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Abstract

We present a multi-label multiple kernel learning (MKL) formulation in which
the data are embedded into a low-dimensional space directed by the instance-
label correlations encoded into a hypergraph. We formulate the problem in the
kernel-induced feature space and propose to learn the kernel matrix as a linear
combination of a given collection of kernel matrices in the MKL framework. The
proposed learning formulation leads to a non-smooth min-max problem, which
can be cast into a semi-infinite linear program (SILP). We further propose an ap-
proximate formulation with a guaranteed error bound which involves an uncon-
strained convex optimization problem. In addition, we show that the objective
function of the approximate formulation is differentiable with Lipschitz continu-
ous gradient, and hence existing methods can be employed to compute the optimal
solution efficiently. We apply the proposed formulation to the automated annota-
tion of Drosophilagene expression pattern images, and promising results have
been reported in comparison with representative algorithms.

1 Introduction

Spectral graph-theoretic methods have been used widely in unsupervised and semi-supervised learn-
ing recently. In this paradigm, a weighted graph is constructed for the data set, where the nodes
represent the data points and the edge weights characterize the relationships between vertices. The
structural and spectral properties of graph can then be exploited to perform the learning task. One
fundamental limitation of using traditional graphs for this task is that they can only represent pair-
wise relationships between data points, and hence higher-order information cannot be captured [1].
Hypergraphs [1, 2] generalize traditional graphs by allowing edges, called hyperedges, to connect
more than two vertices, thereby being able to capture the relationships among multiple vertices.

In this paper, we propose to use a hypergraph to capture the correlation information for multi-label
learning [3]. In particular, we propose to construct a hypergraph for multi-label data in which
all data points annotated with a common label are included in a hyperedge, thereby capturing the
similarity among data points with a common label. By exploiting the spectral properties of the
constructed hypergraph, we propose to embed the multi-label data into a lower-dimensional space
in which data points with a common label tend to be close to each other. We formulate the multi-label
learning problem in the kernel-induced feature space, and show that the well-known kernel canonical
correlation analysis (KCCA) [4] is a special case of the proposed framework. As the kernel plays an
essential role in the formulation, we propose to learn the kernel matrix as a linear combination of a
given collection of kernel matrices in the multiple kernel learning (MKL) framework. The resulting



formulation involves a non-smooth min-max problem, and we show that it can be cast into a semi-
infinite linear program (SILP). To further improve the efficiency and reduce the non-smoothness
effect of the SILP formulation, we propose an approximate formulation by introducing a smoothing
term into the original problem. The resulting formulation is unconstrained and convex. In addition,
the objective function of the approximate formulation is shown to be differentiable with Lipschitz
continuous gradient. We can thus employ the Nesterov’s method [5, 6], which solves smooth convex
problems with the optimal convergence rate, to compute the solution efficiently.

We apply the proposed formulation to the automated annotation ofDrosophila gene expression
pattern images, which document the spatial and temporal dynamics of gene expression during
Drosophilaembryogenesis [7]. Comparative analysis of such images can potentially reveal new
genetic interactions and yield insights into the complex regulatory networks governing embryonic
development. To facilitate pattern comparison and searching, groups of images are annotated with a
variable number of labels by human curators in the BerkeleyDrosophilaGenome Project (BDGP)
high-throughput study [7]. However, the number of available images produced by high-throughput
in situ hybridization is now rapidly increasing. It is therefore tempting to design computational
methods to automate this task [8]. Since the labels are associated with groups of a variable number
of images, we propose to extract invariant features from each image and construct kernels between
groups of images by employing the vocabulary-guided pyramid match algorithm [9]. By applying
various local descriptors, we obtain multiple kernel matrices and the proposed multi-label MKL
formulation is applied to obtain an optimal kernel matrix for the low-dimensional embedding. Ex-
perimental results demonstrate the effectiveness of the kernel matrices obtained by the proposed
formulation. Moreover, the approximate formulation is shown to yield similar results to the original
formulation, while it is much more efficient.

2 Multi-label Learning with Hypergraph

An essential issue in learning from multi-label data is how to exploit the correlation information
among labels. We propose to capture such information through a hypergraph as described below.

2.1 Hypergraph Spectral Learning

Hypergraphs generalize traditional graphs by allowing hyperedges to connect more than two ver-
tices, thus capturing the joint relationships among multiple vertices. We propose to construct a
hypergraph for multi-label data in which each data point is represented as a vertex. To document the
joint similarity among data points annotated with a common label, we propose to construct a hyper-
edge for each label and include all data points annotated with a common label into one hyperedge.
Following the spectral graph embedding theory [10], we propose to compute the low-dimensional
embedding through a linear transformationW by solving the following optimization problem:

min
W

tr
(

WT φ(X)Lφ(X)T W
)

(1)

subject to WT
(

φ(X)φ(X)T + λI
)

W = I,

whereφ(X) = [φ(x1), · · · , φ(xn)] is the data matrix consisting ofn data points in the feature
space,φ is the feature mapping,L is the normalized Laplacian matrix derived from the hypergraph,
andλ > 0 is the regularization parameter. In this formulation, the instance-label correlations are
encoded intoL through the hypergraph, and data points sharing a common label tend to be close to
each other in the embedded space.

It follows from therepresenter theorem[11] thatW = φ(X)B for some matrixB ∈ R
n×k where

k is the number of labels. By noting thatL = I − C for some matrixC, the problem in Eq. (1) can
be reformulated as

max
B

tr
(

BT (KCK)B
)

(2)

subject to BT (K2 + λK)B = I,

whereK = φ(X)T φ(X) is the kernel matrix. Kernel canonical correlation analysis (KCCA) [4] is
a widely-used method for dimensionality reduction. It can be shown [4] that KCCA is obtained by
substitutingC = Y T (Y Y T )−1Y in Eq. (2) whereY ∈ R

k×n is the label indicator matrix. Thus,
KCCA is a special case of the proposed formulation.



2.2 A Semi-infinite Linear Program Formulation

It follows from the theory of kernel methods [11] that the kernelK in Eq. (2) uniquely determines the
feature mappingφ. Thus, kernel selection (learning) is one of the central issues in kernel methods.
Following the MKL framework [12], we propose to learn an optimal kernel matrix by integrating
multiple candidate kernel matrices, that is,

K ∈ K =







K =

p
∑

j=1

θjKj

∣

∣θT e = 1, θ ≥ 0







, (3)

where{Kj}
p
j=1 are thep candidate kernel matrices,{θj}

p
j=1 are the weights for the linear combi-

nation, ande is the vector of all ones of lengthp. We have assumed in Eq. (3) that all the candidate
kernel matrices are normalized to have a unit trace value. It has been shown [8] that the optimal
weights maximizing the objective function in Eq. (2) can be obtained by solving a semi-infinite lin-
ear program (SILP) [13] in which a linear objective is optimized subject to an infinite number of
linear constraints, as summarized in the following theorem:

Theorem 2.1. Given a set ofp kernel matrices{Kj}
p
j=1, the optimal kernel matrix inK that maxi-

mizes the objective function in Eq. (2) can be obtained by solving the following SILP problem:

max
θ,γ

γ (4)

subject to θ ≥ 0, θT e = 1,

p
∑

j=1

θjSj(Z) ≥ γ, for all Z ∈ R
n×k, (5)

whereSj(Z), for j = 1, · · · , p, is defined as

Sj(Z) =

k
∑

i=1

(

1

4
zT

i zi +
1

4λ
zT

i Kjzi − zT
i hi

)

, (6)

Z = [z1, · · · , zk], H is obtained fromC such thatHHT = C, andH = [h1, · · · , hk].

Note that the matrixC is symmetric and positive semidefinite. Moreover, for theL considered in
this paper, we have rank(C) = k. Hence,H ∈ R

n×k is always well-defined. The SILP formulation
in Theorem 2.1 can be solved by the column generation technique as in [14].

3 The Approximate Formulation

The multi-label kernel learning formulation proposed in Theorem 2.1 involves optimizing a linear
objective subject to an infinite number of constraints. The column generation technique used to solve
this problem adds constraints to the problem successively until all the constraints are satisfied. Since
the convergence rate of this algorithm is slow, the problem solved at each iteration may involve a
large number of constraints, and hence is computationally expensive. In this section, we propose an
approximate formulation by introducing a smoothing term into the original problem. This results in
an unconstrained and smooth convex problem. We propose to employ existing methods to solve the
smooth convex optimization problem efficiently in the next section.

By rewriting the formulation in Theorem 2.1 as

max
θ:θT e=1,θ≥0

min
Z

p
∑

j=1

θjSj(Z)

and exchanging the minimization and maximization, the SILP formulation can be expressed as

min
Z

f(Z) (7)

wheref(Z) is defined as

f(Z) = max
θ:θT e=1,θ≥0

p
∑

j=1

θjSj(Z). (8)



The maximization problem in Eq. (8) with respect toθ leads to a non-smooth objective function for
f(Z). To reduce this effect, we introduce a smoothing term and modify the objective tofµ(Z) as

fµ(Z) = max
θ:θT e=1,θ≥0







p
∑

j=1

θjSj(Z) − µ

p
∑

j=1

θj log θj







, (9)

whereµ is a positive constant controlling the approximation. The following lemma shows that the
problem in Eq. (9) can be solved analytically:

Lemma 3.1. The optimization problem in Eq. (9) can be solved analytically, and the optimal value
can be expressed as

fµ(Z) = µ log





p
∑

j=1

exp

(

1

µ
Sj(Z)

)



 . (10)

Proof. Define the Lagrangian function for the optimization problem in Eq. (9) as

L =

p
∑

j=1

θjSj(Z) − µ

p
∑

j=1

θj log θj +

p
∑

j=1

αjθj +





p
∑

j=1

θj − 1



β, (11)

where{αj}
p
j=1 andβ are Lagrangian dual variables. Taking the derivative of the Lagrangian func-

tion with respect toθj and setting it to zero, we obtain thatθj = exp
(

1
µ (Sj(Z) + αj + β − µ)

)

.

It follows from the complementarity condition thatαjθj = 0 for j = 1, · · · , p. Sinceθj 6= 0, we
haveαj = 0 for j = 1, · · · , p. By removing{αj}

p
j=1 and substitutingθj into the objective function

in Eq. (9), we obtain thatfµ(Z) = µ − β. Sinceµ − β = Sj(Z) − µ log θj , we have

θj = exp ((Sj(Z) − fµ(Z))/µ) . (12)

Following1 =
∑p

j=1 θj =
∑p

j=1 exp ((Sj(Z) − fµ(Z))/µ) , we obtain Eq. (10).

The above discussion shows that we can approximate the original non-smooth constrained min-max
problem in Eq. (7) by the following smooth unconstrained minimization problem:

min
Z

fµ(Z), (13)

wherefµ(Z) is defined in Eq. (10). We show in the following two lemmas that the approximate
formulation in Eq. (13) is convex and has a guaranteed approximation bound controlled byµ.

Lemma 3.2. The problem in Eq. (13) is a convex optimization problem.

Proof. The optimization problem in Eq. (13) can be expressed equivalently as

min
Z,{uj}

p

j=1
,{vj}

p

j=1

µ log





p
∑

j=1

exp

(

uj + vj −

k
∑

i=1

zT
i hi

)



 (14)

subject to µuj ≥
1

4

k
∑

i=1

zT
i zi, µvj ≥

1

4λ

k
∑

i=1

zT
i Kjzi, j = 1, · · · , p.

Since the log-exponential-sumfunction is a convex function and the two constraints are second-order
cone constraints, the problem in Eq. (13) is a convex optimization problem.

Lemma 3.3. Letf(Z) andfµ(Z) be defined as above. Then we havefµ(Z) ≥ f(Z) and|fµ(Z)−
f(Z)| ≤ µ log p.

Proof. The term−
∑p

j=1 θj log θj defines the entropy of{θj}
p
j=1 when it is considered as a proba-

bility distribution, sinceθ ≥ 0 andθT e = 1. Hence, this term is non-negative andfµ(Z) ≥ f(Z). It
is known from the property of entropy that−

∑p
j=1 θj log θj is maximized with a uniform{θj}

p
j=1,

i.e., θj = 1
p for j = 1, · · · , p. Thus, we have−

∑p
j=1 θj log θj ≤ log p and |fµ(Z) − f(Z)| =

−µ
∑p

j=1 θj log θj ≤ µ log p. This completes the proof of the lemma.



4 Solving the Approximate Formulation Using the Nesterov’s Method

The Nesterov’s method (known as “the optimal method” in [5]) is an algorithm for solving smooth
convex problems with the optimal rate of convergence. In this method, the objective function needs
to be differentiable with Lipschitz continuous gradient. In order to apply this method to solve the
proposed approximate formulation, we first compute the Lipschitz constant for the gradient of func-
tion fµ(Z), as summarized in the following lemma:

Lemma 4.1. Let fµ(Z) be defined as in Eq. (10). Then the Lipschitz constantL of the gradient of
fµ(Z) can be bounded from above as

L ≤ Lµ, (15)

whereLµ is defined as

Lµ =
1

2
+

1

2λ
max

1≤j≤p
λmax(Kj) +

1

8µλ2
tr(ZT Z) max

1≤i,j≤p
λmax((Ki − Kj)(Ki − Kj)

T ), (16)

andλmax(·) denotes the maximum eigenvalue. Moreover, the distance from the origin to the optimal
set ofZ can be bounded as tr(ZT Z) ≤ R2

µ whereR2
µ is defined as

R2
µ =

k
∑

i=1

(

||[Cj ]i||2 +

√

4µ log p + tr

(

CT
j

[

I +
1

λ
Kj

]

Cj

)

)2

, (17)

Cj = 2
(

I + 1
λKj

)−1
H and[Cj ]i denotes theith column ofCj .

Proof. To compute the Lipschitz constant for the gradient offµ(Z), we first compute the first and
second order derivatives as follows:

▽fµ(Z) =

p
∑

j=1

gj

(

vec(Z)

2
+

vec(KjZ)

2λ

)

− vec(H), (18)

▽
2fµ(Z) =

1

2
I +

p
∑

j=1

gj

2λ
Dk(Kj)

+
1

8µ

p
∑

i,j=1

gigj

(

vec(KiZ)

λ
−

vec(KjZ)

λ

)(

vec(KiZ)

λ
−

vec(KjZ)

λ

)T

, (19)

where vec(·) converts a matrix into a vector,Dk(Kj) ∈ R
(n×k)×(n×k) is a block diagonal matrix

with thekth diagonal block asKj, andgj = exp(Sj(Z)/µ)/
∑p

i=1 exp(Si(Z)/µ). Then we have

L ≤
1

2
+

1

2λ
max

1≤j≤p
λmax(Kj) +

1

8µλ2
max

1≤i,j≤p
tr(ZT (Ki − Kj)(Ki − Kj)

T Z) ≤ Lµ.

whereLµ is defined in Eq. (16).

We next derive the upper bound for tr(ZT Z). To this end, we first rewriteSj(Z) as

Sj(Z) =
1

4
tr

(

(Z − Cj)
T

[

I +
1

λ
Kj

]

(Z − Cj)

)

−
1

4
tr

(

CT
j

[

I +
1

λ
Kj

]

Cj

)

.

Sincemin fµ(Z) ≤ fµ(0) = µ log p, andfµ(Z) ≥ Sj(Z), we haveSj(Z) ≤ µ log p for j =
1, · · · , p. It follows that 1

4 tr
(

(Z − Cj)
T (Z − Cj)

)

≤ µ log p + 1
4 tr
(

CT
j

[

I + 1
λKj

]

Cj

)

. By using
this inequality, it can be verified that tr(ZT Z) ≤ R2

µ whereR2
µ is defined in Eq. (17).

The Nesterov’s method for solving the proposed approximate formulation is presented in Table 1.
After the optimalZ is obtained from the Nesterov’s method, the optimal{θj}

p
j=1 can be computed

from Eq. (12). It follows from the convergence proof in [5] that afterN iterations, as long as
fµ(X i) ≤ fµ(X0) for i = 1, · · · , N, we have

fµ(ZN+1) − fµ(Z∗) ≤
4LµR2

µ

(N + 1)2
, (20)



Table 1: The Nesterov’s method for solving the proposed multi-label MKL formulation.

• Initialize X0 = Z1 = Q0 = 0 ∈ R
n×k, t0 = 1, L0 = 1

2 + 1
2λ max1≤j≤p λmax(Kj), and

µ = 1
N whereN is the predefined number of iterations

• for i = 1, · · · , N do

• SetX i = Zi − 1
ti−1

(Zi + Qi−1)

• Computefµ(X i) and▽fµ(X i)

• SetL = Li−1

• while fµ(X i − ▽fµ(X i)/L) > fµ(X i) − 1
2L tr((▽fµ(X i))T

▽fµ(X i)) do
• L = L × 2

• end while
• SetLi = L

• SetZi+1 = X i − 1
Li

▽fµ(X i), Qi = Qi−1 + ti−1

Li
▽fµ(X i)

• Setti = 1
2

(

1 +
√

1 + 4t2i−1

)

• end for

whereZ∗ = argminZ fµ(Z). Furthermore, sincefµ(ZN+1) ≥ f(ZN+1) andfµ(Z∗) ≤ f(Z∗) +
µ log p, we have

f(ZN+1) − f(Z∗) ≤ µ log p +
4LµR2

µ

(N + 1)2
. (21)

By settingµ = O(1/N), we have thatLµ ∝ O(1/µ) ∝ O(N). Hence, the convergence rate of the
Nesterov’s method is on the order ofO(1/N). This is significantly better than the convergence rates
of O(1/N1/3) andO(1/N1/2) for the SILP and the gradient descent method, respectively.

5 Experiments

In this section, we evaluate the proposed formulation on the automated annotation of gene expression
pattern images. The performance of the approximate formulation is also validated.

Experimental SetupThe experiments use a collection of gene expression pattern images retrieved
from the FlyExpress database (http://www.flyexpress.net). We apply nine local descrip-
tors (SIFT, shape context, PCA-SIFT, spin image, steerable filters, differential invariants, complex
filters, moment invariants, and cross correlation) on regular grids of16 and32 pixels in radius and
spacing on each image. These local descriptors are commonly used in computer vision problems
[15]. We also apply Gabor filters with different wavelet scales and filter orientations on each image
to obtain global features of384 and2592 dimensions. Moreover, we sample the pixel values of each
image to obtain features of10240, 2560, and640 dimensions. After generating the features, we
apply the vocabulary-guided pyramid match algorithm [9] to construct kernels between the image
sets. A total of23 kernel matrices (2 grid size× 9 local descriptors+ 2 Gabor+ 3 pixel) are con-
structed. Then the proposed MKL formulation is employed to obtain the optimal integrated kernel
matrix based on which the low-dimensional embedding is computed. We use the expansion-based
approach (star andclique) to construct the hypergraph Laplacian, since it has been shown [1] that
the Laplacians constructed in this way are similar to those obtained directly from a hypergraph. The
performance of kernel matrices (either single or integrated) is evaluated by applying the support
vector machine (SVM) for each term using the one-against-rest scheme. The F1 score is used as
the performance measure, and bothmacro-averaged andmicro-averaged F1 scores across labels are
reported. In each case, the entire data set is randomly partitioned into training and test sets with a
ratio of 1:1. This process is repeated ten times, and the averaged performance is reported.

Performance Evaluation It can be observed from Tables 2 and 3 that in terms of both macro and
micro F1 scores, the kernels integrated by either star or clique expansions achieve the highest per-
formance on almost all of the data sets. In particular, the integrated kernels outperform the best
individual kernel significantly on all data sets. This shows that the proposed formulation is effective



Table 2: Performance of integrated kernels and the best individual kernel (denoted as BIK) in terms
of macroF1 score. The number of terms used are 20, 30, and 40, and the number of image sets
used are 1000, 1500, and 2000. “SILP”, “APP”, “SVM1”, and “Uniform” denote the performance
of kernels combined with the SILP formulation, the approximate formulation, the 1-norm SVM for-
mulation proposed in [12] applied for each label separately, and the case where all kernels are given
the same weight, respectively. The subscripts “star” and “clique” denote the way that Laplacian is
constructed, and “KCCA” denotes the case whereC = Y T (Y Y T )−1Y .

# of labels 20 30 40
# of sets 1000 1500 2000 1000 1500 2000 1000 1500 2000
SILPstar 0.4396 0.4903 0.4575 0.3852 0.4437 0.4162 0.3768 0.4019 0.3927
SILPclique 0.4536 0.5125 0.4926 0.4065 0.4747 0.4563 0.4145 0.4346 0.4283
SILPKCCA 0.3987 0.4635 0.4477 0.3497 0.4240 0.4063 0.3538 0.3872 0.3759
APPstar 0.4404 0.4930 0.4703 0.3896 0.4494 0.4267 0.3900 0.4100 0.3983
APPclique 0.4510 0.5125 0.4917 0.4060 0.4741 0.4563 0.4180 0.4338 0.4281
APPKCCA 0.4029 0.4805 0.4586 0.3571 0.4313 0.4146 0.3642 0.3914 0.3841
SVM1 0.3780 0.4640 0.4356 0.3523 0.4352 0.4200 0.3741 0.4048 0.3955
Uniform 0.3727 0.4703 0.4480 0.3513 0.4410 0.4191 0.3719 0.4111 0.3986
BIK 0.4241 0.4515 0.4344 0.3782 0.4312 0.3996 0.3914 0.3954 0.3827

Table 3: Performance in terms ofmicro F1 score. See the caption of Table 2 for explanations.
# of labels 20 30 40
# of sets 1000 1500 2000 1000 1500 2000 1000 1500 2000
SILPstar 0.4861 0.5199 0.4847 0.4472 0.4837 0.4473 0.4277 0.4470 0.4305
SILPclique 0.5039 0.5422 0.5247 0.4682 0.5127 0.4894 0.4610 0.4796 0.4660
SILPKCCA 0.4581 0.4994 0.4887 0.4209 0.4737 0.4532 0.4095 0.4420 0.4271
APPstar 0.4852 0.5211 0.4973 0.4484 0.4875 0.4582 0.4355 0.4541 0.4346
APPclique 0.5013 0.5421 0.5239 0.4673 0.5124 0.4894 0.4633 0.4793 0.4658
APPKCCA 0.4612 0.5174 0.5018 0.4299 0.4828 0.4605 0.4194 0.4488 0.4350
SVM1 0.4361 0.5024 0.4844 0.4239 0.4844 0.4632 0.3947 0.4234 0.4188
Uniform 0.4390 0.5096 0.4975 0.4242 0.4939 0.4683 0.3999 0.4358 0.4226
BIK 0.4614 0.4735 0.4562 0.4189 0.4484 0.4178 0.3869 0.3905 0.3781

in combining multiple kernels and exploiting the complementary information contained in different
kernels constructed from various features. Moreover, the proposed formulation based on a hyper-
graph outperforms the classical KCCA consistently.

SILP versus the Approximate Formulation In terms of classification performance, we can observe
from Tables 2 and 3 that the SILP and the approximate formulations are similar. More precisely,
the approximate formulations perform slightly better than SILP in almost all cases. This may be
due to the smoothness nature of the formulations and the simplicity of the computational procedure
employed in the Nesterov’s method so that it is less prone to numerical problems. Figure 1 compares
the computation time and the kernel weights of SILPstar and APPstar. It can be observed that in
general the approximate formulation is significantly faster than SILP, especially when the number
of labels and the number of image sets are large, while they both yields very similar kernel weights.

6 Conclusions and Future Work

We present a multi-label learning formulation that incorporates instance-label correlations by a hy-
pergraph. We formulate the problem in the kernel-induced feature space and propose to learn the
kernel matrix in the MKL framework. The resulting formulation leads to a non-smooth min-max
problem, and it can be cast as an SILP. We propose an approximate formulation by introducing a
smoothing term and show that the resulting formulation is an unconstrained convex problem that can
be solved by the Nesterov’s method. We demonstrate the effectiveness and efficiency of the method
on the task of automated annotation of gene expression pattern images.
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Figure 1: Comparison of computation time and kernel weights for SILPstar and APPstar. The left
panel plots the computation time of two formulations on one partition of the data set as the number
of labels and image sets increase gradually, and the right panel plots the weights assigned to each of
the23 kernels by SILPstar and APPstar on a data set of40 labels and1000 image sets.

The experiments in this paper focus on the annotation of gene expression pattern images. The
proposed formulation can also be applied to the task of multiple object recognition in computer
vision. We plan to pursue other applications in the future. Experimental results indicate that the
best individual kernel may not lead to a large weight by the proposed MKL formulation. We plan to
perform a detailed analysis of the weights in the future.
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