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Abstract

Multi-label support vector machine (Rank-SVM) is a classic and effective algorithm for

multi-label classification. The pivotal idea is to maximize the minimum margin of label

pairs, which is extended from SVM. However, recent studies disclosed that maximizing the

minimum margin does not necessarily lead to better generalization performance, and instead,

it is more crucial to optimize the margin distribution. Inspired by this idea, in this paper, we

first introduce margin distribution to multi-label learning and propose multi-label Optimal

margin Distribution Machine (mlODM), which optimizes the margin mean and variance of

all label pairs efficiently. Extensive experiments in multiple multi-label evaluation metrics

illustrate that mlODM outperforms SVM-style multi-label methods. Moreover, empirical

study presents the best margin distribution and verifies the fast convergence of our method.

Keywords Optimal margin distribution machine · Multi-label learning · Support vector

machine · Margin theory

1 Introduction

In contrast to traditional supervised learning, multi-label classification purports to build

classification models for objects assigned with multiple labels simultaneously, which is a

common learning paradigm in real-world tasks. In the past decades, it has attracted much

attention (Zhang and Zhou 2014a). To name a few, in image classification, a scene image

is usually annotated with several tags (Boutell et al. 2004); in text categorization, a docu-
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ment may present multiple topics (McCallum 1999; Schapire and Singer 2000); in music

information retrieval, a piece of music can convey various messages (Turnbull et al. 2008).

To solve the multi-label tasks, a variety of methods have been proposed (Zhang and

Zhou 2014a, Zhang et al. 2018), among which Rank-SVM (Elisseeff and Weston 2002)

is one of the most eminent methods. It extended the idea of maximizing minimum margin

in support vector machine (SVM) (Cortes and Vapnik 1995) to multi-label classification

and achieved impressive performance. Specifically, the central idea of SVM is to search

a large margin separator, i.e., maximizing the smallest distance from the instances to the

classification boundary in a RKHS (reproducing kernel Hilbert space). Rank-SVM modified

the definition of margin for label pairs and adapted maximizing margin strategy to deal with

multi-label data, where a set of classifiers are optimized simultaneously. Benefiting from

kernel tricks and considering pairwise relations between labels, Rank-SVM could handle

non-linear classification problems and achieve good generalization performance.

For maximizing minimum margin strategy of SVMs, the margin theory (Vapnik 1995) pro-

vided good support to the generalization performance. It is noteworthy that there is also a long

history of utilizing margin theory to explain the good generalization of AdaBoost (Freund

and Schapire 1997), due to its tending to be empirically resistant to over-fitting. Specifi-

cally, Schapire et al. (1998) first suggested margin theory to interpret the phenomenon that

AdaBoost seems resistant to over-fitting; soon after, Breiman (1999) developed a boosting-

style algorithm, named Arc-gv, which is able to maximize the minimum margin but with a

poor generalization performance. Later, Reyzin and Schapire (2006) observed that although

Arc-gv produced a larger minimum margin, its margin distribution is quite poor.

Recently, the margin theory for Boosting has finally been defended (Gao and Zhou 2013),

and has disclosed that the margin distribution rather than a single margin is more crucial to

the generalization performance. It suggests that there may still exist large space to further

ameliorate for SVMs. Inspired by this finding, Zhang and Zhou (2014b, 2019) proposed

a binary classification method to optimize margin distribution by characterizing it through

the first- and second-order statistics, which achieves better experimental results than SVMs.

Later, Zhang and Zhou (2017, 2019) extended the definition of margin for multi-class clas-

sification and proposed multi-class optimal margin distribution machine (mcODM), which

always outperforms multi-class SVMs empirically. In addition to classic supervised learning

tasks, there is also a series of work in various tasks verifying the better generalization per-

formance of optimizing margin distribution. For example, Zhou and Zhou (2016) extended

the idea to exploit unlabeled data and handle unequal misclassification cost; Zhang and Zhou

(2018) proposed the margin distribution machine for clustering. Tan et al. (2019) accelerated

the kernel methods and applied the idea to large-scale datasets.

Existing work has depicted that optimizing the margin distribution can obtain superior

generalization performance in most cases, but it still remains open for multi-label classifica-

tion because the margin distribution for multi-label classification is much more complicated

and the tremendous number of variables makes the optimization more difficult. In this paper,

we propose a method to first introduce the margin distribution to multi-label classifica-

tion, named multi-label optimal margin distribution machine (mlODM). Specifically, we

formulate the idea of optimizing the margin distribution in multi-label learning and solve it

efficiently by dual block coordinate descent. Extensive experiments in multiple multi-label

evaluation metrics illustrate that our method mlODM outperforms SVM-style multi-label

methods. Moreover, empirical studies present the best margin distribution and verifies the

fast convergence of our method.

The rest of paper is organized as follows. Some preliminaries are introduced in Sect. 2. In

Sect. 3, we review Rank-SVM and reformulate it with our definition to display the key idea
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of maximizing the minimum margin more clearly. Section 4 presents the formulation of our

proposed method mlODM. In Sect. 5, we use Block Coordinate Descent Algorithm to solve

the dual of objective. Section 6 reports our experimental studies and empirical observations.

The related work is introduced in Sect. 7. Finally, Sect. 8 concludes with future work.

2 Preliminaries

Suppose X = R
d denotes the d-dimensional instance space, and Y =

{

y1, y2, . . . , yq

}

denotes the label space with q possible class labels. The task of multi-label learning is to learn

a classifier h : X → 2Y from the multi-label training set S = {(xi , Yi ) |1 ≤ i ≤ m}. In most

cases, instead of outputting a multi-label classifier, the learning system will produce a real-

valued function of the form f : X ×Y → R. For each multi-label example (xi , Yi ) , xi ∈ X is

a d-dimensional feature vector (xi1, xi2, . . . , xid)⊤ and Yi ⊂ Y is the set of labels associated

with xi . Besides, the complement of Yi , i.e., Ȳi = Y\Yi , is referred to as a set of irrelevant

labels of xi .

Let φ : X �→ H be a feature mapping associated to some positive definite kernel κ . For

multi-label classification setting, the hypothesis W =
{

w j | 1 ≤ j ≤ q
}

is defined based on

q weight vectors w1, . . . ,wq ∈ H, where each vector wy, y ∈ Y define a scoring function

x �→ w⊤
y φ(x) and the label of instance x is the ones resulting in large score. For systems

that rank the value of w⊤
y φ(x), the decision boundaries of x are defined by the hyperplanes

w⊤
k φ(x) − w⊤

l φ(x) = 0 for each relevant–irrelevant label pair (k, l) ∈ Y × Ȳ . Therefore,

the margin of a labeled instance (xi , Yi ) can be defined as:

γh(xi , yk, yl) = w⊤
k φ(xi ) − w⊤

l φ(xi ), ∀(k, l) ∈ Yi × Ȳi , (1)

which is the difference in the score of xi on a label pair. In addition,we define the ranking

margin as:

min
(k,l)∈Yi ×Ȳi

1

‖wk − wl‖H

γh(xi , yk, yl), (2)

which is the normalized margin, also the minimum signed distance of xi to the decision

boundary using norm ‖·‖H. Thus the classifier h misclassifies (xi , Yi ) if and only if it produces

a negative margin for this instance, i.e., there exists at least a label pair (k, l) ∈ Yi × Ȳi in

the output such that γk,l(x, yk, yl) < 0.

Based on the above definition of margin, the task of multi-label learning is tackled by

considering pairwise relations between labels, which corresponds to the ranking between

relevant label and irrelevant label. Therefore, the methods based on the ranking margin

belong to second-order strategies (Zhang and Zhou 2014a), which could achieve better

generalization performance than first-order approaches.

3 Review of Rank-SVM

Using the ranking margin Eq. (2), Elisseeff and Weston (2002) first extended the key idea

of maximizing margin to multi-label classification and proposed Rank-SVM, which learns q

base models to minimize the Ranking Loss while maximizing the ranking margin. The brief

derivation process is reformulated as follows.
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When the learning system is capable of properly ranking every relevant–irrelevant label

pair for each training example, the learning system’s margin on the whole training set S

naturally follows

min
(xi ,Yi )∈S

min
(k,l)∈Yi ×Ȳi

1

‖wk − wl‖H

γh(xi , yk, yl) (3)

In this ideal case, we can normalize the parameters to ensure that for ∀ (xi , Yi ) ∈ S,

γh(xi , yk, yl) = w⊤
k φ(xi ) − w⊤

l φ(xi ) ≥ 1 (4)

and there exist instances satisfying the equation. Thereafter, the problem of maximizing the

ranking margin in Eq. (3) can be expressed as:

max
W

min
(xi ,Yi )∈S

min
(k,l)∈Yi ×Ȳi

1

‖wk − wl‖
2
H

s.t. γh(xi , yk, yl) ≥ 1, ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m. (5)

Suppose we have sufficient training examples such that two labels are always co-occurring,

the objective in Eq. (5) becomes equivalent to maxW mink,l
1

‖wk−wl‖
2
H

, and the optimization

problem can be reformulated as:

min
W

max
k,l

‖wk − wl‖
2
H

s.t. γh(xi , yk, yl) ≥ 1, ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m. (6)

To avoid the difficulty brought by the max operator, Rank-SVM chooses to approximate the

maximum with the sum operator and obtains minW

∑q
k,l=1 ‖wk − wl‖

2
H

. Note that a shift

in the optimization variables does not change the ranking, the constraint
∑q

j=1 w j = 0 is

added. The previous problem Eq. (6) is equivalent to:

min
W

q
∑

k=1

‖wk‖
2
H

s.t. γh(xi , yk, yl) ≥ 1, ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m. (7)

To generalize the method to real-world scenarios where constraints in Eq. (7) can not be

fully satisfied, Rank-SVM introduces slack variables like binary SVM, and obtain the final

optimization problem:

min
W;Ξ

q
∑

k=1

‖wk‖
2
H

+ C

m
∑

i=1

1

|Yi ||Ȳi |

∑

(k,l)∈Yi ×Ȳi

ξikl

s.t. γh(xi , yk, yl) ≥ 1 − ξikl ,

ξikl ≥ 0, ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m (8)

where Ξ =
{

ξikl | 1 ≤ i ≤ m, (k, l) ∈ Yi × Ȳi

}

is the set of slack variables. In this way,

Rank-SVM aims to minimize the margin while minimizing the Ranking Loss. Specifically,

the first part in Eq. (8) corresponds to the ranking margin while the second part corresponds

to the surrogate Ranking Loss in hinge form. These two parts are balanced by the trade-off

parameter C .
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4 Formulation of proposedmlODM

Gao and Zhou (2013) proved that, to characterize the margin distribution, it is important to

consider both the margin mean and the margin variance. Inspired by this idea, Zhang and

Zhou (2019) proposed optimal margin distribution machine (ODM) for binary classification,

which maximizes the margin mean while minimizing the margin variance. In this section,

we introduce optimizing the margin distribution into multi-label setting and propose the

formulation of multi-label optimal margin distribution machine (mlODM), the key idea of

which is to maximize the ranking margin mean and minimize the margin variance.

Like binary ODM, considering that all the data in the training set S can be well ranked,

we can normalize the weight vectors w j , j = 1, . . . , q such that for every label pair (k, l) ∈

Yi × Ȳi , the mean of γh(xi , yk, yl) is 1, i.e., γ̄h(x, yk, yl) = 1. Therefore, the distance of

the mean point for label pair (k, l) ∈ Yi × Ȳi to the decision boundary using norm ‖·‖H

can be represented as 1
‖wk−wl‖H

. Thereafter, the minimum distance between mean points and

decision boundaries in this case can be represented as:

min
(k,l)∈Yi ×Ȳi

1

‖wk − wl‖H

s.t. γ̄h(x, yk, yl) = 1, ∀(k, l) ∈ Yi × Ȳi , (9)

which is the minimum margin mean. Corresponding to maximizing the minimum margin in

Rank-SVM, we maximize the margin mean on the whole dataset and obtain

max
W

min
(xi ,Yi )∈S

min
(k,l)∈Yi ×Ȳi

1

‖wk − wl‖
2
H

s.t. γ̄h(x, yk, yl) = 1, ∀(k, l) ∈ Yi × Ȳi . (10)

Then we use the same technique to simplify the objective. Specifically, we suppose the

problem is not ill-conditioned, approximate the maximum operator with the sum operator

and add the constraint
∑q

j=1 w j = 0. Thereafter, the objective of maximizing the margin

mean can be reformulated as:

min
W

q
∑

k=1

‖wk‖
2
H

s.t. γ̄h(x, yk, yl) = 1, ∀(k, l) ∈ Yi × Ȳi . (11)

After considering the margin mean, in order to optimize the margin distribution, we still

need to minimize the margin variance. Like binary ODM, the variance can be formulated

as slack variables. Considering the margin variance is calculated on every label pair, we use

the framework of Ranking Loss to weighted average the variance. Then the objective can be

represented as:

min
W,Ξ,Λ

q
∑

k=1

‖wk‖
2
H

+ C

m
∑

i=1

1

|Yi ||Ȳi |

∑

(k,l)∈Yi ×Ȳi

(

ξ2
ikl + ǫ2

ikl

)

s.t. γ̄h(x, yk, yl) = 1,

γh(xi , yk, yl) ≥ 1 − ξikl ,

γh(xi , yk, yl) ≤ 1 + ǫikl , ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m (12)
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where C is the trade-off parameter to balance the margin mean and variance; Ξ =
{

ξikl | 1 ≤ i ≤ m, (k, l) ∈ Yi × Ȳi

}

and Λ =
{

ǫikl | 1 ≤ i ≤ m, (k, l) ∈ Yi × Ȳi

}

are the set

of slack variables. Because of setting margin mean as 1, the right part of the objective is

the weighted average of margin variance. However, the above optimization problem is very

difficult to solve due to the existence of the constraint of margin mean. Draw on the idea of

insensitive margin loss in Support Vector Regression (Vapnik 1995) and in order to simplify

the objective, we approximate the margin mean and variance by a θ -insensitive margin loss.

The previous problem can be recast as:

min
W,Ξ,Λ

q
∑

k=1

‖wk‖
2
H

+ C

m
∑

i=1

1

|Yi ||Ȳi |

∑

(k,l)∈Yi ×Ȳi

(

ξ2
ikl + ǫ2

ikl

)

s.t. γh(xi , yk, yl) ≥ 1 − θ − ξikl ,

γh(xi , yk, yl) ≤ 1 + θ + ǫikl , ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m (13)

where θ ∈ [0, 1] is a hyperparameter to control the degree of approximation. By the θ -

insensitive margin loss, the margin mean is limited to the interval while the variance is only

calculated by the outliers outside the interval. From another point of view, the first part of

objective is the regularization term to limit the model complexity and minimize the structural

risk; the second part is approximated weighted variance loss. Moreover, the parameter θ also

control the number of support vector, i.e., the sparsity of solutions.

For each instance outside the interval, it is obvious that the instances corresponding to

γh(xi , yk, yl) < 1 − θ are much easier to be misclassified than those falling on the other

side. Thus like binary ODM, we set different weights for the loss of instances in different

sides. This leads us to the final formulation of mlODM:

min
W,Ξ,Λ

q
∑

k=1

‖wk‖
2
H

+

m
∑

i=1

1

|Yi ||Ȳi |

∑

(k,l)∈Yi ×Ȳi

(

ξ2
ikl + μǫ2

ikl

)

s.t. γh(xi , yk, yl) ≥ 1 − θ − ξikl ,

γh(xi , yk, yl) ≤ 1 + θ + ǫikl , ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m (14)

where μ ∈ (0, 1] is the weight parameter. The optimization problem of mlODM is more

difficult than Rank-SVM because considering margin distribution is more complex than

minimizing the hinge-form Ranking Loss.

5 Optimization

The mlODM problem Eq. (14) is a non-differentiable quadratic programming problem, we

solve its dual form by Block Coordinate Descent (BCD) algorithm (Richtárik and Takáč 2014)

in this paper. For the convenience of calculation, the origin problem can be represented as

follows:

min
W,Ξ,Λ

1

2

q
∑

k=1

‖wk‖
2
H

+
C

2

m
∑

i=1

1

|Yi ||Ȳi |

∑

(k,l)∈Yi ×Ȳi

(

ξ2
ikl + μǫ2

ikl

)

s.t. w⊤
k φ(xi ) − w⊤

l φ(xi ) ≥ 1 − θ − ξikl ,

w⊤
k φ(xi ) − w⊤

l φ(xi ) ≤ 1 + θ + ǫikl , ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m. (15)
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5.1 Lagrangian dual problem

First we introduce the dual variables αikl ≥ 0, (k, l) ∈ Yi ×Ȳi related to the first
∑m

i=1 |Yi ||Ȳi |

constraints, and the variables βikl ≥ 0, (k, l) ∈ Yi × Ȳi related to the last
∑m

i=1 |Yi ||Ȳi |

constraints respectively. The Lagrangian function of Eq. (15) can be computed:

L(wk, ξikl , ǫikl , αikl , βikl)

=
1

2

q
∑

k=1

‖wk‖
2
H

+
C

2

m
∑

i=1

1

|Yi ||Ȳi |

∑

(k,l)∈Yi ×Ȳi

(

ξ2
ikl + μǫ2

ikl

)

−

m
∑

i=1

∑

(k,l)∈Yi ×Ȳi

αikl

(

w⊤
k φ(xi ) − w⊤

l φ(xi ) − 1 + θ + ξikl

)

+

m
∑

i=1

∑

(k,l)∈Yi ×Ȳi

βikl

(

w⊤
k φ(xi ) − w⊤

l φ(xi ) − 1 − θ − ǫikl

)

By setting the partial derivations of variables wk to zero, we can obtain:

wk =

m
∑

i=1

⎛

⎝

∑

( j,l)∈Yi ×Ȳi

(

αi jl − βi jl

)

· ck
i jl

⎞

⎠φ(xi ) (16)

where ck
i jl is defined as follows:

ck
i jl =

⎧

⎨

⎩

0 j �= k and l �= k

1 j = k

−1 l = k.

Note that ck
i jl depends on k. Then setting ∂ξikl

L = 0 and ∂ǫikl
L = 0 at the optimum yields:

ξikl =
|Yi ||Ȳi |

C
αikl , ǫikl =

|Yi ||Ȳi |

μC
βikl (17)

Substituting Eqs. (16) and (17) into Lagrange function, simplifying the problem by double

counting and transforming the minimization to maximization, a the dual of Eq. (15) can then

be expressed:

min
αikl ,βikl

1

2

q
∑

k=1

‖wk‖
2
H

+

m
∑

i=1

∑

(k,l)∈Yi ×Ȳi

[αikl(θ − 1) + βikl(θ + 1)]

+

m
∑

i=1

|Yi ||Ȳi |

2C

∑

(k,l)∈Yi ×Ȳi

(

1

μ
β2

ikl + α2
ikl

)

s.t. αikl ≥ 0, βikl ≥ 0, ∀(k, l) ∈ Yi × Ȳi , i = 1, . . . , m. (18)

In order to use as simple notation as possible to make the objective concise, we express it

with both dual variables and weight vectors wk . Now we transform the objective into block

vector representation of dual variables for each instance. For the i th instance, we construct

four column vectors αi , β i , ck
i and ei , all of |Yi ||Ȳi |-dimension, which is the number of label

pairs contained in Yi . Specifically, for 1 ≤ i ≤ m, the vectors are defined as follows:

αi =
[

αikl |(k, l) ∈ Yi × Ȳi

]⊤
,
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β i =
[

βikl |(k, l) ∈ Yi × Ȳi

]⊤
,

ci =
[

ck
i jl |( j, l) ∈ Yi × Ȳi

]⊤

,

ei = [1, . . . , 1]⊤ (19)

where ci can only take the value {0,+1,−1}. Based on the above definition, the optimal

solution of weight vectors can be rewritten as:

wk =

m
∑

i=1

(

(

αi − β i

)⊤
ck

i

)

φ(xi ) (20)

Using Eqs. (19) and (20), the dual problem Eq. (18) can be finally represented as:

min
α,β

1

2

q
∑

k=1

m
∑

i=1

m
∑

h=1

[

(

αi − β i

)⊤
ck

i

] [

(

αh − βh

)⊤
ck

h

]

φ(xi )
⊤φ(xh)

+

m
∑

i=1

|Yi ||Ȳi |

2C

(

1

μ
β⊤

i β i + α⊤
i αi

)

+

m
∑

i=1

[

(θ − 1)α⊤
i ei + (θ + 1)β⊤

i ei

]

s.t. αi ≥ 0, β i ≥ 0, i = 1, . . . , m. (21)

The optimization problem includes 2
∑m

i=1 |Yi ||Ȳi | variables, the order of which is O
(

mq2
)

in the worst case, so we need an efficient optimization method. Considering the variables can

be partitioned into m disjoint sets, and the i-th set only involves αi and β i , so it’s natural to

use Block Coordinate Descent (BCD) method (Richtárik and Takáč 2014) to decompose the

problem into m sub-problems.

We note that column vector ζ =
[

α1; . . . ;αm;β1; . . . ;βm

]

, and diagonal matrix Ii

satisfies Iiζ = αi , 1 ≤ i ≤ m, and Iiζ = β i , m + 1 ≤ i ≤ 2m. Then the objective can be

reformulated as

min
ζ

ζ⊤ Qζ + ζ⊤u + Ψ (ζ ) (22)

where Q =
∑q

k=1

∑m
i,h=1

[

(Ii − Ii+m) ck
i

] [

(Ih − Ih+m) ck
h

]

+
∑m

i=1
|Yi ||Ȳi |

2C

(

1
μ

Ii+m Ii+m

+Ii Ii ), and Ψ (ζ ) equals to 0 when ζ ≥ 0 and +∞ otherwise. Notice that the first term of

matrix Q is positive semi-definite and the second term is positive definite, it’s easy to verify

that the first term of optimization problem Eq. (22) is strongly convex and the problem satisfies

the assumptions in Richtárik and Takáč (2014). Therefore, we can use Block Coordinate

Descent algorithm to solve mlODM efficiently with linear convergence rate.

Algorithm 1 below shows the details of the optimization procedure of mlODM by BCD.

Algorithm 1 Dual Block Coordinate Descent for kernel mlODM

1: Input: training set S, hyperparameters C , θ , μ.

2: Initialize α = [α1, . . . ,αm ] and β = [β1, . . . , βm ] as zero vector.

3: while α and β not converge do

4: randomly shuffle the training set {π(1), . . . , π(m)}

5: for i = π(1) to π(m) do

6: solve the sub-problem 24 and obtain αnew
i

, βnew
i

7: update αi , βi
8: end for

9: end while

10: Calculate the weight vectors wk , k = 1, . . . , q by 20

11: Output: wk , k = 1, . . . , q.
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Algorithm 2 Multiplicative Margin Maximization algorithm for sub-problem

1: Input: positive definite matrix H = H i , row vector v = vi .

2: Initialize η = η⊤
i

= [η1, . . . , η2m ]⊤ as [1, . . . , 1].

3: Let

H+
jk

=

{

H jk if H jk > 0,

0 otherwise,
and H−

jk
=

{

|H jk | if H jk < 0,

0 otherwise.

4: while Fixed point does not occur do

5: update each η j with

λ j ←−
−v j +

√

v2
j
+ 4

(

H+η
)

j

(

H−η
)

j

2
(

H+η
)

j

η j ←− η j · λ j

6: end while

7: Output: η.

5.2 Solving the sub-problem

For each sub-problem, we select 2|Yi ||Ȳi | variables αi and β i corresponding to a instance

to minimize while keeping other variables constants, and repeat this procedure until conver-

gence.

Note that all variables are fixed except αi and β i . After removing the constants, we obtain

the sub-problem as follows:

min
αi ,βi

1

2

(

αi − β i

)⊤
Ai

(

αi − β i

)

+ Mi

(

1

μ
β⊤

i β i + α⊤
i αi

)

+ bi

(

αi − β i

)

+ θ
(

αi + β i

)⊤
ei −

(

αi − β i

)⊤
ei

s.t. αi ≥ 0, β i ≥ 0 (23)

where Ai =
(

∑q
k=1 ck

i ck
i

⊤
)

κ(xi , xi ) is a matrix, bi =
∑q

k=1

∑

j �=i

(

α j − β j

)⊤
ck

j

ck
i

⊤
κ(x j , xi ) is a row vector and Mi =

|Yi ||Ȳi |
2C

is a constant. αi ≥ 0 represents that each

element of αi is nonnegative, so as β i .

Let column vector ηi =
[

αi ;β i

]

for i = 1, . . . , m and I be an identity matrix with |Yi ||Ȳi |

dimension, let Iμ be a diagonal matrix with 2|Yi ||Ȳi | dimension with the elements of the

second half being 1
μ

. the objective can be further represented as

min
ηi

F(ηi ) �
1

2
η⊤

i H iηi + viηi

s.t. ηi ≥ 0 (24)

where H i = [I,−I]⊤ Ai [I,−I] + 2Mi Iμ is a matrix and vi = bi [I,−I] + θe⊤
i [I, I] −

e⊤
i [I,−I] is a row vector. It is easy to prove that the first part of H i is positive semi-definite

and the second part 2Mi Iμ is positive definite. Thus H i is positive definite, and the problem

is strictly convex.

Through the above derivation, the sub-problem is finally reformulated as a convex non-

negative quadratic programming problem, which can be solved by QP solver efficiently. In

order to avoid the drawback of having to choose a learning rate and control the precision, we
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Table 1 Characteristics of datasets in our experiments

Dataset #Train #Test #Feature #Labels LCard LDen Domain

Emotions 391 202 72 6 1.87 0.31 Music

Scene 1211 1196 294 6 1.07 0.18 Image

Yeast 1500 917 103 14 4.24 0.30 Biology

Birds 175 172 260 19 1.91 0.10 Audio

Genbase 463 199 1185 27 1.25 0.05 Biology

Medical 645 333 1449 45 1.25 0.03 Text

Enron 1123 579 1001 53 3.38 0.06 Text

choose Multiplicative Margin Maximization (M3) method (Sha et al. 2002) to solve Eq. (24).

Detailed algorithm is showed in Algorithm 2. It is worth mentioning that the M3 algorithm

achieve minimum value when the fixed point occurs, i.e., when one of two conditions holds

for each element of optimization variables η j : (1) η∗
j > 0 and λ j = 1, or (2) η∗

j = 0. In

experiments, each variable η j should be initialized to 1, and the criterion of fixed points

can be relaxed. In addition, we utilize a simple and effective heuristic shrinking strategy for

further acceleration. Considering that ∇F(ηi ) = 0 indicates that the corresponding block

ηi has achieve optimum, we can move to next iteration without update ηi if this condition

holds.

6 Empirical study

In this section, we empirically evaluate the effectiveness of our method on seven datasets.

We first introduce the experimental settings in Sect. 6.1, which includes the information of

datasets, the compared methods, the evaluation metrics used in experiments, the threshold

calibration and the hyperparameters setting. In Sect. 6.2, we compare the performance in four

metrics and verify the superiority of mlODM. We analyze the convergence of our method

mlODM on six datasets in Sect. 6.3 and compare the margin distribution of each method by

visualization in Sect. 6.4.

In general, we compare our method with three multi-label classification methods on seven

classic datasets, and use four metrics to evaluate the performance of each method. Then we

analyze the characteristics of our method empirically. The information of experiments is

introduced below.

6.1 Experimental setup

These seven datasets include Emotions, Scene, Yeast, Birds, Genbase, Medical and Enron

from MULAN (Tsoumakas et al. 2011b) multi-label learning library. These datasets cover five

diverse domains: audio, music, image, biology and text. The information of all the datasets

is detailed in Table 1. #Train, #Test and #Feature represent the number of training and test

examples and number of features respectively. The number of labels is denoted by #Labels,

and the label cardinality and density (%) by LCard and LDen respectively. All features are

normalized into the interval [0, 1].
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6.1.1 Compared methods

In experiments, we compare our proposed method mlODM with six multi-label algorithms

as follows.

– BP-MLL (Zhang and Zhou 2006). BP-MLL is a neural network algorithm for multi-label

classification, which employs a multi-label error function in Backpropagation algorithm.

– Rank-SVM (Elisseeff and Weston 2002). Rank-SVM is a famous and classic margin-

based multi-label classification method, which aims to maximize the minimum margin

of each label pair. The objective is optimized by Frank–Wolfe Algorithm (Frank and

Wolfe 1956) with sub-problem being a Linear Programming problem.

– ML-KNN (Zhang and Zhou 2007). The basic idea of this method is to adapt k-nearest

neighbor techniques to deal with multi-label data, where maximum a posteriori (MAP)

rule is utilized to make prediction by reasoning with the labeling information embodied

in the neighbors.

– Rank-SVMz (Xu 2012). By adding a zero label into Rank-SVM, Rank-SVMz has a special

QP problem in which each class has an independent equality constraint, and does not

need to learn the linear threshold function by regression.

– Rank-CVM (Xu 2013a). The key idea of Rank-CVM is to combine Rank-SVM with the

binary core vector machine (CVM). The optimization is formulated as a QP problem

with a unit simplex constraint like CVM.

– Rank-LSVM (Xu 2016). This method is proposed recently and generalizes binary

Lagrangian support vector machine (LSVM) to multi-label classification, resulting into

a strictly convex Quadratic Programming problem with non-negative constraints only.

The compared methods include three classic multi-label classification methods: BP-MLL,

Rank-SVM and ML-KNN, which are coded in MATLAB from;1 and three methods modified

from Rank-SVM: Rank-SVMz, Rank-CVM and Rank-LSVM, all coded in C/C++ from

package MLC-SVM.2

6.1.2 Evaluation metrics

In contrast to single-label classification, performance evaluation in multi-label classification

is more complicated. A number of performance measures focusing on different aspects have

been proposed (Schapire and Singer 2000; Tsoumakas et al. 2011a). Recently, Wu and Zhou

(2017) provides a unified margin view of these measures, which suggests that it is more

informative to evaluate using both measures optimized by label-wise effective predictors and

measures optimized by instance-wise effective predictors. Inspired by this theoretical results,

we select ranking loss, one-error and average precision for the first kind of measures and

Hamming Loss for the second. We recall the definition of metrics as follows. The ↑ (↓)

indicates that the larger (smaller) the value, the better the performance.

The ranking loss evaluates the fraction of reversely ordered label pairs, i.e., an irrelevant

label is ranked higher than a relevant label.

rloss(↓) =
1

m

m
∑

i=1

1

|Yi ||Ȳi |

∣

∣

{

(yk, yl) | f (xi , yk) ≥ f (xi , yl), (yk, yl) ∈ Yi × Ȳi

}∣

∣

1 http://cse.seu.edu.cn/people/zhangml/Resources.htm.

2 http://computer.njnu.edu.cn/Lab/LABIC/LABIC_software.html.
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The one-error evaluates the fraction of examples whose top-ranked label is not in the

relevant label set.

one-error(↓) =
1

m

m
∑

i=1

�[argmaxy∈Yi
f (xi , y)] /∈ Yi �

where �·� equals 1 if · is true and 0 otherwise.

The average precision evaluates the average fraction of relevant labels ranked higher than

a particular label y ∈ Yi .

aver prec(↑) =
1

m

m
∑

i=1

1

|Yi |

∑

y∈Yi

∣

∣

{

y′ | rank f (xi , y′) ≤ rank f (xi , y), y′ ∈ Yi

}
∣

∣

rank f (xi , y)

The Hamming loss evaluates how many times an instance-label pair is misclassified.

Hamming loss(↓) =
1

m

m
∑

i=1

1

q
|h(xi )ΔYi |

where Δ stands for the symmetric difference between two sets. All methods will be evaluated

in these four measures.

6.1.3 Settings of each method

For Rank-SVM, Rank-CVM, Rank-LSVM and our method mlODM, the threshold function

is determined using linear regression technique in Elisseeff and Weston (2002). Specifically,

we train a linear model to predict the set size. For this linear model, the learning system

produces a q-dimensional vector
(

f1(xi ), . . . , fq(xi )
)

as the training data, the target values

are the optimal threshold values via minimizing the Hamming loss. Then a linear regression

threshold function is trained as the label size predictor.

For Rank-SVM, Rank-CVM, Rank-SVMz, Rank-LSVM and mlODM, the RBF kernel

will be used in all experiments. For the first four methods, the hyperparameters, i.e., the RBF

kernel scale factor γ and the regularization parameter C , are optimally set as recommended

in Xu (2012, 2016), which is tuned from
{

2−10, 2−9, . . . , 22
}

and
{

2−2, 2−1, . . . , 210
}

respectively. For our method mlODM, the C and γ are selected by 5-fold cross validation

from the same range as Rank-SVM. In addition, the trade-off parameter μ and approximation

parameter θ are selected from {0.1, 0.2, . . . , 0.9}. For ML-KNN, the number of nearest

neighbors is 10. For BP-MLL, as recommended, the learning rate is fixed at 0.05, the number

of hidden neurons is set to be 20% of the number of input units, the number of training epochs

is fixed to be 100 and the regularization constant is set to be 0.1. All randomized algorithms

are repeated five times.

6.2 Results and discussion

Table 2 shows the results of ranking loss, Hamming loss, one-error and average preci-

sion respectively, where the best accuracy on each dataset in each metric is bolded. From

the experimental results, our method mlODM outperforms other methods in all evalua-

tion metrics on more than half of datasets, and obtains very competitive results on other

datasets. Specifically, mlODM performs better than BP-MLL/ML-KNN/Rank-SVM/Rank-

CVM/Rank-SVMz/Rank-LSVM on 24/28/19/20/25/18 over seven datasets in four metrics.
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Table 2 Experimental results of seven methods on seven datasets in four measures

Loss Dataset BP-MLL ML-KNN Rank-SVM Rank-CVM Rank-SVMz Rank-LSVM mlODM

Ranking

loss(↓)

Emotions 45.89 28.29 15.79 15.08 14.64 15.78 15.31

Scene 39.16 9.31 13.70 7.30 7.38 6.81 6.76

Yeast 17.47 17.15 15.82 15.97 16.60 15.97 15.83

Birds 48.45 30.24 16.44 16.03 16.77 16.26 15.42

Genbase 0.76 0.64 0.12 0.41 0.44 0.41 0.18

Medical 5.23 5.85 2.48 2.69 2.96 2.65 2.18

Enron 7.38 9.38 7.37 8.01 9.10 7.10 7.62

Hamming

loss(↓)

Emotions 31.77 29.37 20.05 19.88 20.71 20.71 19.50

Scene 29.17 9.89 14.56 9.74 10.66 9.84 9.78

Yeast 20.84 19.80 19.08 19.62 19.29 19.27 19.08

Birds 11.65 9.82 8.38 8.04 9.00 7.99 7.80

Genbase 0.32 4.28 0.21 0.17 0.35 0.11 0.06

Medical 2.66 1.87 1.50 1.35 1.35 1.24 1.44

Enron 5.34 5.20 4.63 4.85 6.05 4.61 4.85

One error(↓) Emotions 52.48 40.59 28.71 26.73 26.24 28.71 25.74

Scene 82.69 24.25 29.43 20.82 20.65 20.07 20.15

Yeast 23.77 23.45 23.12 22.79 23.34 23.88 22.54

Birds 95.34 77.91 43.02 43.60 44.77 42.44 42.44

Genbase 0.00 0.50 0.50 0.00 0.50 0.00 0.00

Medical 53.18 35.04 14.73 15.50 18.92 15.04 16.07

Enron 23.66 30.40 22.11 24.70 32.99 21.59 26.42

Average

precision(↑)

Emotions 59.18 69.38 79.96 81.01 81.70 80.09 81.56

Scene 46.72 85.12 80.69 87.39 87.35 87.90 88.13

Yeast 75.05 75.85 76.98 77.00 76.76 76.63 77.07

Birds 19.31 36.28 61.56 61.00 61.27 61.63 62.04

Genbase 99.14 99.14 99.45 99.62 99.37 99.62 99.64

Medical 62.03 72.56 88.30 87.82 86.34 88.43 87.64

Enron 69.25 62.32 70.64 67.70 66.10 71.17 69.17

Counts mlODM:

win/tie/loss

24/1/3 28/0/0 19/1/8 20/2/6 25/0/3 18/2/8

The best accuracy on each dataset in each measure is bolded

On the other hand, mlODM exceeds the performance that the best-tuned Rank-SVM and

Rank-LSVM can achieve over many classic datasets, such as emotions, scene and birds,

which verifies the better generalization performance of optimizing the margin distribution.

For the improved generalization performance, we can give an intuitive discussion of

mlODM. Unlike taking only the points nearest to hyperplane into account in Rank-SVM,

mlODM utilizes the information of data distribution by optimizing the margin distribution.

At the same time, the approximation strategy in Sect. 4 makes efficiently solving possi-

ble. By introducing the information of data distribution, the method will be more robust

and possess better generalization performance. To see this, we can assume the data is

unevenly distributed, which is common in the real world, then SVM-style methods con-
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Fig. 1 Training process of mlODM on six datasets

siders only the points near decision boundary, which could be unrepresentative. However,

ODM-style methods wish to separate the representative parts on both sides of the decision

boundary. Thus it is reasonable that ODM-style methods have better generalization perfor-

mance in most cases. But when the points nearest to the decision boundary characterize

a good classifier, SVM-style methods can achieve similar generalization performance to

mlODM.
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Fig. 2 Margin distribution of mlODM, Rank-SVM, Rank-CVM, Rank-SVMz and Rank-LSVM

6.3 Training process

We visualize the training process of mlODM on six datasets in this subsection, to verify

the fast convergence rate as mentioned in Sect. 5. Figure 1 shows the training process on

ranking loss over the training and testing data on six datasets. All coordinates are updated

during an iteration. The figure illustrates that mlODM converges very fast in most datasets.

Specifically, the testing loss of all training process converges within one iteration. According

to the analysis in Sect. 6.2, this experiment indicates that although mlODM utilizes the

information of data distribution, which seems more complicated than SVM-style methods,

it still can be solved efficiently enough. The reason is that the dual problem of mlODM is

still strictly convex and satisfies the assumptions that Richtárik and Takáč (2014) proposed,

which results in the linear convergence rate of optimization.

6.4 Comparison of margin distribution

In this subsection, we empirically analyze the margin distribution of margin-based methods,

i.e., mlODM, Rank-SVM, Rank-CVM, Rank-SVMz and Rank-LSVM, as shown in Figs. 2

and 3. It is obvious that mlODM obtains better margin distribution than other four methods,

which means the distribution of margin is more concentrated. The figure also illustrates that

SVM-style methods often have bad margin distribution such as medical, birds and genbase,

the reason of which is the points nearest to the classification hyperplane can not always be

representative. In general, without considering the distribution of data, the generalization

performance of SVM-style methods is not always promising. In the experiments, the choice
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Fig. 3 Margin distribution of mlODM, Rank-SVM, Rank-CVM, Rank-SVMz and Rank-LSVM
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Fig. 4 Effect of hyperparameters of mlODM on four metrics over Emotions

of hyperparameters also has an effect on the margin distribution, so we utilize the uniform

parameter settings, which is C = 1 and γ = 2−1.

6.5 Effect of hyperparameters

In our proposed mlODM method, two hyperparameters, θ and μ, are introduced to improve

sparsity and trade off the penalty on different sides respectively. Figure 4 presents the effect

of hyperparameters of mlODM on four metrics over Emotions. The figure shows that both

hyperparameters result in a smooth change of loss value, which makes it convenient to adjust

hyperparameters and the method credible. Specifically, small μ and big θ is a good choice

for Emotions.

7 Related work

This work is related to two branches of studies. The first one is SVM-style multi-label learn-

ing approaches. Support vector machine (SVM) (Cortes and Vapnik 1995) has been one

of the most successful machine learning techniques in the past few decades, with kernel

methods providing a powerful and unified framework for nonlinear problems (Schölkopf

and Smola 2001). Elisseeff and Weston (2002) first applied this framework to multi-label

learning and proposed Rank-SVM, which has been one of the most famous multi-label learn-
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ing methods. Like binary SVM, the Rank-SVM can also be represented as minimizing the

empirical ranking loss with a regularization term controlling the model complexity. Accord-

ingly Tsochantaridis et al. (2005) extended the framework to a general form of structured

output classification. In this general formulation, the ranking loss function can be replaced.

For example, Guo and Schuurmans (2011) proposed calibrated separation ranking loss by

using simpler dependence structure and obtain better generalization performance.

There are numerous work to improve Rank-SVM in efficiency or performance. Specif-

ically, considering that the threshold selected may be not the optimal due to its separation

from the training process, Jiang et al. (2008) proposed Calibrated-RankSVM. To acceler-

ate the time-consuming training process, Xu (2012) proposed SVM-ML which consisted

of adding a zero label to detect relevant labels and simplified the original form of Rank-

SVM; Xu (2013b) use Random Block Coordinate Descent method to solve the dual problem

instead of Frank–Wolfe algorithm. Both methods significantly reduced the computational

cost and obtained competitive performance. In addition, there are also a number of variants

and applications of Rank-SVM. For example, Xu (2016) generalized Lagrangian support

vector machine (LSVM) to multi-label learning and proposed Rank-LSVM; Liu et al. (2015)

proposed rank-wavelet SVM (Rank-WSVM) for the classification of power quality complex

disturbances.

The second branch of studies is utilizing margin distribution in classification tasks.

Although the above framework has been successful and the performance is promised by

margin theory (Vapnik 1995), all of the above methods are based on large margin formula-

tion. However, the studies in margin theory for Boosting (Schapire et al. 1998; Reyzin and

Schapire 2006; Gao and Zhou 2013) have finally disclosed that maximizing the minimum

margin does not necessarily lead to better generalization performance, and instead, the margin

distribution has been proven to be more crucial. Later, inspired by this idea, Zhang and Zhou

(2014b, 2019) proposed Large margin Distribution Machine (LDM) and its simplified version

optimal margin distribution machine (ODM) for binary classification. Thereafter, varieties of

methods based on margin distribution have been proposed. Zhou and Zhou (2016) and Zhang

and Zhou (2017, 2018) generalized ODM to class imbalance learning, multi-class learning

and unsupervised learning respectively. In weakly supervised learning (Zhou 2018), Zhang

and Zhou (2018a) proposed the semi-supervised ODM(ssODM), which achieved significant

improvement in performance compared to SVM-based methods. Lv et al. (2018) introduced

margin distribution into neural networks and proposed the Optimal margin Distribution Net-

work (mdNet), which outperforms the cross-entropy loss model.

However, for the more general learning paradigm in real-world tasks, i.e, the multi-label

learning, whether optimizing the margin distribution is still effective is still unknown. By first

introducing this idea into multi-label classification, this paper proposes multi-label optimal

margin distribution machine (mlODM) and shows its superiority with extensive experiments.

8 Conclusion

In this paper, we propose a multi-label classification method named mlODM, which first

extends the idea of optimizing the margin distribution to multi-label learning. Based on the

approximation of margin mean and margin variance like binary ODM, and the simplification

technique in Rank-SVM, we propose the formulation of mlODM in Sect. 4. Subsequently we

use block coordinate descent method to solve the problem efficiently considering the structure

of the optimization problem in Sect. 5. Empirically, extensive experiments compared to classic
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methods in different measures verify the superiority of our method. Finally, the visualization

of margin distribution and convergence analyzes the characteristic of our method. In the

future it will be interesting to solve the sub-problem in a more efficient way to accelerate

the method and make theoretical analysis for the good performance of mlODM. Another

interesting future issue is to incorporate the proposed method into the recently proposed

abductive learning (Zhou, 2019), a new paradigm which leverages both machine learning

and logical reasoning, to enable it handle multi-label concepts.
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