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Abstract.  This work proposes two versions of an Artificial Immune System 
(AIS) - a relatively recent computational intelligence paradigm – for predicting 
protein functions described in the Gene Ontology (GO).  The GO has functional 
classes (GO terms) specified in the form of a directed acyclic graph, which 
leads to a very challenging multi-label hierarchical classification problem where 
a protein can be assigned multiple classes (functions, GO terms) across several 
levels of the GO's term hierarchy. Hence, the proposed approach, called MHC-
AIS (Multi-label Hierarchical Classification with an Artificial Immune System), 
is a sophisticated classification algorithm tailored to both multi-label and 
hierarchical classification. The first version of the MHC-AIS builds a global 
classifier to predict all classes in the application domain, whilst the second 
version builds a local classifier to predict each class. In both versions of the 
MHC-AIS the classifier is expressed as a set of IF-THEN classification rules, 
which have the advantage of representing comprehensible knowledge to 
biologist users. The two MHC-AIS versions are evaluated on a dataset of DNA-
binding and ATPase proteins.  

Keywords: Artificial Immune System, Hierarchical and Multi-label Classification, 
Prediction of Protein Function. 

1   Introduction 

Artificial Immune Systems (AIS) are one of the most recent natural computing 
approaches to emerge from computer science. The immune system is a distributed 
system, capable of constructing and maintaining a dynamical and structural identity, 
learning to identify previously unseen invaders and remembering what it has learnt. 
These computational techniques have many potential applications, such as in 
distributed and adaptive control, machine learning, pattern recognition, fault and 
anomaly detection, computer security, optimization, and distributed system design [1].  

In data mining, ideally the discovered knowledge should be not only accurate, but 
also comprehensible to the user [2].  This work addresses the multi-label hierarchical 
classification task of data mining, where the goal is to discover a classification model 
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that predicts more than one class for an example (data instance) across several levels 
of a class hierarchy, based on the values of the predictor attributes for that example.   

Bioinformatics is an inter-disciplinary field, involving the areas of computer 
science, mathematics, biology,  etc. [3]. Among many bioinformatics problems, this 
paper focuses on the prediction of protein functions from information associated with 
the protein's primary sequence. As proteins often have multiple functions which are 
described hierarchically, the use of multi-label hierarchical techniques for the 
induction of classification models in Bioinformatics is a promising research area. At 
present, the biological functions that can be performed by proteins are defined in a 
structured, standardized dictionary of terms called the Gene Ontology (GO) [4]. 

The AIS algorithms proposed in this paper combine the adaptive global search of 
the AIS paradigm with advanced concepts and methods of data mining (hierarchical 
and multi-label classification), in order to solve a challenging bioinformatics problem 
(protein function prediction – assigns GO terms (classes) to proteins). The AIS 
presented in this paper discovers knowledge interpretable by the user, in the form of 
IF-THEN classification rules, unlike other methods proposed in the literature, whose 
classification model is typically a "black box" which normally does not provide any 
insight to the user about interesting hidden relationships in the data [5].   

2   Multi-label Hierarchical Classification  

The classification task of data mining [2] consists of building, in a training phase, a 
classification model that maps each example ti to a class c ∈ C of the target application 
domain, with i = 1, 2, ..., n, where n represents the number of examples in the training set. 

The majority of classification algorithms cope with problems where each example 
ti is associated with a single class c ∈ C. These algorithms are called single label. 
However, some classification problems are considerably more complex because each 
example ti is associated with a subset of classes C ∈ C of the application domain. 
Protein function prediction is a typical case of this type of problem, since a protein 
can perform several biological functions. Algorithms for coping with this kind of 
problem are called multi-label [6]. 

There has been a very large amount of research on conventional “flat” (non-
hierarchical) classification problems, where the classes to be predicted are not 
hierarchically organized.  However, in some problems the classes are hierarchically 
organized, which makes the classification problem much more challenging. Problems 
of this type are known as hierarchical classification problems [7]. 

In hierarchical classification problems, typically the classes are hierarchically 
organized in one of the following two forms: as a tree (where each class has at most 
one parent class) or as a direct acyclic graph (DAG), where each class can have more 
than one parent. In bioinformatics, two of the most well-known hierarchical structures 
for classifying protein functions are the enzyme commission hierarchy [8] – organized 
in the form of a tree  and GO [4] – organized in the form of a DAG. The GO consists 
of a dictionary that defines gene products independent from species. GO actually 
consists of 3 separate "domains" (very different types of GO terms): molecular 
function, biological process and cellular component. The GO is structurally organized 
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in the form of a direct acyclic graph (DAG), where each GO term represents a node of 
the hierarchical structure.  

In hierarchical classification, there are basically two types of classifiers that can be 
built to cope with the full set of classes to be predicted: local or global classifiers. In 
local classifiers, for each class c ∈ C a (local) classifier is built to predict whether or 
not each class c is associated with an example ti. After all classifiers are built, an 
example ti is submitted to all those classifiers (one for each class) in order to 
determine which classes are predicted for that example. In global classifiers, a single 
(global) classifier is built to discriminate among all classes of the application domain 
and so ti is submitted to a single (potentially very complex) classifier [7]. 

3   Multi-label Hierarchical Classification with an Artificial 
Immune System  

The immune system as a biological complex adaptive system has provided inspiration 
for a range of innovative problem solving techniques, including classification tasks 
[9] In this paper, the construction of a immune-based learning algorithm is explored 
whose recognition, distributed, and adaptive nature offer many potential advantages 
over more traditional models. The AIS algorithm used in this paper is called MHC-
AIS (Multi-label Hierarchical Classification with an Artificial Immune System). 
MHC-AIS is based on the following natural immunology principles: clonal selection, 
immune network and somatic hypermutation [10,11]. In AIS, antibodies (ab) 
represent candidate solutions to the target problem, whilst antigens (ag) represent 
specific instances of the problem. In the context of this work, ab´s represent IF-THEN 
classification rules and ag´s represent proteins in the training set whose classes have 
to be predicted by the AIS.  

In essence, in the clonal selection theory antibodies are cloned in proportion to 
their degree of matching ("affinity") to antigens, so that the antibodies which are 
better in recognizing antigens produce more clones of themselves. The just-generated 
clones are then subject to a process of somatic hypermutation, where the rate of 
mutation applied to a clone is inversely proportional to its affinity with the antigens. 
In computer science terms, the best antibodies are cloned more often and undergo a 
smaller rate of mutation (have fewer parts of their candidate solution modified) than 
the worst antibodies. With time this process of clonal selection and hypersomatic 
mutation leads to better and better candidate solutions to the target problem.  

In essence, the theoretical immunology principle of immune networks states that 
antibodies can recognize not only antigens but also other antibodies. The first kind of 
recognition stimulates antibody production, but the latter suppresses antibodies, which 
in computer science terms mean a candidate solution tends to suppress other similar 
candidate solutions, which has the effect of improving the diversity of the search for a 
(near-)optimal candidate solution. 

The training phase MHC-AIS is performed by two major procedures, called 
Sequential Covering (SC) and Rule Evolution (RE) procedures. The SC procedure 
iteratively calls the RE procedure until (almost) all “antigens” (proteins, examples) 
are covered by the discovered rules. The RE procedure essentially evolves artificial 
“antibodies” (IF-THEN classification rules) that are used to classify antigens. Then, 
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the best evolved antibody is added to discovered rule set. Each antibody (candidate 
classification rule) consists of two parts: the rule antecedent (IF part), represented by 
a vector of conditions (attribute-value pairs), and the rule consequent (THEN part) 
that represents the classes predicted by the rule. In this work the classes correspond to 
GO terms denoting protein functions. This work proposes two versions of the MHC-
AIS, viz.: local and global versions (more details in the following subsections).  

3.1   Global Version 

In biological databases a protein is annotated only with its most specific GO term. 
Given the semantics of the GO’s functional hierarchy, this implicitly means the 
protein also contains all the functional classes of its ancestral GO terms in the GO's 
DAG. Hence, in a data preprocessing step, MHC-AIS explicitly assigns to each 
antigen (protein) both its most specific class(es) (GO term(s)) and all its ancestral 
classes. MHC-AIS also considers the semantics of the GO’s functional hierarchy 
when creating classification rules – i.e., it guarantees that, if a rule predicts a given 
GO term, all its ancestral GO terms are also predicted by the rule. 

Fig. 1 shows the high-level pseudocode of the SC procedure.  

Input: full protein training set; 
Output: set of discovered rules; 
DiscoveredRuleSet = ∅; 
TrainSet = {set of all protein training examples}; 
Re-label TrainSet regarding GO's functional class hierarchy; 
WHILE |TrainSet| > MaxUncovExamp 

BestRule = RULE-EVOLUTION(TrainSet); //based on AIS 
DiscoveredRuleSet = DiscoveredRuleSet U BestRule; 
updateCoveredClasses(TrainSet, BestRule) 
removeExamplesWithAllClassesCovered(TrainSet); 

END WHLE 

Fig. 1. Sequential Covering (SC) procedure 

First, it initializes the set of discovered rules with the empty set and initializes the 
training set with the set of all original training examples. Next, each example in the 
training set is extended to contain both the original class and all its ancestral classes in 
the GO hierarchy. Thereafter, the algorithm starts a WHILE loop which, at each 
iteration, calls the RE procedure. The latter receives, as parameters, the current 
training set and use AIS algorithm to discover classification rules. The RE procedure 
returns the best classification rule discovered by the AIS for the current training set. 
Then the SC procedure adds that rule to the discovered rule set and removes the 
training examples covered by that rule, as follows. In conventional rule induction 
algorithms for single-label classification, examples correctly covered by the just 
discovered rule are removed from the training set. However, in multi-label 
classification this process is more complex, since different rules and different training 
examples have different numbers of classes. In the global version of the AIS, the 
process of example removal works as follows. First, the training examples covered by 
the just-discovered rule (i.e. examples satisfying the rule's antecedent) are identified. 
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For each of those examples, its annotated (true) classes which are predicted by the 
just-discovered rules are marked as covered. As more and more rules are discovered, 
more and more of the annotated classes of each example will be covered. Only when 
all the classes of an example are covered that example is removed from the training 
set. The process of rule discovery terminates when the number of examples in the 
current training set becomes smaller than a user-defined parameter called 
MaxUncovExamp. Such procedure avoids the discovery of rules covering too few 
examples, unlikely to generalize well to the test set [12]. 

Fig. 2 shows the high-level code of the RE procedure, where rules are obtained by 
the proposed MHC-AIS. First, the initial population of antibodies ABt=0 is created, 
where the consequent of each rule contains (initially) all GO classes in the data being 
mined. At the end of the evolutionary process, the AIS updates the consequent of the 
discovered rule (to be returned by the RE procedure) to contain only a subset of 
classes, representing the classes predicted by that rule, as will be explained later.  

Input: current TrainSet;   Output: the best evolved rule; 
ABt=0 = Create initial population of antibodies at random; 
Computefitness(ABt=0,TrainSet); 
FOR t = 1 to Number of Generations 

CL = ProduceClones(ABt-1); 
CL* = MutateClones(CL); 
ABt = ABt-1 U CL*; 
Computefitness(ABt,TrainSet); 
Suppresion(ABt); 
Elitism(ABt+1); 

END FOR t; 
Determine the final subset of classes of the best antibody found so far; 
return(best antibody); 

Fig. 2. Rule Evolution (RE) procedure 

After its creation, the fitness (quality measure) of each antibody abi
t=0 of the initial 

population is calculated on the training set, where each example represents an antigen 
agj. The fitness of each abi is computed in two stages. First, a fitness value is 
associated with each kth-class ck

i contained in the consequent of rule (antibody) abi. 
The value of this fitness is computed according to the following equation:  

( ) i i
k k

i i i i
k k k k

c ci
k

c c c c

TP TN
fit c

TP FN TN FP
= ×

+ +
   (1) 

where:  

• TP (true positives) = number of training examples satisfying affinity(abi,agj) ≥ δAF 
and having the annotated class ck

i. 
• TN (true negatives) = number of training examples satisfying affinity(abi,agj) < δAF 

and not having the annotated class ck
i. 

• FP (false positives) = number of training examples satisfying affinity (abi,agj) ≥ 
δAF and not having the annotated class ck

i. 
• FN (false negatives) = number of training examples satisfying affinity (abi,agj) < 

δAF and having the annotated class ck
i. 



6 R.T. Alves, M.R. Delgado, and A.A. Freitas 

The function affinity (abi,agj) returns the degree of matching between the rule abi 
and the training example agj. The value of the parameter δAF represents the minimum 
degree of matching required for the antigen agj to be deemed as classified by the rule 
abi. It is important to note that δAF is a user-specified parameter, which gives more 
flexibility to the use of the algorithm, allowing the use of a partial or total degree of 
matching (δAF = 1.0) in the classification process. MHC-AIS is a hierarchical 
classification algorithm, and so it must consider the hierarchical structure of classes in 
the classification process, to reduce classification errors. A common hierarchical 
classification error occurs when a classifier correctly predicts a given class c for an 
example but does not predict an ancestral class of c. Recall that all the ancestral 
classes of a given predicted class must also be predicted by the trained classifier, due 
to the semantics of the class hierarchy in the GO. Some hierarchical classification 
algorithms try to correct hierarchical classification errors after the classifier has been 
built, in a post-processing phase. By contrast, MHC-AIS maintains a set of consistent 
hierarchical classifications during the construction of the global classifier. This kind 
of consistency is given by equation (2):  

( ) ( ) ( )* * *max , ,   ( )i i i i i
k k k k kfit c fit c fit c c Ancestors c⎡ ⎤= ∈⎣ ⎦

 (2) 

Hence, if the fitness of some ancestral class ck*
i is smaller than the fitness of its 

descendant class ck
i, then the fitness of ck

i is assigned to its ancestral class, therefore 
maintaining the consistency of hierarchical classifications during training.  

The fitness of an entire rule (computed as an aggregated value of the fitness of all 
the classes predicted by the rule) is calculated by equation (3):  

( ) ( ) ( )1
,   i i

i k k F Tfitness ab fit c fit c
n

δ= >  (3) 

where n indicates the number of classes ci
k with fitness greater than the value of the 

parameter δFT.  
Next, the AIS starts to evolve the population of antibodies. Once the global fitness 

of the entire rule has been calculated for each abi, the algorithm executes the clonal 
expansion process, typical in AIS [1]. Each abi produces NumCl clones of itself, 
where NumCl is proportional to the fitness of abi. The number of clones to be 
produced for each abi is determined by equation (4): 

( )( )inti iNumCl fitness ab NumMaxCl ClRate= × ×  (4) 

where the value of NumCl ∈ [1,NumMaxCl]. The parameter NumMaxCl represents 
the maximum number of clones that can be generated for a given ab. The function int 
truncates the fractional part of its parameter. The ClRate is calculated in every 
iteration with the goal of controlling the size of the antibody population, stimulating 
or inhibiting the production of clones. The value of ClRate is given by equation (5): 



 Multi-label Hierarchical Classification of Protein Functions 7 

if 

0 if 

1 otherwise

HyperClRate AB nIP

ClRate AB nMaxP

AB nIP

nMaxP nIP

⎧
⎪

<⎪
⎪= >⎨
⎪ ⎛ − ⎞⎪ − ⎜ ⎟⎪ −⎝ ⎠⎩

 

(5) 

where HyperClRate, nIP and nMaxP are specified in the beginning of the execution of 
the algorithm and indicate, respectively, clonal hyper-expansion rate, initial antibody 
population size and maximum antibody population size. It is important to emphasize 
that the parameter nMaxP does not represent the maximum size that the antibody 
population AB can take during the evolution. Rather, it indicates that, if the size of AB is 
greater than the value of that parameter, the generation of clones proportional to 
antibody fitness is turned off. Next, the population CL of clones undergoes a process of 
somatic hypermutation just on the IF part of the rule. A mutation rate applied to each 
clone cl is inversely proportional to the fitness of the antibody ab from which the clone 
was produced. The mutation rate is determined by equation (6):  

( ) ( )( )1clMutRate mutMin mutMax mutMin fitness cl= + − × −  (6) 

where MutMin and MutMax indicate, respectively, the minimum and maximum 
mutation rates to be applied to a clone cl; and the function fitness(cl) is presented in 
equation (3). The MutRate represents the probability that each gene (rule condition – 
IF antecedent) will undergo mutation. The population CL*, which is formed only by 
clones that underwent some mutation, is then inserted in AB. Other procedures are 
also applied to AB during the rule evolution procedure: suppression of antibodies and 
elitism. The suppression procedure, characteristic of AIs based on the immune 
network theory, removes from ABt similar antibodies. More precisely, if two 
antibodies abi and abi

* have a similarity degree greater than or equal to the value of 
δSIM, then, out of those two antibodies, the one with the smallest fitness is removed. 
The degree of similarity between two antibodies is computed as the number of 
conditions (attribute-value pairs) in the rule antecedents of both antibodies divided by 
the number of conditions in the rule antecedent of the antibody with the greatest 
number of conditions – which produces a measure of antibody similarity normalized 
in the range from 0 (no rule conditions in common) to 1 (identical rule antecedents). 
Elitism, a mechanism quite common in evolutionary algorithms [13], selects the 
antibody with the best fitness to be included in the next-iteration population ABt+1.   

During the rule evolution procedure all the classes occurring in the data being 
mined are represented in the consequent. The choice of the final subset of classes to 
be assigned to the consequent of the best discovered rule is given by equation (7):  

PC = U ck ∈ C | fit(ck) > δFT (7) 

where PC represents the set of classes predicted by the best discovered rule whose 
fitness value is greater than δFT. 
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3.2   Local Version 

Like the global MHC-AIS, the local MHC-AIS consists of the SC (Fig. 3) and RE 
procedures, but with some differences. In the local version, the SC procedure labels 
the training examples as positive or negative. Positive examples represent examples 
associated with the class of the current node of the GO’s DAG (a classifier is trained 
for each node of the GO’s DAG), denoted class Y, whilst examples that do not have 
the class Y are labeled as negative examples. MHC-AIS is an algorithm for 
constructing hierarchical classifiers, and therefore the hierarchical structure has to be 
coped with like in the global version. Hence, all training examples labeled with any 
descendant class or ancestor class of the current class Y are labeled as positive class. 
Concerning the latter type of positive examples, it is often the case that, when a 
hierarchical classifier is being built, examples annotated with an ancestor class of the 
current class Y are removed, since they are considered as ambiguous – they do not 
have an annotation suggesting that they have class Y, but maybe they actually have 
class Y, which was not annotated yet simply due to the lack of evidence for its 
presence (note that “absence of evidence is different from evidence of absence”). 
However, in this work we use examples with an annotated class that is an ancestral of 
the current class Y in order to increase the number of positive examples and so 
hopefully increase the predictive accuracy of the algorithm.  

Input: full training set; Output: set of discovered rules; 
DiscoveredRuleSet = ;
FOR EACH class c 

TrainSet = {set of all training examples}; 
WHILE |TrainSet| > MaxUncovExamp 

         BestRule = RULE-EVOLUTION(TrainSet, class c);//based on AIS 
           DiscoveredRuleSet=DiscoveredRuleSet U BestRule; 

        TrainSet = TrainSet – {examp. correctly covered by BestRule}; 
       END WHILE; 
END FOR EACH class;  

Fig. 3. Sequential Covering (SC) procedure for Local Version 

In this local version, MHC-AIS first discovers as many classification rules as 
necessary in order to cover the positive examples. Next, the algorithm discovers as 
many rules as necessary to cover the negative examples. Every time that a given rule 
is discovered, all the examples correctly covered by that rule (i.e. examples satisfying 
the conditions in the rule antecedent and having the class predicted by the rule 
consequent) are removed from the current training set, as usual in rule induction 
algorithms. This iterative process of rule discovery and removal of training examples 
is repeated until the number of examples in the current training set becomes smaller 
than a user-defined threshold MaxUncovExamp.   

The other procedures of the local MHC-AIS are the same as in the global version 
of the algorithm, described in the previous subsection.  



 Multi-label Hierarchical Classification of Protein Functions 9 

4   Computational Results 

The two versions of the MHC-AIS were evaluated on a dataset of proteins created 
from information extracted from the well-known UNIPROT database [14]. This 
dataset contains two protein families: DNA-binding and ATPase [15]. These two 
protein families were chosen for our experiments because there are many proteins that 
belong to both families, increasing the difficult of the problem of building a multi-
label classifier. The dataset used in the experiments contains 7877 proteins, where 
each protein (example) is described by 40 predictor attributes, 38 of which are 
PROSITE1 patterns and 2 of which are continuous attributes (molecular weight and 
the number of amino acids in the primary sequence). In total, the dataset contains 214 
classes (GO terms) to be predicted.   

As previously discussed, in data mining the discovered knowledge should be not 
only accurate, but also comprehensible to the user [2,5]. In this spirit, the results can 
be evaluated according to two criteria, viz. the predictive accuracy and simplicity of 
the discovered rule set. In this paper, the predictive accuracy is evaluated by the F-
measure (adapted to the scenario of multi-label hierarchical classification), which 
involves computing the precision and recall of the discovered rule set on the test set 
(unseen during training). Interpretability will be measured in terms of the size of the 
discovered rule set, an approach which is not ideal but is still used in the literature.   

In the global version, the set of GO terms predicted for a test example t, denoted 
PredGO(t), consists of the union of all GO terms in the consequent of all rules 
covering t – i.e. all rules whose conditions are satisfied by t’s attribute values.  

In the local version of MHC-AIS, each test example t is submitted to the n trained 
classifiers. Each classifier consists of a set of discovered rules. The class predicted by 
each classifier is the class represented in the consequent of the rule with the greatest 
fitness value (computed during training) out of all rules discovered by that classifier 
that cover the example t.  If no discovered rule covers the example t, the latter is 
classified by the default rule, which predicts the majority class in the training set. 
Hence, PredGO(t) consists of all GO terms whose trained classifiers predicted their 
corresponding positive class for the example t.  

MHC-AIS computes the Precision and Recall for a test example t – denoted P(t) 
and R(t), respectively – as per equations (8) and (9), where TrueGO(t) is the set of 
true GO terms for test example t. 

P(t) = |PredGO(t) ∩ TrueGO(t)| / PredGO(t) (8) 

R(t) = |PredGO(t) ∩ TrueGO(t)| / TrueGO(t) (9) 

Thus, precision is the proportion of true classes among all predicted classes, whilst 
recall is the proportion of predicted classes among all true classes. The F-measure for 
a test example t is given by equation (10), the harmonic mean of P and R. 

F(t) = (2 × P(t) × R(t)) /  (1 + P(t) + R(t)) (10) 

                                                           
1 PROSITE patterns are motifs well-known in bioinformatics [16] and they are represented as 

binary attributes – i.e., each attribute indicates whether or not the corresponding PROSITE 
pattern occurs in the sequence of amino acids of a protein. 
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Finally, once P(t) and R(t) have been computed for each test example t, the system 
computes the overall F-measure over the entire test set T by equation (11), where |T| 
denotes the cardinality of the test set T. 

Predictive Accuracy = F(T) = (Σt∈T F(t)) / |T| (11) 

Table 1 shows the predictive accuracy for precision, recall and F-measure for 
global and local version. The numbers after the "±" symbol represent the standard 
deviations associated with a well-known 10-fold cross-validation procedure [2]. In the 
columns F-measure, the best result (out of both version of MHC-AIS) is shown in 
bold. The results presented in Table 1 consider different affinity (matching) 
thresholds   for both versions of MHC-AIS, to evaluate the predictive performance of 
the algorithms using partial matching (δAF < 1.0)  or total matching (δAF = 1.0). 

Table 1. Predictive accuracy (%) of MHC-AIS versions on the used protein data set 

Global Version Local Version Affinity 
Threshold Precision Recall F-Measure Precision Recall F-Measure 

0.8 45.93±2.71 98.23±0.61 58.35±2.23 80.58±1.01 44.65±1.59 55.65±1.45 
0.9 50.79±3.18 92.86±3.76 58.34±2.86 75.61±1.12 52.57±2.35 59.75±1.77 
1.0 28.91±1.31 99.50±0.12 42.84±1.37 58.56±1.01 69.91±1.13 61.37±0.82 

Table 1 shows that the global MHC-AIS performed worst (according to the F-
measure) when using total matching. Note that the global MHC-AIS obtained the worst 
results for the precision measure with all affinity threshold values. By contrast, the global 
MHC-AIS obtained very good recall values with all affinity thresholds. This performance 
behavior of global MHC-AIS indicates that the trained global classifier has a bias 
favoring the prediction of a large number of classes, mainly because the set of classes 
predicted for a test example consists of the union of all classes in the consequents of all 
rules covering that example - regardless of the fitness of the individual rules in question 
and the fact that the predictions of some of those rules might be inconsistent with each 
other. This tends to predict more classes than the actual number of true classes for a given 
test example, which tends to increase recall but reduce precision (given the definition of 
these terms).  

In both cases of MHC-AIS, as the value of the affinity threshold δAF increases the 
value of precision is reduced, showing a disadvantage in the use of total matching. As 
expected, due to the trade-off between precision and recall, the local version of the 
algorithm had the opposite performance behavior in the case of recall, where the 
largest value was obtained with total matching.  

Table 2. Simplicity of the discovered rule set of MHC-AIS versions 

Global Version Local Version Threshold 
Affinity #rules #Conditions #rules #Conditions 

0.8 63.90±1,59 1164,30±28.20 788.00±3.68 2901.30±42.83 
0.9 58.09±3.08 1066.60±53.39 1016.80 ±8.09 4829.80±67.44 
1.0 79.90±1.83 1361.00±41.16 1232.90±16.07 7069.53±18298 
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Table 2 shows the results of both local and global versions of MHC-AIS with 
respect to the simplicity (interpretability) of the discovered rule set. This simplicity 
was measured by the number of discovered rules and total number of rule conditions 
(in all rules). The averages were computed over 10-fold cross-validation.  

Note that, as shown in Table 2, the global MHC-AIS obtained much better results 
concerning rule set simplicity than the local MHC-AIS, in all experiments. This 
advantage of the global MHC-AIS is probably due to the fact that, by building a 
single set of rules predicting all classes in a single run of the algorithm, the algorithm 
can avoid the need for discovering redundant rules covering the same set of true 
classes for some examples. In particular, when the local version discovers rules 
predicting the “negative” class at each node of the GO’s DAG, it should be noted that 
those rules predicting the negative class tend to be redundant with respect to rules 
predicting positive classes in other nodes of the GO’s DAG, since some of the 
negative class examples for a given GO node will inevitably be positive class 
examples in another GO node. An example of a rule discovered rule by global MHC-
AIS in the used data set is presented below: 

IF (PS00676 == 1) and (PS00390 == 1) and (MOLECULAR_WEIGHT < 29353) 
then (5488, 5515, 51087) 

The biological interpretation of this rule is: if a protein presents “Sigma-54 
interaction domain signatures and profile” and “Sodium and potassium ATPases beta 
subunits signatures” signatures and “molecular weight is less than 29353” then the 
predicted classes (biological functions) are:  “binding” (5488) and “protein binding” 
(5515) and “chaperone binding” (51087).  Note that the GO hierarchy was 
considered, i.e. the true hierarchical path is 5488 → 5515 → 51087 (from shallower 
to deeper nodes). 

5   Conclusion and Future Work 

This work described an artificial immune system (AIS)-based rule induction 
algorithm to the prediction of protein function. The paper proposed two versions of 
the AIS algorithm, a global version, where a single global classifier is built predicting 
all classes of the application domain; and a local version, where a local classifier is 
built for each node of the GO class hierarchy. Both versions have the advantage of 
discovering IF-THEN classification rules, constituting a type of knowledge 
representation that can, in principle, be easily interpretable by biologist users. The 
global and local versions of the AIS have different (roughly dual) advantages and 
disadvantages with respect to predictive accuracy, but the global version at least has 
the advantage of discovering much simpler (smaller) rule sets. 

Future work involves: (a) comparing the predictive performance of both versions  
of the AIS with other classification algorithms designed for hierarchical classification 
(e.g. [17]); (b) investigating new criteria for selecting, out of all classes in the 
consequent of the rules covering a test example in the global approach, which classes 
should be actually predicted for the test example; (c) incorporating an explicit 
mechanism during the training phase to improve the rules´ interpretability (d) analyzing 
the biological relevance of the discovered rules; and (e) evaluating the proposed AIS  
in datasets of other protein families and other types of predictor attributes.  
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