
∑L

j=1 IP (Yj ;pa(Yj)|X).

Theorem 1 shows

min
B

DKL(P (Y|X)||PB(Y|X)) = max
B

L
∑

j=1

IP (Yj ;pa(Yj)|X). (12)

That is, we should construct B so as to maximize the mutual information between a child and its parents.
However, in practice, we do not know the true P (Y|X). Therefore we use the empirical distribution
P̂ (Y|X) instead. Unfortunately, learning of the optimal B∗ is NP-hard in general, we limit our hypothesis
B to the ones satisfying |pa(Yj)| ≤ 1 so as to pa(Yj) = Yk for some k ∈ {1, 2, ..., L} or null, indicating the
tree skeleton is to be built. In practice, we carry out Chou-liu’s algorithm [6] to obtain the maximum-cost
spanning tree (Fig. 4(a)), maximizing the weight sum, with edge weights I

P̂
(Yi;pa(Yj)|X).

5.1.2 Mutual information estimation

It is quite difficult to estimate conditional probability P (Y|X), when X is continuous. Recently some
methods [8, 43, 45] have been proposed to solve this problem. In BCC [43], as an approximation of
conditional probability, marginal probability of labels Y is obtained by simply counting the frequency
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of occurrence. Similar with [8], LEAD [45] directly obtains conditional dependence by estimating the
degree of dependency of errors in multivariate regression models.

In [32], we used a more general approach to estimate the conditional probability. The data set D is
splitted into two sets: a training set Dt and a hold-out set Dh. Probabilistic classifiers, outputing the
probability of each label, are learned from Dt to represent conditional probability of labels, and the
probability is calculated based on the output of the learned classifiers over Dh. First, three probabilistic
classifiers fj , fk and fj|k are learned on Dt to approximate conditional probabilities P̂ (yj = 1|x), P̂ (yk =

1|x) and P̂ (yj = 1|yk,x), respectively. Then corresponding probabilities are computed by conducting fj ,
fk and fj|k on Dh. Last, IP̂ (Yj ;Yk|X) is estimated by

I
P̂
(Yj ;Yk|X) =

1

|Dh|

∑

(x,y)∈Dh

E
P̂ (yj |yk,x)

E
P̂ (yk|x)

log
P̂ (yj |yk,x)

P̂ (yj |x)
. (13)

5.1.3 Construction of PACC

After obtaining the skeleton of the polytree, our next task is to assign directions to its edges, that is, an
ordering of the nodes to complete the polytree. First we assign some or all directions to the skeleton by
finding causal basins. This is implemented by finding multi-parent nodes and the corresponding direc-
tionality. The detailed procedure is as follows. Fig. 5 shows three possible graphical models over triplets
A, B and C. Here Types 1 and 2 are indistinguishable because they share the same joint distribution,
while Type 3 is different from Types 1 and 2. In Type 3, A and C are marginally independent, so that
we have

I(A;C) =
∑

a,c

P (a, c) log
P (a, c)

P (a)P (c)
= 0. (14)

In this case, B is a multi-parent node. More generally, we can do Zero-Mutual Information (Zero-MI)
testing for a triplet, Yj with its two neighbors Ya and Yb: if I(Ya;Yb) = 0, then Ya and Yb are parents
of Yj , and Yj becomes a multi-parent node. The other non-parent neighbors will be treated as Yj ’s child
nodes. By performing the Zero-MI testing for every pair of Yj ’s direct neighbors, pa(Yj) and a causal
flow outside Yj is determined, by which a causal basin will be found. In PACC, pa(Yj) can be more than
one node, so that the model is more flexible than that of BCC using a tree.

In order to build a classifier chain by the learned directions, we rank the labels to form a chain and
then train a classifier for every label following the chain. The ranking strategy is simple: the parents
should be ranked higher than their descendants, and the parents sharing the same child should be
ranked in the same level. Hence, learning of a label is not performed until the labels with higher ranks,
including its parents, have been learned. That is, a kind of lazy decision is made. In PACC, we choose
logistic regression with ℓ2 regularization as the baseline classifier. Therefore, a set of L logistic regressiors
f = {fj}

L
j=1 is learned, each of which is trained by treating the union of x and pa(yj) as new augmented

attributes x̃j = (x,pa(yj))
T , shown as follows:

fj(x̃j ,θj) = P (yj = 1|x̃j ,θj) =
1

1 + e−θT
j
x̃j

, j = 1, ..., L, (15)

where θj is the model parameters for Yj , which could be learned by maximizing the regularized log-
likelihood given the training set:

max
θj

N
∑

i=1

logP (y
(i)
j |x̃

(i)
j ,θj)− λ‖θj‖

2
2, (16)

where λ is a trade-off coefficient to avoid overfitting by generating sparse parameters θj . Then traditional
convex optimization techniques, such as Quasi-Newton method with BFGS iteration [23], can be used
to learn the parameters.
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Fig. 6: Learning (b-e) and prediction (f) phases of PACC. The true but hidden graphical model (a) is
learned from data. (b) Construct a complete graph G with edges weighted by the mutual information I.
(c) Construct a spanning tree in G. (d) Make directions by Zero-MI testing. (e) Train six probabilistic
classifiers f1-f6. (f) Prediction is made in the order of circled numbers.

5.1.4 Classification

Exact inference in the prediction phase, as shown in (3), is NP-hard in directed acyclic graphs. However,
in polytrees, using the max-sum algorithm [26], we can make exact/exhaustive inference in a reasonable
time by bounding the indegree of nodes.

Two phases are performed in order. The first phase, we begin at the root(s) and propagates testing
downward to the leaves. The conditional probability table for each node is calculated on the basis of its
local graphical structure. In the second phase, message propagation starts upward from the leaves to the
root(s). In each node Yj , we collect all the incoming messages and finding the local maximum with its
value ŷj . In this way, we have the Maximum a Posteriori (MAP) estimate ŷ = (ŷ1, ..., ŷL) such as

ŷ = argmax
y∈Y

L
∏

j=1

fj(x, p̂a(yj)) = argmax
1,...,yr,yl,...,yL

[

fr(x)
[

· · · fl(p̂a(yl),x)
]

]

, (17)

where Yl represents a leaf and Yr a root, respectively.
An example of learning and prediction in PACC is shown in Fig. 6. The algorithm of PACC is depicted

in Algorithm 1.

5.2 Label-dependent feature selection

A two-stage feature selection approach consisting of classifier-independent filter and classifier-dependent
wrapper, has been recommended to gain a good trade-off between classification performance and com-
putation time in [19]. Motivated by this study, we develop a two-stage feature selection approach for
CC-based methods based on the simple filter algorithm, in order to find label-dependent, equivalently
class-dependent, features [1] and save label correlations during feature selection. In this way, we expect
that the proposed approach enable to improve classification performance and reduce the computational
complexity in both learning and prediction phases.

According to whether features are evaluated individually or not, the existing filter algorithms can
be categorized into two groups: feature weighing algorithms and subset search algorithms [42]. Feature
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Algorithm 1 Algorithm of PACC

Input: D: training set, T : test set, f = {fj}
L
j=1: multi-label probabilistic classifier

Output: ŷ: prediction on a test instance x̂, x̂ ∈ T

Training:

1: Transform D into {Dj}
L
j=1, where Dj = {x(i), y

(i)
j }Ni=1;

2: Calculate the mutual information matrix I = {Ijk}L×L according to (13);

3: Construct a polytree B = {pa(Yj)}
L
j=1 on I, and form the chain;

4: Transform {Dj}
L
j=1 into {D+

j }Lj=1 based on B, where D+
j = {x(i) ∪ pa(yj)

(i), y
(i)
j }Ni=1;

5: for j ∈ chain do

6: Learn a probabilistic classifier fj on D+
j according to (15) and (16);

Testing:

7: for x̂ ∈ T do

8: Return ŷ = argmax
y∈Y

∏L
j=1 fj(x̂, p̂a(yj)) according to (17);

weighting algorithms evaluate the weights of features individually, and rank them by the relevance to the
target class. It is quite efficient to remove irrelevant features, but totally ignores the correlations among
features. On the other hand, redundant features that are strongly correlated to others also harm the
performance of learning algorithm [17]. Subset search algorithms aim to overcome such limitation, and
still maintain a reasonable time complexity compared with the wrapper algorithm. It searches through
candidate feature subsets guided by a certain evaluation measure which captures the goodness of each
subsets [24]. In this study, we propose a two-stage approach by using both feature weighting and subset
search in order to select label-dependent features.

5.2.1 Label-dependent feature weighting

In the first stage, we develop a novel Multi-Label Information Gain (MLIG) algorithm based on feature
weighting to efficiently remove irrelevant features for each label. IG has been frequently used as an
evaluation criterion for feature weighting in various machine learning tasks [40]. Given a label variable
Yj and a feature variable Xk, IG measures the amount of the entropy of Yj reduced by knowing Xk,

I(Yj ;XK) = H(Yj)−H(Yj |Xk)

= −
∑

yj∈{0,1}

P (yj) logP (yj) +
∑

xk∈Vk

P (xk)
∑

yj∈{0,1}

P (yj |xk) logP (yj |xk), (18)

where Vk denotes the value space of the feature variable Xk. In practice, the numeric features should be
discretized beforehand for the computational efficiency. For the multi-label datasets, a straightforward
way to apply IG is to rank all the features for each label according to (18), and then select the top-ranked
features to feed the post-process.

However, it is a non-trivial thing to choose an appropriate threshold for filtering out irrelevant features.
In addition, in the MLC setting, it is unreasonable to set the same threshold for all labels due to the
label imbalance problem as stated in Sec. 4.3. For the labels with higher imbalance ratio, the number of
positive instance may be insufficient for building an accurate classifier, in which case a smaller number
of features should be chosen. To overcome the problem, in MLIG we set the percentage αj of selected
features for the label variable Yj according to the following:

αj = 2r ·
eβj − 1

eβj + 1
+ r, βj =

IR

IR(Yj) · (CVIR + 1)
, (19)

where r is a factor controlling the range of αj so that αj ∈ [r, 3r]. According to (19), we can see that
the value of αj is close to 3r for the majority labels in well balanced datasets, and αj becomes r for the
minority labels in highly imbalanced datasets. As a result, a smaller number of features is selected for
each minority label in an imbalanced dataset, and vice versa.

In this way, MLIG first calculates a feature-label information gain matrix according to (18), then
ranks the features for each label and selects most relevant label-dependent features up to mj = αjM ,

j = 1, ..., L. Finally, we transform the original data Dj = {(x(i), y
(i)
j )}Ni=1 into Zj = {(z

(i)
j , y

(i)
j )}Ni=1,

zj ∈ R
mj by eliminating irrelevant features.

5.2.2 Label-dependent feature subset selection

Although the MLIG approach works for feature selection to some extend, it is unable to eliminate the
redundant features. Thus we consider to develop a feature subset selection algorithm in order to find a
more compact feature subset by incorporating the label dependency modeled by the polytree structure.
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In this stage, we extend the Correlation-based Feature Selection (CFS) [12], one of the subset search
algorithms, to remove redundant features. CFS is conducted once the polytree B = {pa(Yj)}

L
j=1 has been

constructed. In the proposed Multi-Label CFS (MLCFS) approach, we apply CFS on the label-specific
feature subspace, taking label correlations modeled by B into account. More specifically, given a label

variable Yj with its dataset Z+
j = {z̃

(i)
j , y

(i)
j }

N
i=1, where z̃j = zj ∪ pa(yj), the merit of a feature subset

Sj of ñj (ñj = nj + |pa(Yj)|) features is evaluated by

Merit(Sj) =
ñjρYjZ̃

√

ñj + ñj(ñj − 1)ρZ̃Z̃

, (20)

where the mean correlations ρYjZ̃
and ρZ̃Z̃ are calculated according to

ρYjZ̃
=

2

ñj

ñj
∑

k=1

I(Ỹj ; Z̃k)

H(Ỹj) +H(Z̃k)
, ρZ̃Z̃ =

4

ñj(ñj − 1)

ñj
∑

k,l=1
k 6=l

I(Z̃k; Z̃l)

H(Z̃k) +H(Z̃l)
. (21)

MLCFS first calculates the feature-feature and feature-label correlation matrices, and then employs a
heuristic search algorithm, such as Best First [17], with the start set pa(Yj) to search the feature subset
of space Yj by maximizing (20). In this way, the dimensionality of the feature space is reduced from mj

to nj , typically nj ≪ mj . We transform the data Z+
j = {z̃

(i)
j , y

(i)
j }

N
i=1 into V+

j = {ṽ
(i)
j , y

(i)
j }

N
i=1, where

ṽj = vj ∪ pa(yj), vj ∈ R
nj . Finally, V+

j is used to learn the probabilistic classifier fj .
Algorithm 2 gives the algorithm of PACC with Label-Dependent Features, named PACC-LDF. In the

training phase, PACC-LDF first performs problem transformation in Step 1, applies MLIG to remove
irrelevant features and transforms the training set {Dj} into {Zj} from Steps 2 to 4. Then a polytree
B is built on {Zj} from Steps 5 to 6, and {Zj} is transformed into {Z+

j } based on B in Step 7. After

that, MLCFS is performed on {Z+
j }, which is further transformed into {V+

j } in Steps 8 to 10. Finally,

based on the dataset {V+
j } with label-dependent features, a multi-label probabilistic classifier {fj} is

learned at Step 11. In the testing phase, a test dataset T is first projected into the lower-dimensional
feature subspaces, and then feed to the learned classifier for prediction in Steps 12 to 15. Fig. 7 shows
the framework of PACC-LDF in terms of training and testing phases.

Algorithm 2 Algorithm of PACC-LDF

Input: D: training set, T : test set, f = {fj}
L
j=1: multi-label probabilistic classifier

Output: ŷ: prediction on a test instance x̂, x̂ ∈ T
Training:

1: Transform D into {Dj}
L
j=1, where Dj = {x(i), y

(i)
j }Ni=1;

2: for j = 1 to L do

3: Perform MLIG on Dj according to (18), i.e., g′j : x|M×1 7→ zj |mj×1;

4: Transform Dj into Zj = {(z
(i)
j , y

(i)
j )}Ni=1, where zj = g′j(x);

5: Calculate the mutual information matrix I = {Ijk}L×L, where Ijk is computed according to (13) based on Zj and Zk;

6: Construct a polytree B = {pa(Yj)}
L
j=1 on I, and form the chain;

7: Transform {Zj}
L
j=1 into {Z+

j }Lj=1 based on B, where Z+
j = {z

(i)
j ∪ pa(yj)

(i), y
(i)
j }Ni=1;

8: for j ∈ chain do

9: Conduct MLCFS on Z+
j by Best First search with the start set pa(Yj) according to (20), i.e., g′′j : zj |mj×1 7→

vj |nj×1;

10: Transform Z+
j into V+

j = {(v
(i)
j ∪ pa(yj), y

(i)
j )}Ni=1, where vj = g′′j (zj);

11: Learn a probabilistic classifier fj on V+
j according to (15) and (16);

Testing:

12: for x̂ ∈ T do

13: for j ∈ chain do

14: Transform x̂j into v̂j , i.e., v̂j = (g′′j ◦ g′j)(x̂j);

15: Return ŷ = argmax
y∈Y

∏L
j=1 fj(v̂j , p̂a(yj)) according to (17);

5.3 Discussion

PACC-LDF can be considered as a general version of PACC, since PACC-LDF selects label-dependent
features during the model building of PACC, in order to improve its performance and reduce time
complexity. By applying only one stage of the proposed feature selection approach, we can have two
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Fig. 7: Flow chart of the proposed PACC-LDF method. The learning phase (a) consists of seven steps:
problem transformation, MLIG, MI estimation, polytree construction, feature augmentation, MLCFS
and model learning. The prediction phase (b) consists of three steps: instance transform, testing and
exact inference.

variants of PACC-LDF: PACC with MLIG (PACC-MLIG) (with Steps 2-4 only) and PACC with MLCFS
(PACC-MLCFS) (with Steps 8-10 only). Note that the two-stage feature selection can also be applied to
the other MLC methods. For instance, it could be directly incorporated with binary relevance (BR) by
removing Steps 5 to 7 from Algorithm 2, leading to BR-LDF. For classifier chains (CC) based methods,
we can do this by changing the content of pa(Yj), producing CC-LDF and BCC-LDF.

6 Multi-label data sets with evaluation metrics

6.1 Multi-label data sets

Given a multi-label dataset D = {(x(i),y(i))}Ni=1 with L labels and M features, we introduce the la-

bel cardinality 1
N

∑N

i=1 |y
(i)|, the label density 1

NL

∑N

i=1 |y
(i)| and the number of distinct label sets

|{y|(x,y) ∈ D}| in order to depict its statistical properties. In addition, we also report the imbalance
level of D by IR and CVIR defined in (9). As a rule of thumb [5], a dataset D is considered as an
imbalanced dataset if IR is higher than 1.5 and CVIR exceeds 0.2. In this sense, all the datasets except
the Scene and Emotions datasets are imbalanced, indicating the necessity of alleviating this problem in
MLC methods. Table 2 reports the statistics of twelve benchmark multi-label datasets from a variety of
domains used in the experiments. According to the size of N , M and L, we treat the first eight datasets
as regular-scale datasets and the last four as large-scale datasets.

6.2 Evaluation metrics

The existing multi-label evaluation metrics can be separated into two groups: instance-based metrics
and label-based metrics [35]. To evaluate the performance of a MLC method on a test data set T =
{(x(i),y(i))}Nt

i=1, we use two instance-based metrics:

Exact-Match :=
1

Nt

Nt
∑

i=1

1
ŷ
(i)=y(i) , Accuracy :=

1

Nt

Nt
∑

i=1

∑L

j=1 y
(i)
j · ŷ

(i)
j

∑L

j=1 y
(i)
j +

∑L

j=1 ŷ
(i)
j −

∑L

j=1 y
(i)
j ŷ

(i)
j

, (22)

and two label-based metrics:

Macro-F1 :=
1

L

L
∑

j=1

2
∑Nt

i=1 ŷ
(i)
j · y

(i)
j

∑Nt

i=1 ŷ
(i)
j +

∑Nt

i=1 y
(i)
j

, Micro-F1 :=
2
∑L

j=1

∑Nt

i=1 ŷ
(i)
j · y

(i)
j

∑L

j=1

∑Nt

i=1 ŷ
(i)
j +

∑L

j=1

∑Nt

i=1 y
(i)
j

. (23)

Among the metrics, Exact-Match is the most stringent measure, especially for the MLC problems
with a large number of labels, since it does not evaluate the partial match of a label set. In spite of that,
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Table 2: Statistics of twelve benchmark multi-label datasets. In below, N , M and L are the data
size in instances, features and labels, respectively. Cardinality, Density and Distinct denotes the label
cardinality, the label density and the number of distinct label combinations, respectively. IR and CVIR
together depict the degree of label imbalance, which are defined in (9).

Dataset† N M L Type‡ Cardinality Density Distinct IR CVIR Dom
Emotions 593 72 6 a 1.869 0.311 27 1.478 0.180 music
Scene 2407 294 6 a 1.074 0.179 15 1.254 0.122 image
Yeast 2417 103 14 a 4.237 0.303 198 6.623 1.763 biology
Birds 645 260 19 c 1.014 0.053 133 5.407 0.817 audio
Genbase 662 1186 27 b 1.252 0.046 32 37.315 1.449 biology
Medical 978 1449 45 b 1.245 0.028 94 89.501 1.148 text
Enron 1702 1001 53 b 3.378 0.064 753 73.953 1.960 text
Languagelog 1460 1004 75 b 1.180 0.016 286 39.267 1.311 text
Rcv1s1 6000 944 101 a 2.880 0.029 837 59.333 2.380 text
Corel16k1 13766 500 153 b 2.859 0.019 1791 34.890 0.815 image
Bibtex 7395 1836 159 b 2.402 0.015 2856 12.498 0.405 text
Corel5k 5000 499 374 b 3.522 0.009 3175 189.568 1.527 music
† The source of datasets: http://mulan.sourceforge.net/datasets-mlc.html
‡ Type of features. a: numeric, b: nominal, c: both numeric and nominal

according to the definition, it is a good measure to measure how well label correlations are modeled.
Accuracy is useful to measure the performance of a classifier in terms of both positive and negative
prediction ability. Unlike Exact-Match, both Macro-F1 and Micro-F1 are able to take the partial match
of labels into account. In addition, as stated in [33], Macro-F1 is more sensitive to the performance of
rare categories (the labels in minority), while Micro-F1 is affected more by the major categories (the
labels in majority). Hence, joint use of Macro-F1 and Micro-F1 should be a good supplement for the
instance-based evaluation metrics to evaluate the performances of MLC methods.

7 Experiments

7.1 Implementation issues

In both feature weighting (18) and feature subset selection (20), calculation of mutual information is
extensively performed. For the discrete and categorical feature variable X (label variable Y is originally
binary), the calculation of mutual information is simple and straightforward. Given a sample of n i.i.d.
observations {(x(i), y(i))}ni=1, based on the law of large numbers, we have the following approximation:

I(X;Y ) =
∑

x,y

P (x, y) log
P (x, y)

P (x)P (y)
≈

1

n

n
∑

i=1

log
P̂ (x(i), y(i))

P̂ (x(i))P̂ (y(i))
, (24)

where P̂ denotes the empirical probability distribution. When the feature variable X is continuous, it
becomes quite difficult to compute mutual information I(X;Y ), since it is typically impossible to obtain
P̂ . One of solutions is to use kernel density estimation [14], but it is computationally expensitve and
typically difficult to select good value of its bandwidth. To circumvent this difficulty, in practice, we
compute I(X;Y ) with continuous feature X by applying data discretization as preprocessing. In this
study, the continuous feature X is discretized based on its mean µX and standard deviation σX . For
example, we can apply a similar discretization approach used in [4], which divides a numeric value of
feature variable X into one of three categories {−1, 0, 1} according to µX±σX . The experimental results
demonstrate the efficiency of such simple data discretization approach for approximating I(X;Y ) to
perform feature selection.

In addition, the calculation of conditional mutual information in (13) for building the polytree is
computational expensive for large-scale datasets. To reduce the training cost and make the proposed
PACC and PACC-LDF tractable for large problems, normalized marginal mutual information estimation,
rather than conditional mutual information estimation (13), is used to model label correlations in PACC-
related methods for large-scale datasets. The normalized mutual information is defined in the following:

NI(X;Y ) =
I(X;Y )

min{H(X), H(Y )}
. (25)

Compared with I(X;Y ), the advantage of NI(X;Y ) is that NI(X;Y ) enables to alleviate the negative
effect resulting from the label imbalance problem, as we have discussed in Sec. 4.3.
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Table 3: Statistics of six synthetic multi-label datasets.

Dataset N M† L Cardinality Density Distinct IR CVIR
Data40-10 500 40 10 1.260 0.126 57 2.235 0.400
Data80-10 500 80 10 1.182 0.118 53 1.466 0.400
Data120-20 1000 120 20 1.404 0.070 227 1.810 0.368
Data160-20 1000 160 20 1.378 0.069 219 1.698 0.354
Data400-60 2000 400 60 2.187 0.036 1302 1.444 0.214
Data800-60 2000 800 60 2.147 0.036 1302 1.478 0.251
† The ratio of relevant, irrelevant and redundant features is 2 : 1 : 1.
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Fig. 8: The performances of PACC-LDF in terms of four evaluation metrics on six synthetic datasets by
varying the value of r from 0.05 to 0.3 by step 0.05.

7.2 Experimental setting

The methods used in the experiments were implemented based on Mulan1 and Meka2, and performed on
six synthetic datasets and twelve benchmark datasets. To evaluate the classification performance, 5-fold
and 3-fold cross validation were used for the eight regular-scale and four large-scale datasets, respectively.
In the experiments we chose logistic regression with ℓ2 regularization as the baseline classifier, and set the
constant value λ = 0.1 for the trade-off parameter λ in (16) for all MLC methods. To reduce the training
cost, normalized mutual information, instead of conditional mutual information (13), was calculated for
large-scale datasets. The experiments were conducted in a computer configured with an Intel Quad-Core
i7-4770 CPU at 3.4GHz with 4G RAM.

7.3 Experiments on synthetic datasets

In this section, we conduct experiments on six synthetic multi-label datasets to evaluate the performances
of PACC with its three variants, PACC-MLIG, PACC-MLCFS and PACC-LDF. In total, six synthetic
datasets, including four regular-scale sets and two large-scale sets, were generated according to the
method in [34]. In each data set, instances were produced by randomly sampling from R hypercubes
(labels) in the M -dimensional feature space, and thus the dataset is represented by DataM -R. The
M -dimensional features consisted of three parts: relevant features, irrelevant features and redundant
features. The irrelevant features were randomly generated, and the redundant features were the copies of
existing relevant features. In addition, in order to simulate real-world multi-label data, classification noise
was added into these synthetic datasets, which flips the value of each label for a instance in a random
manner with a probability of 0.02. The statistics of the synthetic datasets are reported in Table 3.

First, we performed experiments on PACC-LDF by changing the value of factor r in (19), which
controls the lower and upper bounds of αj by r ≤ αj ≤ 3r according to (19). Experimental results in
four evaluation metrics are shown in Fig. 8, by which we can reach the following two conclusions: (1) In
the regular-sized datasets, PACC-LDF works worse for a small value of r, r < 0.1, but becomes better
and stable as r exceeds 0.15; (2) In the large-sized set, PACC-LDF performs better when the value of r is
small, and works slightly worse if r exceeds 0.15. Therefore, in the rest of paper, r is set to the moderate
value of 0.15 and 0.05 for regular-scale and large-scale sets, respectively.

In Fig. 9, the performances of PACC, PACC-MLIG, PACC-MLCFS and PACC-LDF in Accuracy
and Learning time are reported. Note that we do not show the performances in other metrics here, since
similar results and patterns can be observed. The proposed LDF and its variants significantly improve

1 http://mulan.sourceforge.net/
2 http://meka.sourceforge.net/
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Fig. 9: The performance of PACC with its three variants in Accuracy and Learning time (in seconds)
on six synthetic datasets.

the performance of PACC. Specifically, PACC-LDF works best among the four methods, and achieves at
least 10% of performance improvement compared with the original PACC, indicating the effectiveness of
the proposed two-stage feature selection approach. In terms of learning time, PACC-LDF consumed the
least time on the last five datasets. In testing time, all the methods consumed similar time on regular-scale
datasets, but PACC-LDF cost the least time on two large-scale datasets. Therefore, the two-stage feature
selection approach, LDF, rather than MLIG and MLCFS, is employed in the following experiments.

7.4 Experiments on real-world datasets

Next we evaluate the performances of popular MLC methods on the twelve real-world benchmark multi-
label datasets in Table 2. This part of experiment is composed of three major parts. In the first part,
we compared PACC with three CC-based methods, including BR, CC and BCC, to demonstrate the
effectiveness of the polytree structure on capturing label correlations. In the second part, PACC-LDF
is compared with three state-of-the-art MLC methods in terms of classification accuracy and execution
time. In the last part, CC-based methods are compared with their LDF variants in a pairwise way to
evaluate the performance of the two-stage feature selection approach. In addition, the comparing results
of LDF with traditional feature selection algorithms are presented. The MLC methods used in this section
are summarized as follows:

– CC-based methods have been introduced in Section 3. In CC, the chain is established in a randomly
determined order. In BCC, the normalized mutual information is used for marginal dependency
estimation on each label pair, since the performance could be slightly improved without consuming
extra processing time.

– Multi-Label k-Nearest Neighbors (MLkNN) [46] originates from the traditional k-nearest neighbors
algorithm. For each test instance, according to the label assignments of its k nearest neighbors in the
training set, the prediction is made on the basis of MAP principal. In the experiments, we set k = 10,
by following the suggestion in the literature [46].

– RAndom k LabELsets (RAkEL) [37] is an ensemble variant of the Label Combination (LC) method.
RAkEL transforms an MLC problem into a set of smaller MLC problems, by training m LC models
using random k-subsets of the original label set. To make it executable in a limited time cost (24h),
RAkEL employed the C4.5 decision tree as its baseline single-label classifier for large-scale datasets.
We set k = 3 and m = 2L as recommended in [37].

– By building a Hierarchy Of Multi-label classifiERs (HOMER) on the basis of balanced k-means
clustering, HOMER [36] reduces the complexity of prediction and addresses the label imbalance
problem. According to the experimental results in [36], the number k of clusters for building the
hierarchical structure was set to 4. In addition, Binary Relevance with ℓ2 regularized logistic regression
was used as its baseline multi-label classifier.

7.4.1 Comparison of PACC with CC-based methods

The resutls of CC-based methods are summarized in Table 4. In terms of instance-based evaluation
metrics, Exact-Match and Accuracy, PACC was the best or competitive with the best methods, except
for the Yeast dataset. It is understandable because PACC is a subset 0-1 risk minimizer benefiting
from its ability on the polytree structure as well as exact inference. In these metrics, CC is the second
best, while BCC is the third in most cases. This is probably because BCC models only label pairwise
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Table 4: Experimental results (mean±std) of four CC-based methods on twelve multi-label datasets in
terms of four evaluation metrics.

Method
Exact-match

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
BR .239±.069 .466±.024 .139±.015 .476±.060 .949±.030 .580±.046 .089±.017 .224±.032 .047±.003 .006±.001 .110±.005 .003±.002
CC .260±.044 .546±.017 .194±.016 .476±.056 .974±.009 .586±.040 .099±.011 .237±.023 .111±.007 .012±.001 .120±.006 .009±.001

BCC .239±.050 .494±.028 .136±.012 .476±.064 .977±.007 .575±.042 .095±.017 .234±.018 .059±.004 .007±.001 .108±.009 .003±.001
PACC .261±.030 .568±.019 .125±.079 .474±.057 .974±.009 .586±.033 .112±.025 .237±.025 .113±.008 .016±.003 .128±.002 .009±.004

Method
Accuracy

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
BR .511±.049 .567±.020 .512±.018 .576±.055 .973±.017 .698±.029 .377±.015 .315±.020 .243±.003 .117±.006 .287±.001 .097±.003
CC .516±.038 .608±.020 .505±.013 .579±.051 .986±.006 .672±.028 .380±.009 .275±.012 .289±.003 .093±.001 .299±.003 .116±.001
BCC .502±.035 .582±.028 .494±.014 .580±.062 .987±.006 .656±.028 .369±.019 .273±.008 .261±.002 .073±.006 .288±.005 .096±.002
PACC .523±.033 .625±.018 .400±.131 .580±.055 .986±.006 .668±.027 .384±.017 .277±.015 .294±.011 .101±.005 .295±.002 .118±.009

Method
Macro-F1

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
BR .636±.043 .652±.019 .424±.014 .335±.028 .725±.055 .372±.022 .216±.026 .090±.016 .232±.008 .093±.007 .297±.008 .045±.003

CC .623±.035 .639±.021 .404±.019 .341±.013 .740±.050 .355±.025 .208±.028 .055±.009 .240±.013 .070±.002 .308±.009 .043±.004
BCC .620±.029 .649±.019 .394±.007 .345±.028 .742±.049 .352±.024 .209±.024 .056±.009 .240±.010 .073±.005 .299±.009 .044±.004
PACC .632±.034 .657±.017 .351±.064 .349±.019 .740±.050 .354±.023 .206±.020 .057±.007 .240±.010 .076±.001 .302±.002 .043±.004

Method
Micro-F1

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
BR .650±.042 .645±.019 .642±.015 .441±.048 .977±.015 .761±.020 .497±.010 .272±.015 .344±.003 .194±.008 .376±.008 .164±.002
CC .633±.034 .631±.022 .626±.009 .449±.030 .989±.004 .750±.015 .497±.006 .225±.024 .369±.001 .142±.002 .385±.007 .178±.002

BCC .632±.027 .642±.021 .629±.012 .449±.048 .990±.004 .742±.017 .489±.015 .223±.027 .360±.002 .130±.008 .371±.008 .162±.004
PACC .642±.032 .647±.018 .515±.146 .454±.037 .989±.004 .748±.015 .492±.009 .231±.022 .369±.012 .154±.001 .389±.002 .165±.010

Table 5: Experimental results (mean±std) of PACC-LDF with three state-of-the-art methods on twelve
multi-label datasets in terms of four evaluation metrics.

Method
Exact-match

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
MLkNN .302±.035 .638±.017 .192±.018 .433±.028 .921±.020 .496±.049 .004±.004 .195±.030 .032±.006 .002±.000 .057±.008 .000±.000
RAkEL .285±.040 .535±.025 .156±.016 .471±.067 .965±.023 .659±.044 .108±.025 .199±.023 .052±.007 .009±.002 .114±.007 .003±.001
HOMER .223±.039 .476±.041 .136±.009 .457±.056 .950±.003 .544±.024 .091±.019 .214±.023 .054±.015 .011±.003 .062±.003 .003±.001
PACC-LDF .314±.046 .595±.010 .125±.080 .513±.047 .970±.012 .679±.019 .149±.018 .240±.030 .145±.013 .018±.004 .161±.008 .014±.004

Method
Accuracy

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
MLkNN .568±.033 .717±.014 .545±.019 .542±.042 .964±.011 .632±.037 .369±.016 .255±.028 .283±.009 .147±.005 .188±.009 .139±.005

RAkEL .550±.037 .617±.022 .515±.015 .576±.068 .983±.011 .758±.035 .460±.023 .278±.019 .277±.004 .107±.003 .307±.007 .083±.003
HOMER .511±.034 .565±.033 .504±.016 .559±.056 .974±.015 .644±.014 .350±.024 .262±.018 .232±.019 .124±.002 .182±.004 .085±.005
PACC-LDF .546±.033 .632±.007 .394±.146 .584±.046 .983±.010 .758±.018 .395±.017 .271±.018 .274±.012 .130±.020 .296±.012 .111±.011

Method
Macro-F1

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
MLkNN .656±.025 .759±.013 .426±.012 .300±.055 .619±.077 .241±.014 .126±.010 .052±.016 .183±.004 .051±.005 .178±.005 .026±.003
RAkEL .654±.032 .673±.015 .441±.012 .343±.042 .736±.055 .372±.043 .176±.008 .063±.010 .202±.003 .048±.004 .309±.004 .024±.001
HOMER .634±.029 .632±.025 .415±.013 .332±.041 .687±.049 .307±.028 .178±.017 .053±.017 .190±.002 .062±.004 .192±.002 .035±.001
PACC-LDF .651±.039 .651±.011 .303±.054 .358±.036 .740±.051 .360±.019 .177±.012 .068±.018 .209±.006 .056±.005 .258±.015 .040±.006

Method
Micro-F1

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
MLkNN .683±.027 .751±.011 .669±.015 .416±.054 .957±.011 .697±.036 .531±.014 .186±.023 .405±.006 .233±.008 .296±.003 .225±.007

RAkEL .665±.033 .665±.016 .642±.012 .457±.063 .986±.009 .812±.029 .585±.009 .237±.009 .389±.002 .181±.003 .407±.007 .151±.004
HOMER .644±.028 .630±.027 .635±.017 .427±.044 .970±.019 .680±.012 .454±.019 .170±.033 .318±.012 .178±.002 .249±.004 .132±.006
PACC-LDF .659±.033 .644±.008 .506±.161 .406±.051 .988±.005 .805±.019 .492±.018 .209±.037 .350±.011 .147±.023 .401±.016 .167±.015

correlations. In consistent with our theroretical analysis, BR obtains the worst result in Exact-Match
due to ignoring label correlations. It is also worth noting that BR works better than CC-related methods
only on the Birds set, indicating weak label correlations in that set. In Macro/Micro-F1, BR and BCC
obtained competitive results with CC and PACC. This is probably because the label-based evaluation
metrics emphasize more on the performance on individual label. Indeed BR is actually the hamming-loss
risk minimizer and BCC only models the most important label pairwise dependency.

7.4.2 Results on PACC-LDF with the state-of-the-art

Next, PACC-LDF was compared with three popular MLC methods. The experimental results are shown
in Table 5. From Table 5, we can see that PACC-LDF is the best in Exact-Match, and competitive with
RAkEL and MLkNN in Accuracy and Macro-F1. In Accuracy and Micro-F1, RAkEL works the best,
while MLkNN and PACC-LDF follows. To compare the performance of multiple methods on multiple
datasets, we conducted the Friedman test [10] aiming to reject the null-hypothesis as equal performance
among the comparing methods. Furthermore, since the null-hypothesis is rejected by the Friedman
test in terms of all the metrics (Statistic FF of Exact-Match, Accuracy, Macro-F1 and Macro-F1 are
8.8995, 3.2960, 2.9237 and 8.5074, respectively, higher than the critical value 2.8805 with significance
level α = 0.05), Nemenyi test [25] was conducted for pairwise comparison in classification performance.
According to [10], the performance of two methods is regarded as significantly different if their average
ranks differ by at least the critical difference (CD). Figure 10 shows the CD diagrams for four evaluation
metrics at 0.05 significance level. In each subfigure, the CD is given above the axis, where the averaged
rank is marked. In Figure 10, algorithms which are not significantly different are connected by a thick line.
The test said that PACC-LDF is significantly better than both MLkNN and HOMER in Exact-Match
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Fig. 10: CD diagrams (0.05 significance level) of four comparing methods in four evaluation metrics. The
performance of two methods is regarded as significantly different if their average ranks differ by at least
the Critical Difference.

Table 6: Learning and prediction time (in seconds) of eight comparing methods on twelve datasets.

Method
Learning time

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
MLkNN 0.680 12.594 5.506 1.148 3.412 0.769 3.508 6.404 110.673 356.076 39.467 42.202

RAkEL 3.541 62.611 40.115 117.877 9.650 49.955 693.616 559.051 3408.508 5954.040 7744.956 2035.276
HOMER 0.758 3.936 3.259 2.873 2.180 32.025 109.900 68.922 78.163 95.862 670.111 302.119
BR 0.264 2.623 2.774 2.468 2.726 157.696 118.021 161.566 217.546 523.935 1078.550 779.548
CC 0.260 2.554 2.580 2.346 1.819 167.315 145.068 175.858 188.427 273.912 1231.735 311.401
BCC 0.339 3.736 2.884 2.843 1.915 157.834 129.547 168.368 190.946 254.457 1068.095 211.065
PACC 0.406 3.742 2.935 2.791 1.969 164.628 128.109 175.168 191.379 271.635 1151.284 299.956
PACC-LDF 0.430 4.074 2.315 1.043 2.403 3.763 12.224 40.733 180.480 810.881 199.482 2020.880

Method
Prediction time

Emotions Scene Yeast Birds Genbase Medical Enron Languagelog Rcv1s1 Corel16k1 Bibtex Corel5k
MLkNN 0.050 2.833 1.131 0.192 0.660 0.072 0.734 1.420 54.888 174.226 18.619 18.501
RAkEL 0.007 0.050 0.087 0.046 0.109 0.680 1.268 1.944 4.305 7.201 33.380 8.660
HOMER 0.003 0.022 0.028 0.012 0.049 0.167 0.643 0.339 1.853 16.772 21.503 3.462

BR 0.006 0.017 0.045 0.041 0.170 0.477 1.297 1.605 18.280 89.277 48.485 205.449
CC 0.007 0.024 0.041 0.036 0.172 0.477 1.325 2.143 30.853 92.732 50.062 223.149
BCC 0.007 0.032 0.055 0.041 0.180 0.482 1.265 2.278 27.654 74.457 54.983 174.232
PACC 0.009 0.036 0.052 0.042 0.239 0.490 1.246 2.104 29.328 98.745 29.034 195.372
PACC-LDF 0.007 0.031 0.043 0.020 0.030 0.140 0.373 0.759 3.024 27.121 15.845 73.235

and Macro-F1. However, there was no significant difference between PACC-LDF and other methods in
Accuracy and Micro-F1.

Table 6 summarizes the Learning and Prediction time of eight comparing methods. Over all the
methods, MLkNN needed the least training time due to its lazy strategy, while HOMER cost the least
time in the prediction phase as it has sublinear time complexity with respect to the number of labels.
RAkEL consumed the largest training time in all datasets except for the Medical dataset in spite that
it employs the simple decision tree as its baseline classifier. The high complexity of RAkEL probably
arises from its ensemble strategy and the LC models for modeling label correlations. For the CC-based
methods, significant reduction of both learning and prediction time can be observed by employing LDF.
Indeed, on average 60% of features were removed in two balanced datasets, Scene and Emotions, while
at least 80% of features were eliminated in the other datasets, leading to a remarkable reduction in
time complexity. However, PACC-LDF consumed more time in Corel16k1 and Corel5k than CC-based
method. It is probably because feature selection dominates the time complexity in these two datasets. In
total, PACC-LDF is one of good choices for MLC when the exact matching is expected and less executing
time is demanding.

7.4.3 Results of feature selection

From Fig. 11, we can confirm the effectiveness of the proposed Label-Dependent Feature (LDF) selection
approach. In terms of Exact-Match, the performances of CC-based methods have been significantly
improved in most of datasets, especially in the large-scale datasets. For example, in the Corel5k dataset,
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Fig. 11: Comparison of CC-based methods with their LDF variants in Exact-Match. For each dataset,
the values in Exact-Match have been normalized by dividing the lowest value in the dataset.

Table 7: Wilcoxon signed-ranks test with significance level α = 0.05 for CC-based methods against their
LDF variants in terms of four evaluation metrics (pα-values are shown in brackets). A “win” denotes the
existence of a significant difference.

Comparing methods Exact-Match Accuracy Macro-F1 Micro-F1
BR-LDF vs. BR win[7.7e-3] tie[2.3e-1] tie[4.7e-2] tie[7.4e-2]
CC-LDF vs. CC win[7.7e-3] win[7.7e-3] tie[4.7e-2] win[7.7e-3]
BCC-LDF vs. BCC win[7.7e-3] tie[4.3e-2] tie[2.6e-1] tie[1.7e-1]
PACC-LDF vs. PACC win[7.7e-3] win[7.7e-3] tie[9.7e-2] tie[1.5e-2]

PACC-LDF works more than 40% better than PACC, and even 4 times better than BR, demonstrating
the performance superiority of selecting label-dependent features for such a large-scale dataset. According
to Fig. 11, CC-based methods with LDF achieve 9.4% performance improvement on average in Exact-
Match, compared with the original methods. The effectiveness of LDF is also confirmed by Table 7,
where the results of Wilcoxon signed-ranks test [10] are shown. The Wilcoxon signed-ranks test was
conducted sixteen times, each time on one CC-based method with its LDF counterpart. According the
results of Wilcoxon test, all the LDF variants outperform the original methods in Exact-Match, and
obtain comparable results in other evaluation metrics.

In addition, to demonstrate the effectiveness of the proposed LDF, also meaning the feature selection
algorithm for LDF, we compared LDF with three feature selection approaches, Gain Ratio (GR) [15],
ReliefF [16] and Wrapper [18], on the Emotions and Medical datasets. As a classifier, PACC with ℓ2
regularied logistic regression was chosen. In these feature selection algorithms, backward greedy stepwise
search is applied to find the relevant features for each label individually. In order to reduce the time cost of
Wrapper, top 50% (emotions) and 10% (medical) relevant features were selected by a filter algorithm [40],
before applying the wrapper algorithm [18]. The percentage of features is increased from 0.05 to 0.5 by
step 0.05. Fig. 12 shows the experimental results on the two datasets in terms of four evaluation metrics.
As shown in Fig. 12, LDF consistently works better than the other algorithms. Wrapper is the second
best algorithm, and is competitive with LDF in Macro-F1. ReliefF performs better than Gain Ratio (GR)
in most of cases, and can even be comparable with LDF and Wrapper in some cases, but it is sensitive
to the number of selected features. In terms of time complexity, ReliefF, GR and LDF have the similar
time cost, while Wrapper needs more than hundreds of execution time than the other algorithms.

8 Conclusion and future work

In this paper we have proposed polytree-augmented classifier chains with label-dependent features in
order to achieve a better classification accuracy and lower computational cost compared with other pop-
ular MLC methods. As verified by the experimental results, the proposed PACC method outperformed
other CC-based methods in Exact-Match. In addition, the two-stage label-dependent feature selection
approach, LDF, contributed to the improvement of performance and reduction of executing time for
PACC and other CC-based methods. In the future work, we consider to conduct dimension reduction in
the label space, in order to further decrease the computational complexity of MLC methods and improve
their scalability for large-scale datasets.
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Fig. 12: Comparison of LDF with three conventional feature selection algorithms on the Emotions (the
top row) and Medical (the bottom row) datasets. The percentage of selected features is increased from
0.05 to 0.5 by step 0.05. Note that Wrapper and LDF are independent of the percentage of features
because Wrapper selects the feature subset which leads to the best performance, and LDF determines
the number of label-specific features (on average, 27.3% for Emotions, 10.4% for Medical) by (19).
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