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Abstract: Smart contracts are decentralized applications running on blockchain platforms and have
been widely used in a variety of scenarios in recent years. However, frequent smart contract security
incidents have focused more and more attention on their security and reliability, and smart contract
vulnerability detection has become an urgent problem in blockchain security. Most of the existing
methods rely on fixed rules defined by experts, which have the disadvantages of single detection
type, poor scalability, and high false alarm rate. To solve the above problems, this paper proposes a
method that combines Bi-LSTM and an attention mechanism for multiple vulnerability detection of
smart contract opcodes. First, we preprocessed the data to convert the opcodes into a feature matrix
suitable as the input of the neural network and then used the Bi-LSTM model based on the attention
mechanism to classify smart contracts with multiple labels. The experimental results show that the
model can detect multiple vulnerabilities at the same time, and all evaluation indicators exceeded
85%, which proves the effectiveness of the method proposed in this paper for multiple vulnerability
detection tasks in smart contracts.
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1. Introduction

With the widespread application of blockchain technology [1] in different scenarios, it
has moved from the blockchain 1.0 era, in which the programmable digital cryptocurrency
system is the main feature, to the 2.0 era, in which the programmable financial system is the
main feature [2]. Blockchain originates from the underlying technology of Bitcoin, which is
essentially a distributed ledger of shared transactions using cryptography to form a special
chained data structure that is jointly maintained by all miners in the blockchain network
(i.e., nodes or users in the blockchain network) according to a consensus protocol [3],
and its main features include decentralization, time-series data, collective maintenance,
programmability, and secure and trustworthy, etc. The concept of a smart contract was first
proposed by computer scientist Nick Szabo in the 20th century: “A smart contract is a set
of commitments defined in digital form, including an agreement that the participants in
the contract can execute these commitments” [4]. However, due to the lack of a credible
execution environment, the exploration was only at the theoretical level until the emergence
of blockchain technology provided a reliable execution environment for smart contracts.
By integrating various technologies such as distributed data storage, smart contracts,
consensus mechanisms [5], and encryption algorithms, blockchain can realize remote point-
to-point value transfer without any trusted third party. A smart contract is a program
deployed on the blockchain. The node makes the Ethereum virtual machine execute code
by calling the interface of the smart contract to realize the execution of the smart contract.

As a representative technology of the blockchain 2.0 era, smart contracts offer broader
and more practical applications than earlier blockchains designed only for cryptocurrencies.
According to relevant statistics, the daily transaction volume on the Ethereum platform
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at this stage can reach USD 4 billion, and smart contracts account for about 53.5% of the
transactions, the high value held by smart contracts in different domains makes them a
prime target for attackers. In 2016, the DAO smart contract running on the Ethereum public
chain was attacked and the loss involved a total of more than USD 60 million [6]. In 2017,
the multi-signature wallet smart contract that came with the Parity client was found to be
vulnerable, with attackers stealing more than USD 30 million from three highly secure multi-
signature contracts. In 2020, the lending protocol Lendf.Me was hacked and USD 25 million
worth of assets within the contract were looted. The frequent incidents of smart contract
security vulnerabilities have attracted a large number of scholars to conduct research in
this area. Traditional smart contract vulnerability detection methods usually rely on hard
rules or patterns defined by experts to detect smart contract vulnerability [7], and thus
these methods have disadvantages such as limited application, high false alarm rate, poor
scalability, and time consumption. In recent years, some researchers have proposed using
machine learning and deep learning methods for smart contract vulnerability detection
to automate vulnerability detection, but these methods can only use binary detection for
smart contracts, and face problems such as fewer detectable types and poor interpretability
for smart contracts that contain multiple vulnerabilities.

We propose a smart contract vulnerability detection method that combines Bi-LSTM
and an attention mechanism for Ethereum smart contracts. The method first performs
data preprocessing, parses the smart contract bytecode binary file into opcodes, and re-
moves some opcodes to group opcodes with the same function into one category, uses the
Word2Vec model to convert the opcode dataset into a feature matrix that can be used as an
input to the neural network, and also uses the static analysis tool Oyente to add multi-label
vectors to the contract opcodes. Then, it goes through the vulnerability detection module
and implements the multi-label classification task, which consists of a Bi-LSTM layer, an
attention layer, and a fully connected layer, where the Bi-LSTM layer is used to obtain the
semantic relationships between the preceding and following opcodes in the contract. The
attention layer adds weights to the important features to ensure the effectiveness of the
model for smart contract vulnerability detection, and finally multi-label classification is
realized through the fully connected layer. Our main contributions are as follows:

• We propose a model for multi-label classification of smart contract opcodes. Existing
models perform dichotomous detection of contracts, which can only achieve the
identification of one type of vulnerability, while our model can identify multiple
vulnerabilities of smart contracts simultaneously.

• Our approach performed well on the test set, exceeding 85% for each of the four
evaluation indicators, as well as exceeding 85% detection accuracy for each of the
five vulnerabilities.

• We used the Word2Vec model to preprocess the opcode data and achieve higher
classification accuracy compared to the NN Embedding model.

The rest of this paper is organized as follows. Section 2 details the background of
Ethereum smart contracts, multi-label classification, and existing smart contract vulnerabil-
ity detection methods. Section 3 describes five smart contract vulnerabilities and analyzes
the relationship between contract source code, bytecode, and opcode. Section 4 explains
our proposed method, and Section 5 presents experimental details and evaluation results.
Section 6 concludes the paper and provides an outlook.

2. Background
2.1. Ethereum Smart Contract

A smart contract is a digital agreement that uses algorithms and programs to formulate
contract terms, is deployed on the blockchain, and can be automatically executed according
to the rules. Its original intention is to build smart contracts into physical entities to
create various flexible and controllable intelligent assets, but due to the limitations of
early computing conditions and the lack of application scenarios, smart contracts have not
received extensive attention from researchers [8]. In December 2013, Buterin proposed the
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Ethereum blockchain platform. In addition to realizing digital currency transactions based
on the built-in Ether, it also provided a Turing-complete programming language (Solidity)
to write smart contracts, thus applying smart contracts to the blockchain for the first
time. Blockchain realizes decentralized storage, and smart contracts realize decentralized
computing based on it [9].

With the development of smart contracts, more and more smart contracts are deployed
on different blockchain platforms, such as Ethereum, Fabric, ESO, etc. [10]. Among the
many blockchain systems that support the operation of smart contracts, Ethereum, as the
earliest blockchain platform recognized to support the operation of smart contracts, has
now become the largest blockchain platform in the world. In recent years, among the
various research works on smart contracts, most of them focus on the relatively mature
smart contracts of the Ethereum platform, and the research in this paper is also based
on the smart contracts of Ethereum platform. Ethereum customizes Turing-complete
programming languages such as Solidity and Serpent to develop smart contracts to achieve
special contract functions. In Ethereum, the smart contract source code is compiled into
machine-recognizable bytecode by a compiler to form a contract deployment transaction,
and each successful deployment generates a new contract account, which is then packaged
into blocks for multiple distribution and replication among Ethereum nodes, and finally
run on the Ethereum Virtual Machine (EVM), which is the core of smart contract operation
and is mainly used to handle the deployment and execution of smart contracts [11]. Since
smart contracts run on the blockchain, their life cycle is not the same as that of ordinary
programs. It is the different life cycle and characteristics of smart contracts that bring new
security threats to it.

2.2. Multi-Label Classification

In order to effectively manage information in a structured manner, labeling technology
emerges as the times require. As a brief overview of the data information, labels can be
quickly indexed and accessed through labels after the data is marked. However, in the face
of the trend of data diversification, a single label cannot comprehensively explain and gen-
eralize the data information; that is, it cannot better meet the actual needs of multiple tasks.
The birth of multi-label technology has become inevitable and reasonable. Multi-labeling
of data information can make the original information adapt to more application scenarios.
With the development of artificial intelligence, multi-label classification technology has
transitioned from classical machine learning to deep learning based on neural networks,
and has wide and practical applications in sentiment analysis, information mining, image
processing, and other fields.

Du et al. [12] proposed an end-to-end ML-Net model to solve the multi-label classifi-
cation task of biomedical texts. The model combines a label prediction network with an
automatic label number prediction mechanism, using the prediction confidence score of
each label, and deep contextual information in the target document to achieve multi-label
classification. Alhuzali et al. [13] proposed the SpanEmo model, which uses multi-label
sentiment classification as span prediction, which can help sentiment analysis models
learn the association between labels and words in sentences, and also introduces a loss
function for modeling multiple coexisting emotions. Yogarajan et al. [14] studied the multi-
morbidity of patients, used a multi-label variant of medical text classification to enhance the
prediction of concurrent medical codes, demonstrated new embeddings in health-related
text, and dealt with imbalanced compared concentrated variants of embedding models for
the multi-label medical text classification problem. We found that multi-label classification
methods have achieved more and more results in the field of natural language processing.
Smart contract vulnerability detection is a natural language processing problem. Most of
the existing research in this field is based on binary classification methods, which can only
detect whether the contract has vulnerabilities or not. Therefore, we used a multi-label
classification method to detect smart contracts and multiple vulnerability types, so as to
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accurately, effectively, and quickly detect vulnerabilities in smart contracts to ensure the
security of the blockchain platform.

2.3. Existing Vulnerability Detection Methods

A series of smart contract security vulnerabilities have not only caused huge financial
losses to users but also raised serious questions about the fairness and trustworthiness
of smart contracts. The security of smart contracts has become a common concern for
researchers and developers, and researchers have tried various methods to detect vulnera-
bilities in smart contracts. The existing smart contract vulnerability detection methods are
divided into two main categories, which are traditional vulnerability detection methods and
machine learning-based vulnerability detection methods. Among them, traditional vulnera-
bility detection methods include formal verification, symbolic execution, fuzzy testing, and
intermediate representation, while machine learning-based vulnerability detection methods
include traditional machine learning detection methods and deep learning-based detection
methods [15]. Table 1 lists the model frameworks included in each detection method.

Table 1. Existing smart contract vulnerability detection methods.

Method Model Frameworks

Formal Verification F* framework [16]; KEVM framework [17]; ZEUS [18]
Symbolic Execution Oyente [19]; Maian [20]; Securify [21]; Mythril [22]

Fuzzy Testing ContractFuzzer [23]; Regurad [24]; ILF [25]
Intermediate Representation Slither [26]; Madmax [27]; Ethir [28]; SmartCheck [29]

Machine Learning Dynamit [30]; ContractWard [31]
Deep Learning R-CNN [32]; TSSC [33]; CBGRU [34]

Formal verification transforms the concepts, judgments, and reasoning in a contract
into a formal model through formal language. This eliminates ambiguities and implausibil-
ities in the contract and then works with rigorous logic and proof to verify the correctness
and security of the function functions in the smart contract. Common formal verification
methods include model detection and deductive verification. When symbolic execution
is applied in smart contract vulnerability detection, the variable values in the contract are
first symbolized, then the instructions in the execution process are interpreted one by one,
the execution status is updated and path constraints are collected during the interpretation
and execution process, and finally, the exploration of all executable paths in the contract is
completed and the corresponding security issues are discovered. Fuzzy testing generates
a large number of normal and abnormal test cases from the target application, tries to
provide the generated cases to the target application, and monitors the abnormal results in
the execution state to discover security issues. Intermediate representation is performed by
converting smart contract source code or bytecode into an intermediate representation with
high-level semantic representation and then analyzing the intermediate representation of
the contract to find security issues. The above traditional detection methods usually rely
on fixed semantic rules, are not fully automated, require a second audit by technicians, and
have the disadvantages of high false alarm rate and long detection time.

In recent years, machine learning and deep learning have been successfully used in
the field of program security, and at the same time, they have promoted new developments
in the field of smart contract vulnerability detection. Dynamit is a detection method
based on traditional machine learning. It manually extracts features from transactions
generated between contracts, adds labels to each transaction manually, and finally inputs
a random forest (RF) model for training to obtain high-precision RF classification. This
method can only detect whether the contract contains vulnerabilities; it cannot detect
the types of vulnerabilities. ContractWard performs N-Gram feature extraction for smart
contract opcodes, uses Oyente to detect contracts to add labels and inputs the data into
the XGBoost model for training. This method can detect six types of vulnerabilities, and
achieve multiple classifications, but the algorithm has large time and space complexity,
and memory consumption is too high. R-CNN is a detection model based on a cyclic
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neural network (CNN), which converts the bytecode of the vulnerability contract into an
RGB image and inputs it into CNN for detection. This method can only detect reentrancy
vulnerabilities and is not as effective as it could be. TSSC performs a word embedding
operation on the contract at the opcode level to obtain the feature representation of the
contract and then inputs the long short-term memory neural network (LSTM) for contract
vulnerability detection. This model can detect three vulnerabilities, but ignores the contract
before and after the operation code logical relationship between them. CBGRU uses a
combination of CNN and GRU models to perform binary detection on three types of
vulnerabilities. This method cannot detect which types of vulnerabilities the contract has
at the same time, and the CNN model is not good at processing data with sequential
relationships. This research uses a model combining Bi-LSTM and an attention mechanism
to detect multi-label vulnerabilities in smart contracts. It not only extracts the semantic
relationship between the opcodes before and after the contract but also focuses on the
important features that have a greater impact on the detection results, to ensure the model
detection performance.

3. Related Work
3.1. Smart Contract Vulnerability

Today, various types of smart contract vulnerabilities are emerging, and the reasons
for the vulnerabilities are closely related to the functionality of the blockchain platform
itself, developer writing, and contract design. Smart contracts are vulnerable to security
vulnerabilities for three main reasons. (1) The current smart contract programming lan-
guage is novel and crude, while contracts are relatively difficult to test in new operating
environments. (2) Developers cannot predict the future state and environment of the
contract, which makes it easy to write a contract that is vulnerable or susceptible to attack.
(3) Unlike traditional programs, smart contract binary code and its state are stored on
a tamper-evident blockchain network, and cannot be modified once a smart contract is
deployed. Therefore, detecting smart contracts before they are deployed can maximize the
security of smart contracts after they are deployed. To achieve smart contract vulnerability
detection, this paper conducts research work on the following types of vulnerabilities.

Reentrancy: Reentrancy is a vulnerability arising at the smart contract code level, due
to the special fallback mechanism of Solidity smart contracts [35], which allows attackers
to reenter the called function to attack the contract before the end of program command
execution. Similar to most programming languages, Ethereum smart contracts make cross-
contract function calls when handling business logic, but smart contracts often involve
sensitive operations such as transferring money. The reentrancy vulnerability arises because
an attacker designs malicious attack code in the fallback function to recursively call the
contract’s transfer function to steal ETH.

Integer overflow/underflow: The types of integer overflow in smart contracts include
three types: multiplication overflow, addition overflow, and subtraction overflow. In
Ethereum smart contracts, integers are generally specified as fixed size and unsigned
integer types, which means that integer variables can only be values within a certain range,
beyond which an integer overflow error will occur [36]. Solidity language integer variable
steps are generally incremented by 8, supporting types from uint8 to uint256. The uint8
type, for example, has a variable length of 8 bits and supports storing numbers in the range
[0,255]. The range of numbers supported for storage is [0, 255]. If an attempt is made to store
data in a variable of type uint8 that is larger than this range, the EVM will automatically
truncate the high bits, resulting in an integer overflow error. The vulnerability occurs at the
smart contract code level.

Transaction order dependency: The order of transaction execution in a blockchain
network is determined by miners in the blockchain, and some contracts have strict re-
quirements on the order of transaction execution [37]. For example, user A and user B
simultaneously submit transactions T1 and T2 respectively at time t. However, the execu-
tion order of T1 and T2 is decided by miners in the block, and if T1 is executed first, the
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contract state will change from S to S1 and vice versa, so the final contract state depends on
the order of transaction execution selected by miners. If a malicious miner listens to the
corresponding contract transaction in the block, he can change the current contract state
by submitting a malicious transaction, thus having the opportunity to deploy an attack in
advance. This vulnerability is a vulnerability that arises at the blockchain system level.

Timestamp dependency: A security vulnerability introduced by smart contracts that
use strict block timestamps in their code to make important control flow decisions. The
block timestamp is the timestamp when the block belonging to the current contract call
transaction is packed. Block timestamps can be manipulated by miners within a certain
range of fetching values [38]. The precise timestamp is used as an important decision
parameter in the contract, and while it is somewhat non-defeatable to a normal attacker, a
miner-identified attacker can easily circumvent the limitations of the contract’s timestamp
design by constructing a malicious timestamp with a range of values. This vulnerability
also occurs at the blockchain system level.

3.2. Smart Contract Source Code, Bytecode, Opcode

Smart contract development is similar to traditional software development in that a
high-level language is used to code it. There are currently more than 40 platforms that
support the deployment of smart contracts, all with corresponding contract development
languages. Most of these platforms use the Solidity language for development, such as
the Ethereum blockchain platform. The programming languages used to develop smart
contracts are Vyper, Idris, Rust, etc., in addition to Solidity [39]. The developed smart
contract source code needs to be compiled before it can be deployed on the EVM. Program
compilation is the translation of program code written in a high-level language into machine
code that can be used for machine computation. The binary code used for execution in a
smart contract is called bytecode (or EVM code), and EVM completes the execution of the
contract by decompiling the bytecode into the corresponding opcode. The Ethereum smart
contract is compiled by the compiler, which also generates an application call interface (ABI)
for the blockchain to parse out the function selector to implement the contract function calls.
We used the Remix tool [40] and Opcode-tool [41] provided by the Ethereum platform to
compile source code to bytecode and decompile bytecode to opcode, respectively. Figure 1
shows the relationship between a piece of smart contract source code after compiling and
decompiling to generate parts of bytecode and opcode.
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A bytecode is a string of hexadecimal digit-encoded byte arrays, which are parsed in
units of one byte, each of which represents an EVM instruction or an operation data [31].
The bytecode contains a total of three parts: deployment code, runtime code, and auxdata.
When EVM creates a contract, it creates the contract account first and then runs the deploy-
ment code. After running, the runtime code and auxdata are stored on the blockchain, and
finally, the deployment of the contract is completed by associating the storage address of
both with the contract account. After deployment, the real execution is the runtime code, so
only the runtime code needs to be decompiled to get the contract opcode. Currently, EVM
has more than 140 instructions, including arithmetic, comparison, bitwise, cryptographic,
stack, memory and storage, and jump instructions, Table 2 summarizes the commonly used
Ethereum opcode assembly instructions. By consulting the EVM instruction table [42], we
can analyze the bytecode and the opcode in Figure 1: the EVM reads in the hexadecimal
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numbers of the bytecode “60 80 60 40 . . . ”, and first parses the first byte “60”, which corre-
sponds to the “PUSH1” operation in the operation instruction table, because the PUSH1
instruction requires an input parameter, followed by “80”, which is the parameter of the
PUSH1 instruction, representing the pressing of a byte value into the stack at address 0 ×
80, and then continues to parse the subsequent code.

Table 2. Common assembly instructions.

EVM Code Opcode Instructions Description

0 × 00 STOP End instructions.

0 × 01 ADD Pop the two values at the top of the stack, add and push the result to the top of the stack.

0 × 02 MUL Pop the top two values from the stack, multiply and push the result to the top of the stack.

0 × 03 SUB Pop the values arg0 and arg1 from the stack in turn, and push the values of arg0-arg1 to the top of
the stack.

0 × 15 ISZERO Pop the top value of the stack, if the value is 0, push 1 to the stack, otherwise push 0 to the stack.

0 × 34 CALLVALUE Get the transfer amount in the transaction.

0 × 50 POP Pop the top value from the stack.

0 × 51 MLOAD Pop the top of the stack and use the value as the index to load the 32 bytes after the index in
memory to the top of the stack.

0 × 52 MSTORE Pop the values arg0 and arg1 from the stack in turn, and place arg1 at arg0 in memory.

0 × 56 JUMP Pop the top value of the stack and use this value as the destination address of the jump.

0 × 60 PUSH1 Put a 1-byte value on the top of the stack.

0 × 80 DUP1 Copy the first value in the current stack to the top of the stack.

0 × 90 SWAP1 Swap the first value and the second value in the stack.

For the following three reasons, in this study we chose to detect vulnerabilities in
smart contracts at the opcode level. (1) The source code is human-written, and the function
names in the code are also human-specified. When the function names are changed, the
uncertainty in making calls to the functions will affect the detection results, while the
source code is long and contains more blank lines and comments, making it difficult to
obtain a better feature representation. (2) The bytecode is not readable and it is difficult to
directly extract the code syntax structure or the sequence information corresponding to the
corresponding function. (3) The opcode is based on more than 140 operation instructions
specified by EVM, which can accurately reflect the inner logic of the contract and ensure
the reliability of the vulnerability detection model. During the actual dataset collection, we
found that more than half of the Ethereum-based smart contracts were not open source,
and only bytecode binary files were available, so we decompiled the bytecode into opcode
to support model training.

4. Method

To address the problems of poor detection, incomplete automation, and slow detection
in traditional detection methods for smart contract vulnerability detection, the goal of this
paper was to design a method that can accurately and automatically detect whether a
smart contract contains multiple vulnerabilities. The multi-label vulnerability detection
framework proposed in this paper consists of two parts, as shown in Figure 2: the data
pre-processing module and the vulnerability detection model. The data pre-processing
starts with converting the smart contract bytecode into opcodes using the Opcode-tool,
followed by converting the opcodes into a word embedding matrix for input to the neural
network model using the word embedding model Word2Vec, while we add multi-label
vectors to the generated word embedding matrix using Oyente, a static detection tool based
on symbolic execution, and the word embedding matrix and multi-label vectors together
form the dataset for model training and testing. The training set is fed into the vulnerability
detection model for training to obtain a neural network model with high classification
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accuracy, and the model is finally validated on a test set. The vulnerability detection model
consisted of a Bi-LSTM layer, an attention layer, a fully-connected layer and a sigmoid
function to implement multi-label vulnerability detection for smart contracts classification.
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4.1. Data Preprocessing

In the field of natural language processing (NLP), syntactic analysis, dependency
analysis, lexical analysis, and machine translation are indispensable for processing text
data. Ordinary text is unstructured data, and unstructured text needs to be “structured”
for further analysis and understanding. Structured data makes it easier to extract semantic
features in both machine learning and deep learning domains. Word embedding is the
main and common approach to solving this problem, which involves embedding a high-
dimensional space of all words into a continuous vector space of lower dimensionality,
where each word or phrase is mapped to a vector over the real number field [43]. Commonly
used word embedding methods are Word2Vec, GloVe, etc. The GloVe is based on traditional
statistical methods and does not use neural networks, and the computation is relatively
complex, and common Python toolkits do not integrate GloVe. Smart contract opcodes
are composed of operation instructions and opcodes, and each opcode can be regarded
as a word, which belongs to the textual form of data. To be able to extract and accurately
characterize the smart contract vulnerabilities, we chose the Word2Vec model for word
embedding operations.

4.1.1. Feature Extraction

Among the more than 140 operation instructions specified by EVM, not all of the
opcodes can affect the vulnerability detection results of smart contracts. Opcodes with
similar functions can be grouped into the same category to avoid dimensional disasters and
reduce computation. For example, by deleting the number 1 after the PUSH1 operation
instruction, the partially simplified opcodes were obtained, and are shown in Table 3.

Table 3. Simplified opcode.

Simplified Opcode Original Opcode

PUSH PUSH1-PUSH32
LOG LOG0-LOG4
DUP DUP1-DUP16

SWAP SWAP1-SWAP16

The simplified opcodes were vectorized by the Word2Vec model, which is a lightweight
neural network consisting of an input layer, a hidden layer, and an output layer. The input
layer was the one-hot encoding of the opcode Oi, and according to the simplified set of
operational instructions M, each opcode has a number i ∈ {1, . . . , |M|}, and the One-hot
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encoding of Oi represents a vector of dimension |M|, where the i-th element value is 1
and the rest of the elements are 0, such as O1 = [1, 0, . . . , 0]T . The hidden layer sets a
linear activation function, and when the model is trained, the neural network weights are
obtained, and the number of weights is the same as the number of nodes in the hidden
layer. Only the weight corresponding to position 1 is activated, thus generating a new
vector to represent the operation code Oi. Equation (1) represents the feature matrix of
the operation code of contract p. The word vector dimension in this study was set to 300,
where i represents the i-th opcode in contract p, since the number of opcodes differs for
each contract, max denotes the maximum number of contract opcodes in the whole contract
dataset, and the vacant position is filled to 0 when i < max.

SCp =



O1,1, . . . , O1,100
O2,1, . . . , O2,100

...
...

...
Oi,1, . . . , Oi,100

...
...

...
Omax,1, . . . , Omax,100


(1)

4.1.2. Multi-Label

Smart contract multi-label classification is defined as follows: given a dataset
SC =

{(
xp, lp

)}P
p=1 = [X, L], where X = [x1, x2, . . . , xP]

T ∈ RP×d, L ∈ RP×K, X refers
to the feature space corresponding to the dataset, L refers to the label space of the dataset,
N refers to the sample size of the dataset, d refers to the feature vector dimension size,
and K refers to the dimension size of the label vector. For the sample

(
xp, lp

)
, xp refers to

the feature vector corresponding to the p-th contract in the dataset; that is, Equation (1),
and accordingly, the label vector lp of the p-th contract consists of K labels, denoted as
lp =

[
lp1, lp2, . . . lpK

]
, when it contains the k-th label then it has lpk = 1, otherwise lpk = 1.

We collected a total of 5700 verified smart contracts from the Ether website and
manually added labels to all contracts by the Oyente static detection tool. The model
proposed in this paper detects five types of vulnerabilities, which are reentrancy, integer
overflow, integer underflow, transaction order dependency, and timestamp dependency, so
the above-K value is 5. A contract corresponds to five labels, and the value of each label is 0
or 1. When the value is 0, it means that the contract has no certain vulnerability, and when
the value is 1, it means that there is a vulnerability of that type, and each vulnerability label
is independent of the other. For example, the label of contract p is Lablep = [1, 0, 1, 0, 0],
which means contract p has reentrancy and integer underflow vulnerability.

4.2. Vulnerability Detection Model

The vulnerability detection model for smart contracts is the core module, which mainly
designs and trains specific network models for the vulnerability detection framework, and
adjusts the parameters of the models and algorithms in the training process in conjunction
with the requirements to obtain the detection model with optimal parameters.

Recurrent neural networks (RNN are commonly used to process sequential data and
are widely used in the field of NLP. As the number of network layers increases and the
training time lengthens, the original RNN is prone to gradient disappearance and gradient
explosion, and to solve this problem, S. Hochreiter and J. Schmidhuber proposed the long
short-term memory neural network (LSTM) [44].

LSTM is an improved model based on a RNN, which can efficiently solve multiple
learning problems associated with sequential data, better capture the dependencies between
longer distance operands in contract sequences, and have better performance in handling
long sequence data [45]. The LSTM model is formed by connecting multiple LSTM cells.
The cell structure of LSTM is shown in Figure 3. Compared with an RNN, which has
only one transmission state, ct (cell state), LSTM adds a ht (hidden state), including two
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transmission statuses. The input gate, output gate, and forget gate in the LSTM cell jointly
realize the functions of long-term and short-term memory, and together with the cell state
ct constitute the LSTM cell. The input gate determines how much input information Zi is
retained in the cell structure, the forget gate determines how much information Z f should
be retained from the hidden state ht−1 at the previous moment to the current moment, and
the output gate determines how much information Zo is output from the cell state ct. Each
gate completes the tasks of forgetting and remembering by regulating the cell information.
The specific calculation formula is as follows:

c̃t = tanh
(

Wc

[
ht−1, xt

]
+ bc

)
(2)

Zi = σ
(

Wi

[
ht−1, xt

]
+ bi

)
(3)

Z f = σ
(

W f

[
ht−1, xt

]
+ b f

)
(4)

Zo = σ
(

Wo

[
ht−1, xt

]
+ bo

)
(5)

ct = Zi × c̃t + Z f × ct−1 (6)

ht = Zo × tanhct (7)

yt = σ
(
Wy × ht) (8)

where ht−1 and xt are the transfer of the previous state and the current input respec-
tively, and the transfer ht and the current output yt of the next unit are updated through
three gating units, Wc, Wi, W f , Wo are weights, bc, bi, b f , bo are bias vectors, and σ is the
activation function.
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The data processing process of LSTM can be summarized as passing valuable infor-
mation by forgetting and remembering the information in the transmission state, but it
can only realize one-way information transmission, and cannot be analyzed when mod-
eling smart contract datasets. Therefore, for our model we selected a bidirectional long
short-term memory neural network (Bi-LSTM) [46] to better capture bidirectional semantic
dependencies. The data processing process of one layer of Bi-LSTM is shown in Figure 4.
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Figure 4. Bi-LSTM data processing process.

Whether it is LSTM or Bi-LSTM, when processing the contract dataset, it can only
calculate the opcodes in the forward or reverse order. This mechanism will calculate the
time step t depending on the calculation result at the time of t − 1, and the performance
will drop dramatically when processing data sequences that are too long, so we introduced
the attention mechanism [47]. As shown in Figure 5, its essence can be described as a query
(query) to a series of (key-value) correct mappings. It focuses limited attention on important
opcodes and assigns weights to them, thereby saving resources and quickly obtaining the
most effective feature information. To highlight the important information implicit in the
smart contract opcode, the attention layer first calculates the feature matrix Xc output from
the Bi-LSTM layer to obtain its implicit representation H, which is calculated as shown in
Equation (9), and then calculates the similarity between H and the random initialization
parameter matrix WT , normalizes the weight coefficients assigned to the input feature
vector in the overall semantic scenario using the softmax function to obtain the weights α,
and finally multiplies the weight matrix α with the feature matrix Xc to obtain the implicit
features Y of the opcode, as shown in the following equation.

H = tanh(Wa·Xc + ba) (9)

α = softmax
(

WT ·H
)

(10)

Y = Xc·αT (11)

where Wa denotes the attention layer weight matrix and ba denotes the bias vector of the
attention layer.
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After the data are processed by the Bi-LSTM layer and attention layer, the output is still
high-dimensional data compared to the classifiable vulnerability classes, and the output
dimensions and parameters of each network layer are shown in Table 4. We added a fully-
connected layer to convert the output vector into the dimensionality of a multi-label vector.
In contrast to the Bi-LSTM and attention layers, which extract features, the fully-connected
layer serves to map the learned distributed feature representation into the sample label
space. When processing sequential samples, the fully-connected layer maps the embedding
space to the hidden space and then transforms the hidden space to the sample label space
to achieve the classification effect, and in the multi-label classification task, the sigmoid
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function is used as the activation function of the output layer to model the classes’ Bernoulli
probability distribution, as shown in Equation (12), and also use binary cross-entropy loss
function as the activation function to calculate the loss for each label of a sample and take
the average as the final loss to solve the multi-label classification problem, as shown in
Equation (13). For the vector output by the fully connected layer, the calculation results of
each category are respectively input into the sigmoid function, and the value of the vector
is mapped to the probability value between [0, 1]. We set the threshold probability to 0.5,
and if the probability value is greater than 0.5, it is determined that the sample contains
this type of vulnerability, and the output is assumed to be [0.9, 0.1, 0.2, 0.3, 0.7], indicating
that the sample contains reentrancy and timestamp dependency vulnerabilities.

σ(z) =
1

1 + exp(−z)
(12)

Loss = − 1
K ∑K

k=1[lk· log(σ(z)) + (1− lk)· log(1− σ(z))] (13)

where z is the output of the fully connected layer, lk is the true value (0 or 1) corresponding
to the k-th class, and σ(z) is the output value corresponding to the model; that is, the
probability value corresponding to each vulnerability label.

Table 4. The output and parameters of each network layer.

Network Layer Output Size Number of Parameters

Bi-LSTM layer (16,6290,256) 2,021,376
Attention layer (16,128) 16,521

Fully connected layer (16,5) 645

5. Experiment
5.1. Dataset and Parameter Settings

By consulting relevant research materials, we found that there is currently no good
open-source smart contract vulnerability dataset. Although some datasets have been
opened in similar work, the integrity of smart contracts and their data labels cannot be
guaranteed. The Ethereum official website obtains the verified smart contract bytecode
files to build a reliable experimental dataset, and then uses Oyente, a static detection tool
based on symbolic execution, to add multi-label vectors to the contract. There are a total
of 5450 contracts with multiple types of vulnerabilities. After verification and deletion of
28 missing value contracts and 132 duplicate contracts, there were 5290 remaining vulnera-
bility contracts. At the same time, in order for the model to better detect vulnerabilities, we
also constructed 1000 contract datasets that did not contain vulnerabilities for experiments,
and the ratio of training set to test set was 8:2. The number of contracts containing each
vulnerability in the final dataset is shown in Table 5.

Table 5. Number of smart contracts.

Vulnerability
Category Reentrancy Integer

Overflow
Integer

Underflow
Transaction Order

Dependency
Timestamp

Dependency None

Amount 826 3711 3194 2594 1228 1000

Total amount 6290

The experiments were run in the official docker container of PyTorch and trained by
using Nvidia RTX3070 graphics card. Since the parameter settings of different models are
different, we used the same parameters as much as possible to ensure a fair evaluation of
each model. The hidden layer dimension of RNN, LSTM, and BiLSTM was set to 128, and
their stacking layers were set to 5 layers. The learning rate was uniformly set to 0.001, the
epoch was set to 100, the optimizer used the Adam optimizer, the batch size was set to 64,
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the dimension of the input word vector was 300, and the maximum length of the word
vector was 1000. The loss function used binary cross-entropy.

5.2. Evaluation Indicators

The evaluation indicators commonly used in the experiment included: recall, precision,
F1-score, and accuracy. Based on the confusion matrix in Table 6, the calculation of each
indicator was as the following equation shows:

Recall =
TP

TP + FN
(14)

Precision =
TP

TP + FP
(15)

F1− score = 2· Precision·Recall
Precision + Recall

(16)

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

where TN (true negative) represents the number of samples whose predicted value and
true value are both negative, FN (false negative) represents the number of samples whose
predicted value is negative and the true value is positive. TP (true positive) represents the
predicted value and the number of samples whose true values are all positive classes, and
FP (false positive) represents the number of samples whose predicted values are positive
classes and the true values are negative classes. The experiment in this paper was multi-
label classification, so we chose micro-recall rate (micro-R), micro-precision rate (micro-
P), and micro-F1-Score (micro-F1) to comprehensively evaluate the multi-vulnerability
detection effect of the model. The calculation equation was as follows:

micro− R =
TP

TP× FN
(18)

micro− P =
TP

TP× FP
(19)

micro− F1 =
2× (micro− R)× (micro− P)
(micro− R) + (micro− P)

(20)

Table 6. Confusion matrix.

True
Predicate

0 1

0 TN FP

1 FN TP

5.3. Experimental Results

To verify the effectiveness of the model designed in this study, RNN, LSTM, LSTM-
ATT, Bi-LSTM, and TextCNN [48] were used to compare with our model. The evaluation
results of the six models on the experimental dataset are shown in Table 7. It can be seen
that the multiple multi-label evaluation indicators of our proposed model are higher than
those of the comparison model, which reflects the effectiveness of the WBL-ATT model
in the field of multi-label detection of smart contract vulnerabilities. The higher micro-R
value of RNN and the lower micro-P value is because the RNN model suffers from severe
overfitting, and the model is more inclined to predict the vulnerability of the sample as the
category of vulnerabilities in the training set, while other models micro-P values are higher
than RNN, indicating that it would be wise for us to introduce sequential model LSTM
to process opcodes. By comparing the indicators of LSTM and Bi-LSTM, it is proved that
extracting reverse semantic information between contract opcodes is conducive to detecting
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contract vulnerabilities. In addition, we also found that the indicators of LSTM-ATT were
greatly improved compared to Bi-LSTM. Combined with the analysis of the experimental
process, it is concluded that the addition of an attention mechanism can make the model
balance features with a small number of samples and focus on important feature data,
which has a greater impact on vulnerability detection results than Bi-LSTM. TextCNN is an
improved CNN model for handling NPL tasks, but the network structure of this model
is relatively simple, the feature extraction ability is limited, and the effect performance is
general. Its metrics are much lower than those of our model.

Table 7. Model evaluation results.

Model Micro-R (%) Micro-P (%) Micro-F1 (%) Accuracy (%)

RNN 83.26 70.73 76.49 73.90
LSTM 67.33 76.28 71.53 74.26

Bi-LSTM 70.71 79.76 74.97 76.24
LSTM-ATT 79.68 81.70 80.72 80.71
TextCNN 67.71 71.85 72.11 71.03
WBL-ATT 87.25 87.71 87.51 88.12

Figure 6 shows the accuracy values of the six models for each of the five vulnerabilities.
The accuracy value is the ratio of the number of correctly predicted samples to the total
number of samples, and it can be found that the accuracy of WBL-ATT that the model we
proposed for the detection of all five vulnerabilities exceeded that of the other models, with
TOD and timestamp dependency being much higher than in the other models. Due to the
small number of samples containing reentrancy and timestamp dependency vulnerabilities
in the dataset, RNN and LSTM performed well, but in fact, because these two models
had overfitting phenomenon, the models tended to predict the samples as not containing
these two vulnerabilities. Comparing the LSTM and Bi-LSTM models, we found that
the bidirectional LSTM model performed better than the unidirectional LSTM model in
all vulnerabilities. The TextCNN performed poorly except for on the integer underflow
vulnerability, which verifies that the TextCNN model is simpler and therefore weak in
feature extraction.
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Figure 6. Accuracy of five vulnerabilities detection.

Table 8 shows the precision, recall, and F1-score of the five vulnerabilities detected
by the six models respectively. The precision value can measure the number of correct
predictions in the samples predicted by the model; the recall value is used to indicate how
many of the actual samples were correctly predicted. The F1 value is an indicator used in
statistics to measure the accuracy of the binary classification model. It takes into account
the precision and recall of the classification model and can be regarded as a weighted
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average of the precision and recall of the model. From the table, it can be found that RNN,
LSTM, and Bi-LSTM all had serious overfitting. This is because the number of samples
of integer overflow, integer underflow and TOD in the training samples was much larger
than the number of reentrancy and timestamp dependency samples. The model trained
on unbalanced data was more inclined to include all three types of vulnerabilities, so the
recall values of these three types of vulnerabilities were all 1, while the recall value of the
other two types of vulnerabilities with fewer samples was 0. The LSTM-ATT and WBL-ATT
with the added attention mechanism could reasonably balance different vulnerabilities,
reflecting that the attention mechanism can effectively enhance the generalization ability
of the model. Although the WBL-ATT model also had a low accuracy of vulnerability
classification with a small number of samples, the precision value on reentrancy was
only 72.26%, which was lower than those of LSTM-ATT and TextCNN, but timestamp
dependency reached 78.97%, much higher than the values of LSTM-ATT and TextCNN, and
among the three samples with a large number of vulnerabilities, integer overflow, integer
underflow, TOD, and WBL-ATT performed well, and the precision value was greater than
that of TextCNN and LSTM-ATT. In general, the WBL-ATT model had good generalization
performance and performed well on samples with a large number of vulnerabilities.

Table 8. Precision, recall and F1-score of five vulnerabilities detection.

Model Indicator (%) Reentrancy Integer
Overflow

Integer
Underflow TOD Timestamp

Dependency

RNN
Precision 0 79.32 69.43 60.06 0

Recall 0 100.00 100.00 100.00 0

F1-score 0 88.63 82.03 75.70 0

LSTM
Precision 0 80.70 69.54 79.80 0

Recall 0 100.00 100.00 33.33 0

F1-score 0 90.16 81.35 47.05 0

Bi-LSTM
Precision 0 94.68 71.82 73.60 0

Recall 0 82.60 92.86 76.60 0

F1-score 0 85.60 80.89 75.02 0

LSTM-ATT
Precision 90.90 89.53 84.82 75.00 55.56

Recall 24.00 94.65 88.78 84.92 25.42

F1-score 35.29 91.49 86.32 78.68 34.83

TextCNN
Precision 80.00 94.10 83.44 77.16 68.18

Recall 16.00 91.92 83.21 81.66 50.84

F1-score 26.67 93.36 82.32 79.35 58.25

WBL-ATT
Precision 72.26 95.67 89.89 87.56 78.97

Recall 72.00 95.66 88.76 86.83 77.63

F1-score 73.24 95.99 89.23 87.19 78.59

In order to verify the reliability of our proposed Word2Vec model for processing
opcode data, we used the NN Embedding layer that comes with Pytorch to process word
vectors to convert opcodes, and input the WBL-ATT model together with our proposed
Word2Vec feature matrix. The results of the four evaluation indicators are shown in Figure 7.
It can be seen that the data extracted by the Word2Vec model was more beneficial to the
subsequent detection results, but it could not achieve end-to-end model training, which
provides our new future research direction.
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6. Conclusions and Future Work

Smart contracts have expanded the application scenarios of blockchain, and the num-
ber of contracts on various blockchain platforms has increased exponentially. However,
frequent smart contract vulnerability attacks not only cause heavy losses to users but also
bring into question the reliability of blockchain platforms. In our work, we proposed an
approach combining Bi-LSTM and attention mechanisms to implement multi-label vulner-
ability detection for smart contracts. For the Ethereum smart contract dataset, the bytecode
was parsed to obtain the corresponding opcode, and the Word2Vec word embedding model
was used to convert the opcode into a word embedding matrix for the neural network
input, and then the Bi-LSTM was used to extract the semantic information between the
front and back of the opcode, while the attention mechanism was added to assign weights
to the important features, and finally the fully connected layer and sigmoid function were
used to achieve multi-label classification. We tested our proposed multi-label vulnerability
classification detection model with several vulnerability classification detection models on
a self-made multi-label vulnerability dataset, and the results showed that our proposed
multi-label vulnerability classification detection model outperforms other models, indicat-
ing that our proposed approach performs well in handling the multi-label vulnerability
detection task of smart contracts.

Although this research has contributed to the field of smart contract vulnerability
detection, there are still limitations to a certain extent: the relationship between the code in a
smart contract and different vulnerabilities is a key issue for vulnerability detection in smart
contracts and requires further digging. The following aspects are planned to be optimized
in future research work: (1) Locate the vulnerability of the contract that has detected the
vulnerability, and find out which operation instructions cause the vulnerability of the con-
tract. (2) Our method is only for vulnerability detection of smart contracts on the Ethereum
platform, and the next step is to extend it to other blockchain platforms (such as Fabric,
ESO) to achieve broader contract vulnerability detection. (3) With the advancement of
technology in the NLP field, researchers have proposed more new frameworks, and we will
try to use end-to-end technology to process opcodes to achieve vulnerability classification.
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