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Multi-label learning deals with data associated with multiple labels simultaneously. Like other

data mining and machine learning tasks, multi-label learning also suffers from the curse of di-
mensionality. Dimensionality reduction has been studied for many years, however, multi-label
dimensionality reduction remains almost untouched. In this paper, we propose a multi-label di-

mensionality reduction method, MDDM, with two kinds of projection strategies, attempting to

project the original data into a lower-dimensional feature space maximizing the dependence be-
tween the original feature description and the associated class labels. Based on the Hilbert-Schmidt

Independence Criterion, we derive a eigen-decomposition problem which enables the dimension-
ality reduction process to be efficient. Experiments validate the performance of MDDM.

Categories and Subject Descriptors: H.2.8 [Database Management]: Data Mining; I.2.6 [Ar-
tificial Intelligence]: Learning

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Dimensionality reduction, multi-label learning

1. INTRODUCTION

In traditional supervised learning, each instance is associated with one label that
indicates its concept class belongingness. In many real-world problems, however,
one object usually inheres multiple concepts simultaneously. For example, in text
categorization, a document on national health service belongs to several predefined
topics such as government and health simultaneously; in image or video annotation,
an image showing a tiger in woods is associated with several annotated words such
as tiger and trees simultaneously. One label per instance is out of its capability to
describe such scenario, and therefore multi-label learning has thus attracted much
attention. Under the framework of multi-label learning, each instance is associated
with multiple labels, indicating the concepts it belongs to. Multi-label learning
has already been applied to web page classification [Ueda and Saito 2003; Kazawa
et al. 2005; Zhang and Zhou 2007], text categorization [Schapire and Singer 2000;
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Yu et al. 2005; Zhang and Zhou 2006], scene classification [Boutell et al. 2004; Zhou
and Zhang 2007], image and video annotation [Kang et al. 2006; Qi et al. 2007],
bioinformatics [Elisseeff and Weston 2002; Barutcuoglu et al. 2006], association rule
mining [Thabtah et al. 2004], etc.

The curse of dimensionality often causes serious problems when learning with
high-dimensional data, and thus a lot of dimensionality reduction methods have
been developed. Depending on whether the label information is used, those meth-
ods can be classified into two categories, i.e., unsupervised and supervised. A repre-
sentative of unsupervised dimensionality reduction methods is PCA [Jolliffe 1986],
which aims at identifying a lower-dimensional space maximizing the variance among
data. Some recent advances include nonlinear dimensionality reduction methods
such as ISOMAP [Tenenbaum et al. 2000], LLE [Roweis and Saul 2000], Laplacian
Eigenmap [Belkin and Niyogi 2002], LPP [He and Niyogi 2004], etc., which aim
at preserving the manifold structure. A representative of supervised dimension-
ality reduction methods is LDA [Fisher 1936], which aims at identifying a lower-
dimensional space minimizing the inter-class similarity while maximizing the intra-
class similarity simultaneously. Other popular supervised dimensionality reduction
methods include PLS [Wold 1985], CCA [Hardoon et al. 2004], etc. PLS finds or-
thogonal projection directions for the input by maximizing its covariance with the
output, while CCA extracts the representation of the object by correlating linear
relationships between two views of the object.

In spite of the fact that multi-label learning tasks usually involve high-dimensional
data, multi-label dimensionality reduction remains almost untouched. In this paper,
we propose a multi-label dimensionality reduction method called MDDM (Multi-
label Dimensionality reduction via Dependence Maximization) which tries to iden-
tify a lower-dimensional space maximizing the dependence between the original
feature description and class labels associated with the same object. We adopt the
Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al. 2005] to measure
the dependence, considering its simplicity and neat theoretical properties such as
exponential convergence. We derive an eigen-decomposition problem for MDDM,
which makes the multi-label dimensionality reduction process both effective and
efficient. The superior performance of the proposed MDDM method is validated
by experiments on a diversity of multi-label tasks.

The rest of the paper is organized as follows. In Section 2 we reviews some related
work. Then, we present the MDDM method and report on experiments in Section
3 and 4, respectively, which is followed by the conclusion in Section 5.

2. RELATED WORK

An intuitive approach to multi-label learning is to decompose the task into a num-
ber of binary classification problems, each for one class [Joachims 1998; Yang 1999;
Boutell et al. 2004]. For example, Boutell et al. [2004] applied multi-label learning
techniques to scene classification. They decomposed the multi-label learning prob-
lem into multiple independent binary classification problems (one per category).
In each classification problem, examples associated with the corresponding cate-
gory are regarded as positive and other examples are regarded as negative. They
also provided various labeling criteria to predict a set of categories for each test
ACM Journal Name, Vol. TBD, No. TBD, month 2010.
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instance based on its output on each binary classifier. Such methods, however,
usually suffer from the deficiency that the correlation among the class labels is not
taken into account. Another deficiency lies in the fact that when there are lots
of class labels, the number of binary classifiers needs to be generated may be too
large, which may cause the problems of sparse training samples and imbalance class
distribution. Zhang and Zhou [2007] extended the lazy learning algorithm, kNN,
to a multi-label version, ML-kNN. It employs label prior probabilities gained from
each example’s k nearest neighbors and uses maximum a posteriori (MAP) prin-
ciple to determine labels. This method overcomes the problem of imbalance class
distribution contrary to the original kNN. Many other multi-label learning methods
try to exploit the correlation among the class labels. Examples include methods
based on probabilistic generative models [McCallum 1999; Ueda and Saito 2003],
maximum entropy methods [Ghamrawi and McCallum 2005; Zhu et al. 2005], and
several other recent methods. Liu et al. [2006] presented a semi-supervised multi-
label learning method to exploit unlabeled data as well as category correlations,
based on constrained non-negative matrix factorization. Correlative Multi-Label
(CML), proposed in [Qi et al. 2007], simultaneously models both the individual
labels and their interactions in a single formulation. Sun et al. [2008] employed
hypergraph spectral learning to solve multi-label problems.

Some multi-label learning methods work by transforming the task into a ranking
problem, trying to rank the labels in such an order that for each object, the proper
labels are ranked before the other labels. Representative methods of this category
include BoosTexter [Schapire and Singer 2000], RankSVM [Elisseeff and Weston
2002], etc.. BoosTexter is extended from the popular ensemble learning method
AdaBoost. In the training phase, BoosTexter maintains a set of weights over both
training examples and their labels, where training examples and their corresponding
labels that are hard (easy) to predict correctly get incrementally higher (lower)
weights. RankSVM defines a specific cost function and the corresponding margin
for multi-label models in order to solve multi-label problems.

Other related works include multi-task learning [Bakker and Heskes 2003; Ando
and Zhang 2005], which learns many related tasks together by exploring their de-
pendency. Recently there are some works on multi-task feature selection [Obozinski
et al. 2006; Argyriou et al. 2008; Liu et al. 2009]. Typically, the l2,1-norm regular-
ization is used to select a set of common features shared across all the tasks.

As mentioned before, although many multi-label learning tasks involve high-
dimensional data, few works address the problem of multi-label dimensionality re-
duction. Direct application of existing dimensionality reduction methods to multi-
label tasks could not result in good performance. As for unsupervised dimension-
ality reduction methods, they do not take labels into account and thus the label
information in multi-label tasks is ignored. As for LDA, one possible way to extend
to multi-label learning is to treat every combination of labels as a class. Such an
extension, however, suffers from the explosion of the possible combinations of labels
(e.g., for n class labels there are 2n number of combinations) and thus is not feasible
when there are lots of labels. CCA can be applied to multi-label dimensionality
reduction if the features and the labels are treated as the two views of the object.
When extending CCA to kernel CCA, however, a regularization term is needed to
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avoid trivial solutions [Bach and Jordan 2002]. PLS, similar to CCA, also ignores
the correlation between labels and it could not find a space with a larger dimen-
sionality than the number of labels [Tikhonov and Arsenin 1977]. To the best of
our knowledge, the only relevant work is the MLSI method described in [Yu et al.
2005], also known as MORP in [Yu et al. 2006]. This is a multi-label extension of
Latent Semantic Indexing (LSI), a popular method in information retrieval. MLSI
obtains a new feature space which captures both the information of the original
feature space and the label space. It has been shown that MLSI works well on a
number of tasks [Yu et al. 2005; Yu et al. 2006].

3. THE MDDM METHOD

3.1 Uncorrelated Projection Dimensionality Reduction

3.1.1 Linear case. Let X = RD denote the feature space and there is a label set
Θ including M labels. The proper labels associated with an instance x constitute
a subset of Θ, which can be represented as a M -dimensional binary vector y, with
1 indicating that the instance has the corresponding label and 0 otherwise. All the
possible outputs constitute the output space Y = {0, 1}M . Given a multi-label data
set S = {(x1,y1), · · · , (xN ,yN )}, the goal is to learn from S a function h : X → Y
which is able to predict proper labels for unseen instances.

Motivated by the consideration that there should exist some relation between the
feature description and the labels associated with the same object, we attempt to
find a lower-dimensional feature space in which the dependence between the input
and output is maximized. Denote the projection vector as p. An instance x is
projected into a new space by φ(x) = pTx and the kernel function induced by this
space is

k(xi,xj) , 〈φ(xi), φ(xj)〉 = 〈pTxi,p
Txj〉. (1)

For the output, y ∈ Y, we first consider the simplest kernel function, i.e., the
linear kernel

l(yi,yj) , 〈yi,yj〉. (2)

Those more comprehensive kernels for Y and their effect in the dimensionality
reduction will be discussed in Section 3.3. Given {(x1,y1), · · · , (xN ,yN )} with
joint distribution Pxy, we can define the kernel matrix for feature space as K =
[Kij ]N×N , Kij = k(xi,xj) and the kernel matrix for label space as L = [Lij ]N×N ,
Lij = l(yi,yj). Then, we try to maximize the dependence between the feature
description and the class labels.

The Hilbert-Schmidt Independence Criterion, HSIC [Gretton et al. 2005], com-
putes the square of the norm of the cross-covariance operator over the domain X×Y
in Hilbert Space, which has been applied to several machine learning tasks recently
as a useful measure of dependence [Song et al. 2007; Song et al. 2008]. Due to its
simplicity and neat theoretical properties, we employ it here for our purpose. An
empirical estimate of HSIC [Gretton et al. 2005] is

HSIC(F ,Y,Pxy) = (N − 1)−2tr (HKHL) , (3)

where tr(·) is the trace of a matrix and H = I− 1
N eeT, e is a all-one column vector.

ACM Journal Name, Vol. TBD, No. TBD, month 2010.
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Since the normalization term in Eq. 3 does not affect the optimization procedure,
we can drop it and only consider tr (HKHL). Denoting X = [x1, · · · ,xN ] and
Y = [y1, · · · ,yN ], we have φ(X) = pTX, K = 〈φ(X), φ(X)〉 = XTppTX and
L = Y TY . We can rewrite the optimization procedure as searching for the optimal
linear projection

p∗ = arg max
p

tr
(
HXTppTXHL

)
. (4)

To avoid the scaling problem, we add the constraint that the l2-norm of p should
be 1. Therefore, we get the optimization problem

{
max

p
tr

(
HXTppTXHL

)

s.t. pTp = 1 .
(5)

Notice that

tr
(
HXTppTXHL

)
= pT

(
XHLHXT

)
p . (6)

Since XHLHXT is symmetric, the eigenvalues are all real. If the eigenvalues of
XHLHXT are sorted as λ1 ≥ · · · ≥ λD, then the optimal p∗ is the normalized
eigenvector corresponding to the largest eigenvalue, λ1.

To find the following projection direction which maximizes the correlation be-
tween the feature space and label space, we require that it should be orthonormal
to the previous projection directions. Suppose we want to reduce the original space
to a d-dimensional space, F , and denote P = [p1, · · · ,pd] (d ¿ D). As the previous
requirement, pT

i pj = δij (1 ≤ i, j ≤ d), where

δij =
{

1 if i = j
0 if i 6= j .

(7)

Therefore, p∗i ’s (1 ≤ i ≤ d) are the normalized eigenvectors corresponding to the
largest d eigenvalues, i.e., from λ1 to λd, and they form the basis spanning the
new space F . Note that if the rank of L is r then λi (i > r) are all zeros. If the
projection P ∗ has been obtained, then the corresponding HSIC value is

HSIC =
d∑

i=1

λi . (8)

Since the eigenvalues reflect the contribution of the corresponding dimensions,
we can control d by setting a threshold thr (0 ≤ thr ≤ 1) and then choose the first
d eigenvectors such that

d∑

i=1

λi ≥ thr ×
(

D∑

i=1

λi

)
. (9)

Thus, the optimization problem reduces to deriving eigenvalues of a D×D matrix
and the computational complexity is O(dD2) for obtaining the largest d eigenvalues.
The Pseudo-code of the MDDM method is shown in Fig. 1.

Note that HSIC is just one among the many choices we can take to measure
the dependence. Other measures, such as Kullback-Leibler divergence [Davis et al.
2007] can also be applied to the MDDM method with careful design. In this paper
we focus on HSIC and the study on alternative measures is left for future work.

ACM Journal Name, Vol. TBD, No. TBD, month 2010.
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MDDM(X, Y , d or thr)

Input:
X : D ×N feature matrix
Y : M ×N label matrix
d : the dimensionality to be reduced to
thr: a threshold

Process:
1 Construct the label kernel matrix L.
2 Calculate XHLHXT.
3 if d is given
4 Do eigen-decomposition on XHLHXT, then construct D × d matrix

P ∗ whose columns are composed by the eigenvectors corresponding to
the largest d eigenvalues.

5 else (i.e., thr is given)

6 Construct D × r matrix P̃ ∗ in a way similar to Step 4 where r is the
rank of L, then choose the first d eigenvectors that enable

∑d
i=1 λi ≥

thr ×
(∑D

i=1 λi

)
to compose P ∗.

7 end if
Output:

P ∗: the projection from RD to Rd

Fig. 1. Pseudo-code of the MDDM method

3.1.2 Nonlinear case. In this subsection, we consider the problem of nonlinear
multi-label dimensionality reduction. Firstly an instance x is mapped into a Re-
producing Kernel Hilbert Space (RKHS) Q by a nonlinear positive semi-definite
function ϕ : x 7→ ϕ(x) and Q is the corresponding kernel matrix of Q for training
data, i.e., Qij = 〈ϕ(xi), ϕ(xj)〉. Denote the subspace spanned by ϕ(xi), 1 ≤ i ≤ N ,
as Φ. Then for all q ∈ Q, it can be expressed as q =

∑N
i=1 ciϕ(xi) + q⊥ where q⊥

is orthogonal to Φ. The projection of ϕ(xi) by q can be written as

φ(xi) = 〈ϕ(xi), q〉 =

〈
ϕ(xi),

N∑

j=1

cjϕ(xj)

〉
=

N∑

j=1

cj 〈ϕ(xi), ϕ(xj)〉 = cTQ·i (10)

where c = [c1, c2, · · · , cN ]T and Q·i is the i-th column of Q. Similar to kernel PCA,
we only need to consider the subspace of Q that contains the span of the data, i.e.,
q can be expressed as q =

∑N
i=1 ciϕ(xi).

Then, the kernel function between two instances in the projected feature space
is

k(xi,xj) =
〈〈ϕ(xi), q〉, 〈ϕ(xj), q〉

〉
=

〈
cTQ·i, c

TQ·j
〉
. (11)

Therefore, the kernel matrix of feature space can be expressed as K = QccTQ. The
l2-norm constraint on q becomes ‖q‖2 = cTQc = 1. Thus we have the optimization
problem

{
max

c
tr

(
HQccTQHL

)

s.t. cTQc = 1 .
(12)
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Since tr
(
HQccTQHL

)
= cTQHLHQc, by Lagrange method, this optimization

problem is equivalent to the general eigen-decomposition problem

QHLHQc = λQc . (13)

Thus, the optimal c∗ is the eigenvector corresponding to the largest eigenvalue of
the general eigen-decomposition problem.

For an unseen instance x′, the projection φ(x′) is expressed as

φ(x′) = 〈ϕ(x′), q〉 =
N∑

i=1

ci 〈ϕ(xi), ϕ(x′)〉 = cTk(X, x′) (14)

where k(X, x′) is [k(x1,x
′), · · · , k(xN ,x′)]T.

If the reduced feature space, F , has dimension d, we can get the coefficient
matrix C = [c1, · · · , cd] with the constraint cT

i Qcj = δij . Similar to the linear case
we know ci is the eigenvector corresponding to the i-th largest eigenvalue of the
general eigen-decomposition problem. The HSIC between feature space and label
space is the sum of the largest d eigenvalues. Since QHLHQ is an N ×N matrix,
the computational complexity is O(dN2) for obtaining the largest d eigenvalues.
If N < D, linear dimensionality reduction can also adopt this formulation where
Q = XTX.

3.2 Uncorrelated Subspace Dimensionality Reduction

3.2.1 Linear case. In Section 3.1, we study MDDM to find a subspace when the
projection directions are orthonormal, i.e., pT

i pj = δij . Such projection strategy,
however, will still remain some redundant information in the lower-dimensional
data set [Chen et al. 2008]. In order to remove that redundant information in
the reduced subspace, we hope that instances in the lower-dimensional space have
uncorrelated features.

Let’s still use P as the projection matrix from the original space to a lower-
dimensional space F . Here we assume that we have centered data, i.e.

∑
i xi = 0.

It can be achieved by a simple axis translation. We want the projected features to
be uncorrelated, i.e. Cor(pT

i X, pT
j X) = δij for 1 ≤ i, j ≤ d. Thus, we get the new

constraint,

pT
i XXTpj = δij (1 ≤ i, j ≤ d) . (15)

The projected features found uncorrelated on the training set are probably not
uncorrelated on the test set. For generality, we add the regularization term to the
constraint, i.e., pT

i

(
µXXT + (1− µ)I

)
pj = δij , where µ ∈ [0, 1] is a pre-defined

parameter to control the importance between two constraints. Note when µ = 0, the
constraint requires the projections to be orthonormal and when µ = 1, the projected
features are uncorrelated on the training data. Based on the basic assumption that
the required projection P should make the input space have high dependence with
the output space, the optimization problem of uncorrelated subspace dimensionality
reduction can be written as{

max
P

tr
(
HXTPPTXHL

)

s.t. pT
i

(
µXXT + (1− µ)I

)
pj = δij (1 ≤ i, j ≤ d) .

(16)
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From the analysis in Section 3.1, p∗i is the eigenvector corresponding to the i-th
largest eigenvalue of the general eigen-decomposition problem

XHLHXTp = λ
(
µXXT + (1− µ)I

)
p . (17)

For clarity, we denote the MDDM method with uncorrelated projection con-
straint, PTP = I, as MDDMp, and that with uncorrelated feature constraint,
P

(
µXXT + (1− µ)I

)
PT = I, as MDDMf .

3.2.2 Nonlinear case. Similar to Subsection 3.1.2, we can extend linear MDDMf

to the nonlinear case. Also assume x is first imaged into an RKHS Q by ϕ and
then projected via a function q ∈ Q as φ(x) = 〈ϕ(x), q〉. Similar to the linear case,
here we assume Q is centered, Qe = eTQ = 0. As the discussion in Section 3.1.2,
q =

∑N
i=1 ciϕ(xi). Therefore, the uncorrelated requirement in Eq. 15 is rewritten

as cT
i QQcj = δij . Similarly, a regularization term is added for generality and the

constraint becomes

cT
i (µQQ + (1− µ)Q) cj = δij . (18)

The optimization problem now becomes
{

max
C

tr
(
HQTCCTQHL

)

s.t. cT
i

(
µQQ + (1− µ)Q

)
cj = δij (1 ≤ i, j ≤ d) .

(19)

Finally, we can get c∗i which is the eigenvector corresponding to the i-th largest
eigenvalue of the general eigen-decomposition problem

QHLHQ c = λ (µQQ + (1− µ)Q) c . (20)

3.3 Taking Label Correlation into Consideration

Note that in the above analysis, we used the inner product in the original label
space Y as the label kernel function, i.e., l(yi,yj) = 〈yi,yj〉. This simple linear
kernel does not take the correlation between labels into consideration. For that
purpose, we can define more complex kernel function. If y is projected by an
intrinsic mapping function π to a new RKHS G with the kernel function l(yi,yj) =
〈π(yi), π(yj)〉, then the HSIC of x and y with kernel function k(·, ·) and l(·, ·) is
HSIC(F ,G,Pxy) = tr (HKHL). For example, to take the correlation of labels
into consideration, B = [Bst]M×M can be introduced, where Bst (1 ≤ s, t ≤ M)
indicates the correlation between labels θs and θt. Then, the label kernel matrix
is obtained by L = Y TBY . In our previous discussion the labels are assumed to
be independent, thus B = I and L = Y TY . If B can really reflect the correlation
between labels, the dimensionality reduction on feature space could derive better
results. However, how to measure the correlation between labels, i.e., to get a
proper B, is still a difficult problem beyond our discussion. One possible way was
proposed in [Liu et al. 2006] where each label θs was treated as an N × 1 binary
vector, θs, with the i-th element θi

s indicating whether xi has the label θs, and
then rbf kernel was used to get B.

4. EXPERIMENTS

In our experiments, we compare our MDDM methods, MDDMp and MDDMf ,
with other dimensionality reduction methods, including PCA, LPP, PLS, CCA and
ACM Journal Name, Vol. TBD, No. TBD, month 2010.
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MLSI. In MDDMf , µ is set as 0.5. In LPP, the number of nearest neighbors used for
constructing adjacency graph is as same as that used in ML-kNN for classification.
In kernel CCA, the regularization parameter is set to be 0.5. In MLSI, the parame-
ter controlling the tradeoff between feature and label is set to 0.5 as recommended
in [Yu et al. 2005; Yu et al. 2006]. The dimensionality of the lower-dimensional
space, d, is decided by setting thr = 99.9% in Fig. 1. All dimensionality reduction
methods reduce to the same dimensionality. The performance under different d
values will be reported later in this section. We also compare with a simple multi-
label feature selection method, denoted as SEL, which sequentially selects the most
discriminative features. Here the discriminative capability is defined as same as
that used in LDA. For the k-th feature of x, xk, its discriminative capability can
be expressed as

∑M
m=1

∑
x∈Ωm

(
xk −∆k

m

)2

∑M
m=1 (∆k

m −∆k)2
(21)

where Ωm is the subset containing all the instances with the m-th label, Nm is the
cardinality of Ωm, ∆k

m =
( ∑

x∈Ωm
xk

)/
Nm, ∆k =

( ∑M
m=1

∑
x∈Ωm

xk
)/( ∑M

m=1 Nm

)
.

The number of selected features is d. We use the performance in the original space
as the baseline and denoted as ORI. The base classifiers used are ML-kNN with
default setting k = 10 [Zhang and Zhou 2007] and binary SVM with the regular-
ization parameter C selected from the set {10t}2t=−2 by 5-fold cross validation on
training set.

4.1 Application Tasks

We consider three real application tasks, including web page classification, image
annotation and text categorization.

4.1.1 Web page classification. First, a collection of eleven data sets1 are used
in this experiment. Using the “Bag-of-Words” representation [Dumais et al. 1998],
Ueda and Saito [2003] tried to categorize real Web pages linked from the “ya-
hoo.com” domain, which consists of 14 top-level categories (i.e. “Arts&Humanities”,
“Business&Economy”, etc.) and each category is classified into a number of second-
level subcategories. By focusing on the second-level categories, they tested 11 out
of the 14 independent text categorization problems. For each problem, the training
set contains 2,000 documents while the test set contains 3,000 documents. About
20% ∼ 45% of them belong to multiple subcategories simultaneously. In this task,
the kernel for MDDMp, MDDMf , PCA, CCA, PLS and binary SVM is linear kernel.

4.1.2 Image annotation. The second task is automatic image annotation on
Corel database2. Each image has been segmented into several regions and tagged
with several words. The regions with similar features are clustered into 500 clus-
ters, known as blobs [Duygulu et al. 2002]. Each image is then represented by a
500-dimensional binary vector with each dimension indicating whether the corre-
sponding cluster appears in the image. 374 words are used for annotation and the

1http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz
2http://kobus.ca/research/data/eccv_2002

ACM Journal Name, Vol. TBD, No. TBD, month 2010.
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words with less than 50 positive assignments are filtered out. Each remaining anno-
tation word is regarded as a label. Details of the data set can be found in [Duygulu
et al. 2002; Kang et al. 2006]. The original data set is divided into a training set
containing 4,500 images and a test set containing 500 images. In this experiment,
we merge them into one data set containing 5,000 images and then perform 5-fold
cross-validation. In this task, the kernel for MDDMp, MDDMf , PCA, CCA, PLS
and binary SVM is rbf kernel. The kernel width is selected by 5-fold cross validation
from the set {100.5t}2t=−2 on training set.

4.1.3 Text categorization. In this experiment, we perform text categorization
using rcv1v2 database [Lewis et al. 2004]. Here we use the five subsets of the
rcv1v2 data set3. Each subset contains a training set and a test set, each including
3,000 documents. On every subset, features with less than five occurrences and
topics with less than 50 positive assignments are filtered out. Each remaining topic
is treated as a label. Around 4,000 features and 50 labels are left. Note that the
number of examples in this subset (6,000) is much larger than in previous tasks in
this paper, and the dimensionality (4,238) is also very high. In this task, the kernel
for MDDMp, MDDMf , PCA, CCA, PLS and binary SVM is linear kernel.

4.2 Evaluation Metrics

Multi-label learning systems require more complicated evaluation criteria than tra-
ditional single-label systems. In this section we briefly summarize the criteria used
for performance evaluation from various perspectives. In this paper we employ two
sets of criteria to evaluate the performance of label set prediction as well as the
performance of label ranking.

The first group of evaluation criteria concern with the performance on label set
prediction for each instance, based on the label prediction function h : X → Y of
each algorithm. Let h(xi) be the binary label vector predicted by an multi-label
classifier for instance xi.

(1) Hamming loss (HL): Evaluates how many times an instance-label pair is mis-
classified.

HL(h, S) =
1
N

N∑

i=1

‖h(xi)⊕ yi‖1
M

where ⊕ stands for the XOR operation and ‖·‖1 is the l1-norm. The smaller the
value, the better the performance. This is one of the most important multi-label
criteria, and has been used in many works.

(2) Macro-F1 (macroF1): Averages the F1 measure on the predictions of different
labels.

macroF1(h, S) =
1
M

M∑
m=1

2×∑N
i=1 hm(xi)ym

i∑N
i=1 ym

i +
∑N

i=1 h(xi)m

where ym is the m-th element of y and hm(x) is the m-th element of hm(x).
The larger the value, the better the performance.

3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multi-label.html
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(3) Micro-F1 (microF1): Calculates the F1 measure on the predictions of different
labels as a whole.

microF1(h, S) =
2×∑N

i=1 ‖h(xi)
⋂

yi‖1∑N
i=1 ‖yi‖1 +

∑N
i=1 ‖h(xi)‖1

The larger the value, the better the performance.

The second group of evaluation criteria concern with the label ranking perfor-
mance for each instance, based on the real-valued output function f : X ×Θ → R
of each algorithm. f(·, ·) can be transformed into a ranking function rankf (·, ·),
which maps the outputs of f(xi, θs) for any θs ∈ Θ to {1, 2, · · · ,M} such that if
f(xi, θs) > f(xi, θt) then rankf (xi, θs) < rankf (xi, θt). We use Θi to indicate the
subset of Θ corresponding to yi. These criteria have been used in [Schapire and
Singer 2000; Elisseeff and Weston 2002; Zhang and Zhou 2007].

(4) Ranking loss (RL): Evaluates the average fraction of label pairs that are not
correctly ordered.

RL(f, S) =
1
N

N∑

i=1

1
|Θi||Θi|

∣∣∣{(θs, θt) ∈ Θi ×Θi

∣∣f(xi, θs) ≤ f(xi, θt)}
∣∣∣

where the Θi denotes the complementary set of Θi in Θ and |·| is the cardinality
of a set. The smaller the value, the better the performance.

(5) Average Precision (AP): Evaluates the average fraction of labels ranked above
a particular label θ ∈ Θi which is actually in Θi.

AP (f, S) =
1
N

N∑

i=1

1
|Θi|

∑

θ∈Θi

|{θ′ ∈ Θi|rankf (xi, θ
′) ≤ rankf (xi, θ)}|

rankf (xi, θ)

The larger the value, the better the performance.
(6) One-error (OE): Evaluates how many times the top-ranked label is not in the

set of ground-truth labels of the instance.

OE(f, S) =
1
N

N∑

i=1

δ

([
arg max

θ∈Θ
f(xi, θ)

]
/∈ Θi

)

where δ(z) is the indicator function which equals 1 if z holds and 0 otherwise.
The smaller the value, the better the performance.

(7) Coverage (CV): Evaluates how far, on average, we need to go down the label
ranking list to cover all the ground-truth labels of the instance.

CV (f, S) =
1
N

N∑

i=1

max
θ∈Θi

rankf (xi, θ)− 1

The smaller the value, the better the performance.

To evaluate the ranking performance under each label, we also study the Area
Under ROC Curves (AUC) for each label. We treat the multi-label problem as
M binary classification problems and calculate AUC for each problem. Then the
average AUC over all the labels is recorded.
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Note that the eight criteria evaluate the performance of multi-label learning sys-
tems from different aspects. Usually few algorithms could outperform other algo-
rithms on all those criteria.

4.3 Experimental Results

First, we set the label kernel as linear and the influence of the label kernel will be
studied in Section 4.4.

The results of the compared methods on the eleven data sets in the task of web
page classification are summarized in Table I and II where ML-kNN and SVM are
used as the base classifier, respectively. On each evaluation criterion, the best result
and the results comparable with the best one are highlighted in boldface. Here the
comparability is checked by pairwise t-tests at 95% significance level. From the
tables we can see that when the base classifier is ML-kNN, MDDMp is significantly
better than all previous methods on all criteria and MDDMf also performs quite
well on all criteria except Hamming Loss. When the base classifier is SVM, MDDMp

is significantly better than all previous methods on all criteria except Micro-F1 and
MDDMf performs quite well on Micro-F1 and Macro-F1.

The results of the compared methods on the task of image annotation are tabu-
lated in Table III and IV where ML-kNN and SVM are used as the base classifier,
respectively. On this task, with either base classier, MDDM methods are among
the best performance methods.

The results of the compared methods on the task of text categorization are shown
in Table V and VI where ML-kNN and SVM are used as the base classifier, respec-
tively. On this task, MDDMp is significantly better than most previous methods
on all the evaluation criteria, no matter which base classifier is used. MDDMf ,
though slightly inferior to MDDMp, performs also quite well on most criteria.

4.4 Embedding the Label Relationship

In this section, we take the label relationship into consideration. According to the
discussion in Section 3.3, we use the matrix B to reflect the relationship between
labels and the label kernel matrix is computed as L = Y TBY . Here, similar to [Liu
et al. 2006], we assume that B is induced from rbf kernel and the kernel width is
selected via 5-fold cross-validation from the set {100.5t}2t=−2. Since only our MDDM
methods take label kernel into consideration, we compare MDDMp and MDDMf

with and without embedding the label relationships, denoted as MDDMl
p, MDDMl

f

(B = I) and MDDMk
p, MDDMk

f (B is a rbf kernel matrix), respectively. The results
on different tasks are tabulated in Table VII to XII, respectively.

From the results we can see that embedding the label relationship can improve the
performance significantly in many cases, and at least will not make the performance
worse. Note that the strategy we used for embedding label relationship at here is
quite simple, and it is expectable that greater improvement can be obtained with
better strategies. Further study on this issue is left for future work.

4.5 The Influence of d on Performance

Now we study the performance of the compared methods under different d values,
i.e., the dimensionality of the lower-dimensional space.

On web page classification and image annotation, we run experiments with d
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Table I. Results (mean±std.) on web page classification when ML-kNN is used as
base classifier (↓ indicates “the smaller the better”; ↑ indicates “the larger the better”. The

best result and the results comparable with the best one are highlighted in boldface.)

Methods HL(×101) ↓ microF1↑ macroF1 ↑ RL ↓
MDDMp 0.419±0.128 0.465±0.136 0.297±0.069 0.095±0.036
MDDMf 0.453±0.137 0.496±0.113 0.325±0.056 0.099±0.037
MLSI 0.603±0.160 0.396±0.072 0.286±0.058 0.228±0.061
CCA 0.486±0.140 0.460±0.114 0.300±0.054 0.105±0.038
PLS 0.438±0.138 0.394±0.173 0.192±0.071 0.113±0.042
PCA 0.450±0.136 0.343±0.176 0.186±0.070 0.109±0.041
LPP 0.469±0.138 0.295±0.170 0.170±0.058 0.118±0.044
SEL 0.461±0.134 0.332±0.173 0.193±0.056 0.111±0.039
ORI 0.470±0.139 0.308±0.182 0.186±0.062 0.112±0.044

Methods OE ↓ CV(×10−1) ↓ AP ↑ AUC ↑
MDDMp 0.407±0.134 0.376± 0.118 0.672±0.102 0.651±0.022
MDDMf 0.413±0.129 0.386± 0.121 0.665±0.100 0.649±0.025
MLSI 0.544±0.067 0.779± 0.192 0.510±0.065 0.633±0.019
CCA 0.456±0.138 0.402± 0.126 0.636±0.106 0.636±0.027
PLS 0.451±0.154 0.431± 0.138 0.631±0.117 0.613±0.023
PCA 0.471±0.155 0.415± 0.129 0.623±0.116 0.622±0.022
LPP 0.503±0.162 0.443± 0.132 0.597±0.120 0.584±0.030
SEL 0.484±0.153 0.422± 0.126 0.613±0.113 0.602±0.027
ORI 0.489±0.162 0.424± 0.130 0.610±0.121 0.603±0.038

Table II. Results (mean±std.) on web page classification when SVM is used as base
classifier

Methods HL(×101) ↓ microF1 ↑ macroF1 ↑ RL ↓
MDDMp 0.411±0.126 0.468± 0.132 0.299± 0.065 0.147± 0.045
MDDMf 0.483±0.152 0.493± 0.107 0.333± 0.053 0.185± 0.048
MLSI 0.514±0.113 0.334± 0.077 0.281± 0.052 0.416± 0.110
CCA 0.586±0.145 0.446± 0.105 0.292± 0.060 0.204± 0.053
PLS 0.440±0.138 0.351± 0.210 0.162± 0.062 0.261± 0.076
PCA 0.454±0.138 0.295± 0.205 0.149± 0.059 0.200± 0.066
LPP 0.480±0.144 0.239± 0.214 0.141± 0.064 0.269± 0.078
SEL 0.463±0.133 0.276± 0.181 0.167± 0.061 0.231± 0.083
ORI 0.416±0.125 0.481± 0.123 0.296± 0.066 0.177± 0.049

Methods OE ↓ CV(×10−2) ↓ AP ↑ AUC ↑
MDDMp 0.399± 0.128 0.055± 0.014 0.639± 0.101 0.716± 0.036
MDDMf 0.419± 0.123 0.069± 0.020 0.619± 0.098 0.695± 0.033
MLSI 0.600± 0.087 0.135± 0.037 0.428± 0.091 0.683± 0.026
CCA 0.457± 0.126 0.076± 0.024 0.591± 0.099 0.679± 0.033
PLS 0.467± 0.160 0.094± 0.030 0.564± 0.128 0.624± 0.020
PCA 0.512± 0.179 0.072± 0.022 0.545± 0.133 0.676± 0.045
LPP 0.539± 0.181 0.094± 0.022 0.507± 0.138 0.616± 0.041
SEL 0.544± 0.193 0.082± 0.024 0.508± 0.144 0.631± 0.037
ORI 0.411± 0.124 0.067± 0.019 0.641± 0.098 0.696± 0.033
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Table III. Results (mean±std.) on image annotation when ML-kNN is used as base
classifier (↓ indicates “the smaller the better”; ↑ indicates “the larger the better”. The best

result and the results comparable with the best one are highlighted in boldface.)

Methods HL(×101) ↓ microF1 ↑ macroF1 ↑ RL ↓
MDDMp 0.113±0.001 0.170±0.016 0.382±0.006 0.138±0.003
MDDMf 0.113±0.000 0.202±0.010 0.383±0.002 0.143±0.003
MLSI 0.115±0.000 0.002±0.001 0.344±0.005 0.170±0.004
CCA 0.114±0.000 0.020±0.007 0.350±0.005 0.162±0.004
PLS 0.115±0.000 0.046±0.010 0.353±0.005 0.152±0.003
PCA 0.114±0.001 0.066±0.006 0.360±0.006 0.143±0.004
LPP 0.114±0.001 0.032±0.005 0.354±0.006 0.159±0.003
SEL 0.115±0.001 0.027±0.005 0.353±0.006 0.158±0.003
ORI 0.115±0.001 0.030±0.008 0.353±0.006 0.160±0.005

Methods OE ↓ CV(×10−3) ↓ AP ↑ AUC ↑
MDDMp 0.631±0.014 0.097±0.002 0.329±0.010 0.600±0.004
MDDMf 0.667±0.014 0.100±0.003 0.301±0.011 0.586±0.005
MLSI 0.780±0.015 0.115±0.003 0.209±0.007 0.510±0.004
CCA 0.736±0.013 0.111±0.003 0.239±0.006 0.529±0.001
PLS 0.678±0.021 0.107±0.002 0.285±0.011 0.573±0.004
PCA 0.679±0.013 0.101±0.003 0.295±0.010 0.582±0.006
LPP 0.734±0.008 0.110±0.003 0.247±0.005 0.534±0.007
SEL 0.744±0.014 0.109±0.003 0.243±0.007 0.548±0.002
ORI 0.758±0.034 0.109±0.003 0.235±0.010 0.542±0.004

Table IV. Results (mean±std.) on image annotation when SVM is used as base
classifier

Methods HL(×101) ↓ microF1↑ macroF1 ↑ RL ↓
MDDMp 0.114±0.000 0.162±0.015 0.378±0.004 0.172±0.003
MDDMf 0.113±0.001 0.113±0.010 0.363±0.005 0.172±0.003
MLSI 0.221±0.051 0.052±0.030 0.342±0.007 0.296±0.017
CCA 0.115±0.000 0.003±0.001 0.344±0.005 0.288±0.005
PLS 0.115±0.000 0.001±0.000 0.344±0.005 0.230±0.015
PCA 0.115±0.001 0.079±0.005 0.358±0.002 0.193±0.005
LPP 0.114±0.000 0.078±0.005 0.364±0.005 0.225±0.005
SEL 0.115±0.001 0.085±0.004 0.362±0.004 0.210±0.002
ORI 0.114±0.000 0.025±0.004 0.349±0.006 0.224±0.003

Methods OE ↓ CV(×10−3) ↓ AP ↑ AUC ↑
MDDMp 0.666±0.016 0.116± 0.003 0.235±0.008 0.730±0.012
MDDMf 0.634±0.017 0.116± 0.003 0.275±0.007 0.733±0.012
MLSI 0.945±0.104 0.179± 0.007 0.091±0.031 0.500±0.010
CCA 0.637±0.025 0.178± 0.003 0.271±0.008 0.610±0.008
PLS 0.866±0.033 0.139± 0.008 0.160±0.019 0.697±0.013
PCA 0.776±0.016 0.127± 0.004 0.221±0.008 0.679±0.006
LPP 0.806±0.013 0.142± 0.004 0.170±0.005 0.630±0.014
SEL 0.833±0.012 0.132± 0.003 0.167±0.006 0.616±0.007
ORI 0.729±0.022 0.144± 0.003 0.238±0.007 0.679±0.011
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Table V. Results (mean±std.) on text categorization when ML-kNN is used as
base classifier (↓ indicates “the smaller the better”; ↑ indicates “the larger the better”. The

best result and the results comparable with the best one are highlighted in boldface.)

Methods HL(×101) ↓ microF1 ↑ macroF1 ↑ RL ↓
MDDMp 0.227±0.007 0.778±0.005 0.627±0.008 0.035±0.001
MDDMf 0.265±0.007 0.752±0.003 0.607±0.010 0.063±0.003
MLSI 0.505±0.074 0.521±0.071 0.401±0.049 0.153±0.019
CCA 0.504±0.030 0.537±0.015 0.428±0.026 0.126±0.007
PLS 0.326±0.013 0.644±0.011 0.316±0.006 0.060±0.002
PCA 0.276±0.009 0.710±0.008 0.471±0.006 0.044±0.002
LPP 0.574±0.025 0.344±0.031 0.158±0.020 0.186±0.009
SEL 0.362±0.007 0.595±0.009 0.368±0.015 0.075±0.004
ORI 0.410±0.009 0.493±0.024 0.286±0.020 0.121±0.001

Methods OE ↓ CV(×10−2) ↓ AP ↑ AUC ↑
MDDMp 0.065±0.006 0.068±0.002 0.874±0.003 0.899±0.004
MDDMf 0.089±0.010 0.103±0.004 0.828±0.004 0.820±0.003
MLSI 0.330±0.093 0.182±0.016 0.604±0.062 0.694±0.029
CCA 0.296±0.016 0.155±0.010 0.630±0.010 0.702±0.010
PLS 0.100±0.007 0.094±0.004 0.783±0.008 0.838±0.008
PCA 0.084±0.005 0.076±0.003 0.832±0.003 0.887±0.006
LPP 0.533±0.049 0.204±0.012 0.455±0.024 0.601±0.025
SEL 0.185±0.012 0.107±0.004 0.726±0.004 0.822±0.007
ORI 0.303±0.026 0.157±0.003 0.619±0.010 0.673±0.009

Table VI. Results (mean±std.) on text categorization when SVM is used as base
classifier

Methods HL ↓ microF1↑ macroF1 ↑ RL ↓
MDDMp 0.024±0.001 0.754±0.002 0.595±0.007 0.044±0.003
MDDMf 0.027±0.001 0.737±0.005 0.594±0.011 0.046±0.001
MLSI 0.110±0.033 0.388±0.064 0.355±0.043 0.179±0.036
CCA 0.109±0.006 0.387±0.017 0.383±0.016 0.207±0.014
PLS 0.031±0.001 0.653±0.006 0.321±0.012 0.071±0.002
PCA 0.029±0.001 0.673±0.006 0.374±0.014 0.052±0.003
LPP 0.051±0.001 0.215±0.031 0.117±0.017 0.358±0.032
SEL 0.037±0.001 0.561±0.011 0.304±0.024 0.107±0.009
ORI 0.024±0.001 0.738±0.004 0.589±0.010 0.046±0.001

Methods OE ↓ CV(×10−2) ↓ AP ↑ AUC ↑
MDDMp 0.068±0.008 0.080±0.004 0.860±0.006 0.941±0.005
MDDMf 0.098±0.004 0.080±0.001 0.838±0.002 0.930±0.002
MLSI 0.495±0.091 0.201±0.031 0.507±0.073 0.818±0.025
CCA 0.584±0.076 0.230±0.018 0.448±0.032 0.812±0.011
PLS 0.083±0.007 0.105±0.004 0.783±0.003 0.906±0.004
PCA 0.081±0.006 0.084±0.004 0.815±0.004 0.923±0.002
LPP 0.581±0.067 0.314±0.018 0.383±0.039 0.606±0.029
SEL 0.179±0.006 0.136±0.007 0.694±0.012 0.860±0.010
ORI 0.073±0.003 0.083±0.001 0.838±0.001 0.934±0.002
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Table VII. Results (mean±std.) of MDDM methods with/without embedding the
label relationship on web page classification when ML-kNN is used as base classifier
(↓ indicates “the smaller the better”; ↑ indicates “the larger the better”. The best result and the

results comparable with the best one are highlighted in boldface.)

Methods HL(×101) ↓ microF1 ↑ macroF1 ↑ RL(×101) ↓
MDDMl

p 0.419±0.128 0.465± 0.136 0.297± 0.069 0.953±0.358

MDDMk
p 0.415±0.129 0.474± 0.134 0.301± 0.067 0.949±0.358

MDDMl
f 0.453±0.137 0.496± 0.113 0.325± 0.056 0.989±0.368

MDDMk
f 0.447±0.139 0.498± 0.113 0.328± 0.057 0.985±0.366

Methods OE ↓ CV(×10−1) ↓ AP ↑ AUC ↑
MDDMl

p 0.407±0.134 0.376± 0.118 0.672±0.102 0.651±0.022

MDDMk
p 0.403±0.134 0.374± 0.118 0.673±0.102 0.654±0.022

MDDMl
f 0.413±0.129 0.386± 0.121 0.665±0.100 0.649±0.025

MDDMk
f 0.412±0.129 0.384± 0.121 0.666±0.100 0.651±0.025

Table VIII. Results (mean±std.) of MDDM methods with/without embedding the
label relationship on web page classification when SVM is used as base classifier

Methods HL(×101) ↓ microF1 ↑ macroF1 ↑ RL ↓
MDDMl

p 0.411±0.126 0.468±0.132 0.299±0.065 0.147±0.045

MDDMk
p 0.408±0.126 0.468±0.135 0.295±0.068 0.149±0.043

MDDMl
f 0.483±0.152 0.493±0.107 0.333±0.053 0.185±0.048

MDDMk
f 0.463±0.143 0.497±0.108 0.335±0.055 0.185±0.051

Methods OE ↓ CV(×10−1) ↓ AP ↑ AUC ↑
MDDMl

p 0.399±0.128 0.553±0.140 0.639±0.101 0.716±0.036

MDDMk
p 0.396±0.126 0.560±0.137 0.640±0.098 0.724±0.035

MDDMl
f 0.419±0.123 0.694±0.199 0.619±0.098 0.695±0.033

MDDMk
f 0.412±0.122 0.692±0.201 0.624±0.099 0.712±0.034

ranging from 1% to 100% of the dimension of the original space, with 2% as interval;
on text categorization, since the original dimension is very high, to avoid useless
costs, we run experiments with d ranging from 0.1% to 10% of the dimension of the
original space, with 0.2% as interval.4 Here we only present the results on Hamming
Loss which is arguably the most important multi-label evaluation criterion.

It can be found from Fig. 2 and 3 that when ML-kNN is the base classifier,
the performance of MDDMp is better than the compared methods on all the tasks
under most d values. On image annotation, when SVM is the base classifier, the
performance of MDDMp is worse than LPP and SEL when d is small, while MDDMp

is much more stable than LPP and SEL. It is clear that MDDMp is superior to the
compared methods for most cases.

We can also find that the performance curve on image annotation is not as smooth
as that on the other two tasks. We conjecture that this is caused by the well-known
large gap between low-level image features and high-level image semantics. In other
words, the dependence between the feature description and the label information

4Here we randomly select from the orthonormal basis of the null space when d > r.
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Table IX. Results (mean±std.) of MDDM methods with/without embedding the
label relationship on image annotation when ML-kNN is used as base classifier (↓
indicates “the smaller the better”; ↑ indicates “the larger the better”. The best result and the

results comparable with the best one are highlighted in boldface.)

Methods HL(×102) ↓ microF1 ↑ macroF1 ↑ RL ↓
MDDMl

p 0.941±0.004 0.160± 0.013 0.484± 0.006 0.117± 0.002

MDDMk
p 0.938±0.005 0.189± 0.007 0.485± 0.005 0.117± 0.002

MDDMl
f 0.942±0.009 0.199± 0.009 0.486± 0.004 0.122± 0.003

MDDMk
f 0.940±0.008 0.204± 0.007 0.487± 0.004 0.121± 0.003

Methods OE ↓ CV(×10−3) ↓ AP ↑ AUC ↑
MDDMl

p 0.635± 0.008 0.100±0.002 0.328± 0.007 0.600±0.004

MDDMk
p 0.626± 0.012 0.100±0.002 0.330± 0.007 0.604±0.004

MDDMl
f 0.662± 0.009 0.103±0.003 0.300± 0.009 0.586±0.003

MDDMk
f 0.659± 0.012 0.103±0.003 0.303± 0.009 0.590±0.004

Table X. Results (mean±std.) of MDDM methods with/without embedding the
label relationship on image annotation when SVM is used as base classifier

Methods HL(×102) ↓ microF1 ↑ macroF1 ↑ RL ↓
MDDMl

p 0.941±0.005 0.170±0.013 0.482±0.004 0.153±0.004

MDDMk
p 0.941±0.005 0.172±0.012 0.483±0.004 0.150±0.003

MDDMl
f 0.951±0.007 0.191±0.009 0.484±0.005 0.152±0.005

MDDMk
f 0.950±0.006 0.192±0.010 0.485±0.005 0.149±0.004

Methods OE ↓ CV(×10−3) ↓ AP ↑ AUC ↑
MDDMl

p 0.660±0.018 0.127±0.003 0.250±0.008 0.730±0.012

MDDMk
p 0.659±0.017 0.124±0.003 0.255±0.002 0.735±0.013

MDDMl
f 0.662±0.016 0.127±0.003 0.255±0.006 0.733±0.012

MDDMk
f 0.657±0.012 0.123±0.003 0.262±0.004 0.737±0.009

in the image annotation task is not as strong as that in the other two tasks.
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(a) Web page classification (b) Image annotation (c) Text categorization

Fig. 2. Results with different dimensionalities of the lower-dimensional space when
ML-kNN is used as base classifier
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Table XI. Results (mean±std.) of MDDM methods with/without embedding the
label relationship on text categorization when ML-kNN is used as base classifier (↓
indicates “the smaller the better”; ↑ indicates “the larger the better”. The best result and the

results comparable with the best one are highlighted in boldface.)

Methods HL(×101) ↓ microF1 ↑ macroF1 ↑ RL(×101) ↓
MDDMl

p 0.227±0.007 0.778±0.005 0.627±0.008 0.354±0.009

MDDMk
p 0.225±0.005 0.781±0.005 0.632±0.008 0.352±0.009

MDDMl
f 0.265±0.007 0.752±0.003 0.607±0.010 0.626±0.032

MDDMk
f 0.263±0.009 0.753±0.004 0.607±0.009 0.622±0.036

Methods OE(×101) ↓ CV(×10−2) ↓ AP ↑ AUC ↑
MDDMl

p 0.649±0.058 0.068±0.002 0.874±0.003 0.899±0.004

MDDMk
p 0.629±0.041 0.068±0.002 0.875±0.003 0.899±0.004

MDDMl
f 0.894±0.102 0.103±0.004 0.828±0.004 0.820±0.003

MDDMk
f 0.869±0.095 0.103±0.004 0.829±0.004 0.822±0.004

Table XII. Results (mean±std.) of MDDM methods with/without embedding the
label relationship on text categorization when SVM is used as base classifier

Methods HL(×101) ↓ microF1 ↑ macroF1 ↑ RL(×101) ↓
MDDMl

p 0.242±0.005 0.754± 0.002 0.595± 0.007 0.441±0.027

MDDMk
p 0.241±0.004 0.755± 0.002 0.596± 0.008 0.419±0.029

MDDMl
f 0.268±0.009 0.737± 0.005 0.594± 0.011 0.457±0.012

MDDMk
f 0.267±0.008 0.738± 0.003 0.595± 0.011 0.450±0.008

Methods OE(×101) ↓ CV(×10−1) ↓ AP ↑ AUC ↑
MDDMl

p 0.677±0.076 0.805±0.039 0.860±0.006 0.941±0.005

MDDMk
p 0.665±0.064 0.779±0.051 0.862±0.006 0.941±0.005

MDDMl
f 0.983±0.043 0.803±0.007 0.838±0.002 0.930±0.002

MDDMk
f 0.967±0.038 0.795±0.008 0.839±0.001 0.930±0.002
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(a) Web page classification (b) Image annotation (c) Text categorization

Fig. 3. Results with different dimensionalities of the lower-dimensional space when
SVM is used as base classifier

5. CONCLUSION

Dimensionality reduction has been studied for many years, however, few results on
multi-label dimensionality reduction have been reported. This paper extends our
ACM Journal Name, Vol. TBD, No. TBD, month 2010.
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preliminary research [Zhang and Zhou 2008], which performs multi-label dimension-
ality reduction by maximizing the dependence between the feature description and
the associated class labels. Experiments validate the performance of our proposed
MDDM method.

Different from many other dimensionality reduction methods, MDDM provides a
possibility of utilizing the relationship between labels to improve the performance
via the label matrix L encoding the label correlation. Designing a better method
for constructing L is an important future work. From the experiments we can see
the superiority of MDDM is more apparent when the base classifier is ML-kNN.
Since MDDM is designed independently to the base classifier, another important
issue to be explored in the future is to design specific multi-label dimensionality
reduction methods for SVM.
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