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ABSTRACT
Many classification problems require classifiers to assign each sin-
gle document into more than one category, which is called multi-
labelled classification. The categories in such problems usually
are neither conditionally independent from each other nor mutually
exclusive, therefore it is not trivial to directly employ state-of-the-
art classification algorithms without losing information of relation
among categories. In this paper, we explore correlations among
categories with maximum entropy method and derive a classifi-
cation algorithm for multi-labelled documents. Our experiments
show that this method significantly outperforms the combination
of single label approach.
Categories and Subject Descriptors: H.3.3 [Information Sys-
tems]: Information Search and Retrieval
General Terms: Algorithms, Experimentation
Keywords: multi-labelled classification, maximum entropy
method

1. INTRODUCTION
Data classification is the task of assigning each of the given data

to a set of predefined categories. In general, all classification prob-
lems can be categorized as either single-labelled, or multi-labelled
problems. Single-labelled data classification assumes that the pre-
defined data categories are mutually exclusive and each data point
can belong to exactly one category. Binary classification is the sim-
plest case of the single-labelled problem where each data point is
assigned to one of two predefined categories. To date, many clas-
sification methods, such as Naive Bayes, SVM, and Logistic Re-
gression, have been developed to address the single-labelled clas-
sification problem. On the other hand, with multi-labelled clas-
sification, the data categories may not be either mutually exclu-
sive or conditionally independent, and each data point can belong
to multiple categories simultaneously. Multi-labelled classification
problems are very common in the areas of document analysis and
information retrieval. For example, a newspaper article about the
presidential election may talk about a wide range of topics such as
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politics, economy, and foreign relations; an email discussing the
ongoing business work may also include topics about the past va-
cation the sender had experienced with his friends; etc. For docu-
ment retrieval, a user may want to retrieve the news simultaneously
belonging to multiple categories, which requires classifiers to cor-
rectly assign documents to all categories.

Despite the value and the significance of the problem, research
on multi-labelled classification has received much less attention
compared to its single-labelled counterpart. Currently the most
common solution to the multi-labelled classification problem is to
decompose the problem into multiple, independent binary classifi-
cation problems, and determine the final labels for each data point
by aggregating the classification results from all the binary classi-
fiers. More precisely, for a given m predefined categories, m binary
classifiers are independently created, one for each category, and are
used to determine if a given data point belongs to the correspond-
ing category or not. The final category label for the data point is
determined by combining the category labels generated by these m
binary classifiers. The advantage of this approach is that a multi-
labelled classifier can be readily built using many start-of-the-art
binary classifiers off the shelf, such as SVM. However, when there
exist strong correlations among categories, data classification per-
formance may deteriorate because this approach employs a set of
independent binary classifiers to conduct data classifications, and
mutual correlations among different categories are completely ig-
nored. More specifically, given the input variables, the optimal es-
timate should be the labels with the largest joint probability, instead
of the combination of labels with largest individual probabilities of
categories. Later we illustrate the difference in Section 3.2.

To take the dependencies among data categories into account, a
straight-forward approach is to transform the multi-labelled clas-
sification problem into a single-labelled problem by treating each
possible combination of categories as a new class. In other words,
a multi-labelled classification problem with ten predefined classes
would be transformed to a single-labelled classification problem
with 1024 classes each of which corresponds to a possible combi-
nation of the original data classes. However, this approach faces
the problem of data sparseness because there could be very few
data points in many combinations of the data classes.

In this paper, we propose a multi-labelled data classification
method by explicitly modelling the mutual correlations among data
categories using the maximum entropy principle. Our method ac-
complishes the multi-labelled data classification task by construct-
ing a conditional probability model Pr(y|x) from the training data
set, where x is the feature vector of the input data point, and y
is the class membership vector in which each element yi indicates
whether x belongs to the i’th class or not. In contrast to traditional
approaches where Pr(y|x) is usually determined by the class pri-



ors and feature vectors of the input data, we construct Pr(y|x) by
including an additional term — the dependencies among the data
classes. We employ the Maximum Entropy (ME) method to es-
timate the parameters during the model construction process. To
reflect the estimation errors between the empirical and the real
distributions, we introduce the regularization parameters, which
serve to avoid the over-fitting problem for the model construction.
This measure is in analogy to the penalized logistic regression, ex-
cept for the items serving for the correlation among category la-
bels. Our experimental evaluations show that the proposed multi-
labelled classification method reveals statistically significant per-
formance improvements compared to traditional approaches.

The remainder of the paper is organized as follows. The related
work is discussed in Section 2. In Section 3, we describe the model
of multi-label maximum entropy. Then, we present the experiments
and results in Section 4. Finally Section 5 concludes the paper.

2. RELATED WORK
There is limited work on the problem of multi-labelled classifi-

cation. In the literature, many research studies take ranking-based
approaches which assign a real-valued score to each document-
category pair, and classify each document by choosing all the cat-
egories with the scores above the given threshold. Schapire and
Singer [16] proposed BoosTexter which essentially is an enhance-
ment to AdaBoost to build the ranks for all document-category
pairs by using the boosting techniques. Elisseeff and Weston [8]
developed a method using a kernel SVM as the ranking function
for document-category pairs. Crammer and Singer [6] proposed a
family of one-against-rest online ranking algorithms that create a
weight vector for each category, and compute the ranking between
a document and a category using the inner product of the docu-
ment’s feature vector and the category’s weight vector.

Although ranking-based approaches provide a unique way to
handle the multi-labelled classification problem, they generally do
not explicitly model the correlations among data categories. An-
other problem such methods are facing with is that it is difficult
to determine into how many categories a particular data should be
classified, and thresholds are usually selected heuristically.

Another common approach to the multi-labelled classification
problem is the modeling of classification using generative prob-
abilistic models. McCallum [14] described a method based on
generative model which assumes that each multi-labelled docu-
ment is generated by a mixture of single-labelled document mod-
els. The method resorts to naı̈ve Bayes model for each category
model by assuming the independence between words given cate-
gory. The method employs the expectation-maximization (EM) to
estimate the model parameters and the mixture parameters. Ueda
and Saito [17] also proposed a probabilistic generative model that
uses a different mixture approach. The advantage of these meth-
ods is that they explicitly model the category correlations, and re-
quire no threshold for determining the category label for each data
point. However, because these methods usually assume words in-
dependence and mixture of category features within their proba-
bilistic models, data classification accuracies could be limited be-
cause these assumptions usually do not reflect the real-world data
configurations.

A closely related approach in the literature is the one proposed
by Godbole and Sarawagi [10] that stacks two levels of SVM’s with
heterogeneous features. Each lower level SVM is a single-labelled,
one-against-rest classifier with the original text features as the in-
put. Combining the original text features, the outputs of the lower
level SVM’s are used as the input of the higher level SVM’s which
determine the final category label for each document. In Section 4,

we implement a variation of this method, and compare it with our
proposed multi-labelled data classification method for performance
evaluations.

In addition, there is some other work closely related to the multi-
labelled classification problem. Clare and King [4] developed a
method, which uses a modified entropy measure to extend the algo-
rithm C4.5 to allow nodes containing multiple labels. The method
also uses resampling strategies to deal with classes with small num-
bers of examples. Similarly, Comite et al. [5] extended the alter-
nating decision trees (ADTrees) algorithm for multi-labelled prob-
lems. Each node of their multi-label ADTrees is associated with
a set of real values, one for each label. Har-Peled et al. [11] de-
scribed a constraint classification framework. Under the frame-
work, classification problems are translated into a binary classifi-
cation in a higher dimensional space with certain constraints. The
paper also presented a meta-learning algorithm that learns via a
single linear classifier consistent with the constraints. However,
the correlations among labels were not explicitly discussed in the
paper. Cai and Hofmann [2] proposed a hierarchical approach for
multi-labelled/multi-class classification problem, where the prede-
fined taxonomy is used to redefine the loss functions. Gao et al. [9]
extended their binary maximal figure-of-merit learning algorithm
to multi-labelled classification problem. The method optimizes the
performance against the approximated evaluation criteria, but the
discriminant function for classification is still based on individual
categories.

3. THE MULTI-LABELLED MAXIMUM
ENTROPY METHOD

Here we briefly review the method of single-labelled data classi-
fication using the maximum entropy model. When we consider the
relaxation of the constraints, it is equivalent to the penalized logis-
tic regression method. Then, we give an example to demonstrate
why the approach of combining single-labelled classifiers does not
work well for the multi-labelled classification problem, which im-
plies the importance of modeling the dependency among data cat-
egories. Finally, we propose the multi-labelled maximum entropy
approach to model the dependency among category labels.

Let x = (x1, · · · , xd)> denote the random variable representing
feature vectors of the input data; let y denote the category label vec-
tor of a particular data point (we describe the details of y in differ-
ent situations). Statistical approaches accomplish the data classifi-
cation task by estimating the conditional probability Pr(y|x) from
the training data, and determine the category label ŷ of a given data
point with the feature vector x using the following equation:

ŷ = arg max
y∈Y

Pr(y|x). (1)

where Y represents the label space of the entire data set.

3.1 Maximum entropy method for single-
labelled classification

In this section, we briefly introduce the single-labelled data clas-
sification using the maximum entropy model. Detailed descriptions
of the method can be found in [15]. For simplicity, we only describe
the binary classification case. Therefore, the label space Y = B,
where B is a binary space, containing 0 and 11. Since y has only
one dimension, we denote it as y.

The principle of the maximum entropy model (MEM) [12] is sim-
ple: model all that is known and assume nothing about what is
1In literature, some use −1 and 1. Two representations are equiva-
lent except for resulting different parameter values.



unknown. In other words, given a collection of facts, the MEM
chooses a model which is consistent with all the facts, but other-
wise is as uniform as possible. In real implementations, facts are
usually represented as a set of constraints, and the optimal model is
acquired by maximizing the model’s entropy under the given con-
straints.

Let P̃ (x, y), Q(x, y) denote the empirical and the model dis-
tributions, respectively. Traditional MEM-based data classification
methods typically use the following constraints for model selection:

〈y〉Q = 〈y〉P̃ ,

〈yxl〉Q = 〈yxl〉P̃ , ∀1 ≤ l ≤ d,
(2)

where 〈·〉P denotes the expectation with respect to distribution P ;
xl represents an element of the feature vector x. The above two
constraints serve to force the model under construction to comply
with the two statistical properties of the training data set: the prior
probability of each category, and the correlations among the cate-
gories and features of the given data.

For the problem of data classification, the model to be estimated
is the conditional probability Q(y|x) (denoted as a function of y
and x, q(y|x), from now on) and the MEM obtains the optimal
q(y|x) by maximizing the following entropy subject to the con-
straints Eq. (2) and

P
y q(y|x) = 1. We have

q̂ = arg max
q

H(x, y|Q) = arg min
q

〈log q(y|x)〉Q , (3)

where H(x, y|Q) is the entropy of x and y given distribution Q
with parameter q. By expanding H(x, y|Q) and ignoring the con-
stants irrelevant to q(q|x), we have the second part of Eq. (3).

The minimization of Eq. (3) is a typical constrained optmization
problem that can be solved using Lagrange Multiplier algorithms.
The Lagrangian of Eq. (3) is:

L(q(y|x), b,w, ζ(x)) = 〈log q(y|x)〉Q
+ b(〈y〉P̃ − 〈y〉Q) +

X
l

wl(〈yxl〉P̃ − 〈yxl〉Q)

+
X
x

ζ(x)(1−
X

y

q(y|x)), (4)

where b, w = (w1, · · · , wd)> and ζ(x) are the Lagrangian mul-
tipliers. Omitting the mathematical derivations (refer to [12, 7] for
derivation details), the optimal model q̂ takes the form of

q̂(y|x) =
1

Z(x)
exp(y(b + w>x)), (5)

where Z(x) =
P

y exp(y(b + w>x)) is the partition function.
The constraints in Eq. (2) assume the model distribution equals

the empirical distribution. However, for a limited number of train-
ing data, there exist estimation errors. Without considering such
errors, the solution may lead to generation errors. To have a robust
estimation, Chen and Rosenfeld [3] proposed to introduce max-
imum a posteriori probability (MAP) model under the Gaussian
prior into the constraints. Assuming η and φl are the estimate errors
which follow Gaussian distributions with zero means and variances
of σ2

η/n and σ2
φ/n (n is the number of documents), respectively,

we rewrite Eq. (2) as Eq. (6).

〈y〉Q = 〈y〉P̃ + η,

〈yxl〉Q = 〈yxl〉P̃ + φl, ∀1 ≤ l ≤ d,

η2

2σ2
η/n

+
X

l

φ2
l

2σ2
φ/n

≤ C,

(6)

where C is a parameter that can be used to set the tolerance of the
estimation errors.

With the renewed constraints, the Lagrangian becomes:

L(q(y|x), η, φ, b,w, γ, ζ(x)) = 〈log q(y|x)〉Q
+ b(〈y〉P̃ + η − 〈y〉Q) +

X
l

wl(〈yxl〉P̃ + φl − 〈yxl〉Q)

+ γ(
η2

2σ2
η/n

+
X

l

φ2
l

2σ2
φ/n

− C)

+
X
x

ζ(x)(1−
X

y

q(y|x)), (7)

where b, w = (w1, · · · , wd)>, γ (≥ 0), and ζ(x) are the La-
grangian multipliers.

By solving Eq. (7) and ignoring constants, we have

L(b,w) =
D
−y(b + w>x) + log Z(x)

E
P̃

+
λb

2n
b2 +

λw

2n
||w||22, (8)

where λb = σ2
η/γ and λw = σ2

φ/γ, || · ||2 denotes the 2-norm.
Actually, λb and λw serve as regularization coefficients for the bias
term and the feature terms, respectively. In many applications, the
bias term is not regularized, which means to set λb to zero. In [20],
by adding a constant feature, the bias term is treated the same as
the feature terms, which is equivalent to λb = λw. Actually, when
there are a large number of training data, the difference between
these two settings is very small. In our experiments, we set λb = 0.

Eq. (8) is actually penalized logistic regression (cf. [21]). The
classification task is to find the optimal parameters b̂ and ŵ to min-
imize L(b,w) in Eq. (8). Plugging the optimal parameters, b̂ and
ŵ, into Eq. (5), we have optimal conditional distribution q̂(y|x),
which is used to classify a given document with feature vector x.

3.2 Why not combine single labels
For the multi-labelled classification problem, let y =

(y1, · · · , ym)> ∈ Y ⊂ Bm be the label vector of a data point,
where m is the total number of categories, and each dimension yi

of y indicates the membership of the data point in category i. By
assuming the independence among the categories, the approach of
combining single-labelled classifiers for multi-labelled data classi-
fication can be expressed as follows:

ŷ = arg max
y∈Y

mY
i=1

Pr(yi|x)

=

„
· · · , arg max

yi∈B
Pr(yi|x), · · ·

«
.

(9)

The following example shows why combining single-labelled
classifiers does not always produce correct results for the multi-
labelled classification problem when the categories are not inde-
pendent. Assume that the joint distribution Pr(y1, y2|x) for some
data point x is shown in Table 1. Further assume that we trained

Pr(y1, y2|x) y1 = 0 y1 = 1 Pr(y2|x)
y2 = 0 0 0.4 0.4
y2 = 1 0.3 0.3 0.6

Pr(y1|x) 0.3 0.7

Table 1: An example of joint distribution of two labels.



two single-labelled classifiers independently, which yields the con-
ditional probabilities Pr(y1|x) and Pr(y2|x) shown in the same ta-
ble. Because Pr(y1 = 0|x) = 0.3 is less that Pr(y1 = 1|x) = 0.7,
data x is assigned to the first category y1 = 1. Similarly, data x is
assigned to the second category y2 = 1 as well. However, accord-
ing to Table 1, Pr(y1 = 1, y2 = 1|x) = 0.3, which is less than
Pr(y1 = 1, y2 = 0|x) = 0.4. This means that the correct category
labels for data x is y1 = 1, y2 = 0, and the result generated by
combining the two single-labelled classifiers is not correct!

Clearly, the approach of combining single-labelled classifiers
without considering the dependence among category labels has its
limitation on the multi-labelled classification problem. Therefore,
we develop a multi-labelled data classifier using the maximum en-
tropy model in the following section.

3.3 Multi-labelled maximum entropy model
For the multi-labelled classification problem, we can extend the

constraints in Eq. (6) to

〈yi〉Q = 〈yi〉P̃ + ηi, ∀1 ≤ i ≤ m,

〈yixl〉Q = 〈yixl〉P̃ + φil, ∀1 ≤ i ≤ m, 1 ≤ l ≤ d,
(10)

where η’s and φ’s are estimate errors.
As the previous example shows, correlations among categories

are important to the multi-labelled classification problem. To cap-
ture such information, we add a new type of constraints to the maxi-
mum entropy model to require the model to comply with the second
order statistical property yiyj of the training data.

〈yiyj〉Q = 〈yiyj〉P̃ + θij , ∀1 ≤ i < j ≤ m, (11)

where θ’s are estimate errors.
Although it is possible to use other higher order statistics to

model the category dependencies, the cost of employing such statis-
tics may surpass the benefits they bring about. The higher order the
statistics, the more parameters the model needs to estimate. With
limited training data, models involving higher order statistics can
hardly capture true distributions of the underlying data, and are
likely to end up with little difference or even deteriorated perfor-
mances compared to models using lower order statistics.

Again, the problem in our hands is to obtain the optimal q(y|x)
that maximizes the entropy in Eq. (3) subject to the constraints in
Eq. (10), (11) and

P
y q(y|x) = 1. Similar to Eq. (5) (See Ap-

pendix for the derivation details), we have

q̂(y|x) =
1

Z(x)
exp(y>(b + Ry + Wx)), (12)

where Z(x) =
P

y exp(y>(b+Ry+Wx)) is the partition func-
tion; b = (b1, · · · , bm)>, W (an m×d matrix), and R (an m×m
strict upper triangle matrix) are Lagrangian multipliers that need to
be determined. By simplifying the Lagrangian and ignoring con-
stants, we have

L(b, R, W ) =
D
−y>(b + Ry + Wx) + log Z(x)

E
P̃

+
λb

2n
||b||22 +

λR

2n
||R||2F +

λW

2n
||W ||2F , (13)

where || · ||F denotes Frobenius norm, λb = σ2
η/γ, λR = σ2

θ/γ
and λW = σ2

φ/γ. Similar to Eq.(8), λb, λR and λW act as reg-
ularization coefficients, and there values are to be specified by the
user.

Here, the task of finding the optimal q̂(y|x) becomes the prob-
lem of finding the optimal b, W , and R that minimizes the La-

grangian:

b̂, R̂, Ŵ = arg min
b,R,W

L(b, R, W ). (14)

Eq. (14) can be solved using gradient descent approaches. The
derivatives of L with respect to its parameters are

∂L
∂bi

= 〈yi〉Q − 〈yi〉P̃ +
λb

n
bi,

∂L
∂Rij

= 〈yiyj〉Q − 〈yiyj〉P̃ +
λR

n
Rij ,

∂L
∂Wil

= 〈yixl〉Q − 〈yixl〉P̃ +
λW

n
Wil.

There are many gradient descent methods off the shelf. In [13],
Malouf compared several algorithms for maximum entropy param-
eter estimation and suggests that the limited memory variable met-
ric (LMVM) [1] method is the fastest solver for document classifi-
cation problems. Therefore, in our implementation we use LMVM
to estimate the parameters.

Once we have b̂, R̂, Ŵ , classifying a document with feature vec-
tor x is equivalent to

ŷ = arg max
y∈Y

y>(b̂ + R̂y + Ŵx). (15)

To label a data point, we can enumerate all possible label sets in Y
to find the most probable one using Eq.(15).

4. EXPERIMENTS
To show the benefit of using multi-labelled maximum entropy

method, we evaluate the method against other methods on two real
data sets.

4.1 Data description
The first data set is the Reuters-21578 document corpus that con-

tains 21578 documents collected from the Reuters newswire in
1987. It is a standard text categorization benchmark test set that
consists of 135 document categories. In our experiments, we used
the ten (10) largest categories for performance evaluations. Table
2 shows the statistics of document labels in our training set. It is
observed from the table that only 6.5% of the documents in the
training set possess multiple labels (i.e., belong to multiple cate-
gories).

No. of labels No. of documents percentage
0 3113 32.4%
1 5870 61.1%
2 542 5.6%
3 73 0.8%
4 5 0.1%

total 9603 100%

Table 2: Numbers of multi-labelled document in the training
set of Reuters-21578 data set.

To prepare the features for documents, we follow the widely used
bag-of-word approach. The features used in our experiments are
words that appear more than once in the corpus. All the docu-
ments are processed with the following steps: removing SGML
tags, downcasing, removing words on the SMART stoplist, stem-
ming. The above pre-processing has resulted in a total of 11084
words as the final features. We employed the TFIDF weighting
scheme and the normalization in creating the feature vector for each
document. We used the modified Apte (“ModApte”) split to create



the training and the testing sets that consist of 9603 and 3299 doc-
uments, respectively.

The second data set is an email corpus collected by us from six
public domain mailing lists2. Our original purpose for creating
such an email corpus is to monitor the R&D activities of a project
group and discover the contributions of each employee through
mining and analysis of emails among the group members. To serve
these purposes, we have defined the following nine categories for
email classification: (1) Topic Raising (RAISE), (2) Question Ask-
ing (ASK), (3) Work Report (REP), (4) Information Announce-
ment(INFO), (5) Delegation (DEL), (6) Solution Proposal (SP), (7)
Positive Comments (POSCOM), (8) Negative Comments (NEG-
COM), and (9) Others (OTHERS). Our pre-processing on the email
corpus includes removal of irrelevant information and extraction of
implicit features. We remove the following items from the body
of each email: attachments (pictures, executable codes), marker
characters, quoted materials, email header, signature, time informa-
tion, reply information, debug message, compiling message, source
codes, etc. The extracted implicit features include: reply relation,
reply indicator, hyper-links, ftp sites, itemization symbols, “for-
warded” mark in email title, type of attached data, etc. In our email
corpus, a large percentage of emails are assigned with multi-labels.
For example, 57.1% (474/830) of the emails in class RAISE also
belong to class ASK; 41.2% (474/1150) of the emails in class ASK
also belong to class RAISE. In our experiments, we use the first
eight (8) categories, and treat emails in the OTHERS category as
having no labels. We found that 34.6% of documents in the training
set have more than one label (see Table 3). The percentage of multi-

No. of labels No. of documents percentage
0 91 2.4%
1 2363 63.0%
2 1104 29.4%
3 186 5.0%
4 9 0.2%

total 3743 100%

Table 3: Numbers of multi-labelled document in the mailing
list data set.

labelled documents in our email corpus is significantly higher than
that of the Reuters-21578 corpus. The procedures used for cre-
ating the feature vector of each email are similar to those for the
Reuters-21578 corpus, which results in a total of 3947 words as the
final feature set.

Table 5 shows the mutual information, the p-values of Pearson’s
chi-square test of pairs of categories in the mailing list data set.
From the table, we can see that some values of mutual information
are clear not zero and some p-values show that the dependency
between categories is significant (the smaller p-values indicate the
stronger dependency between categories). Hence, the approach of
combining single-labelled classifiers is insufficient for these data.

4.2 Methods and evaluation measures
For performance comparisons, we implemented two traditional

methods and conducted performance evaluations using the same
data corpora. The first method is the combination of multiple,
independent single-labelled classifiers each of which employs the
single-labelled maximum entropy model (which is equivalent to the

2The mailing lists are evolution-hackers@lists.ximian.com,
freebsd-amd64@freebsd.org, freebsd-sparc64@freebsd.org,
gnome-devel@gnome.org, image-sig@python.org, and public-
esw@w3.org.

penalized logistic regression), as described in Section 3.1. This
method is denoted as “COMB” in our experiments. The second
method is developed by stacking another layer of the penalized lo-
gistic regression on top of the first method, which adopts the idea
of the approach described in [10]. We use the penalized logis-
tic regression instead of SVM’s because we want to use the same
loss function for data classification model so that the results are
more comparable. This method is denoted as ”HF” in our experi-
ments. Our proposed multi-labelled classification method based on
the maximum entropy model is denoted as ”MLME”.

For a given document i, let y(i) and ŷ(i) be the true and the
predicted label sets, respectively. We use the classification accuracy
AC defined below as our performance metric.

AC =

Pn
i=1 δ(y(i), ŷ(i))

n
, (16)

where n denotes the total number of documents in the test, δ(x,y)
is the delta function that equals one if x = y for all dimensions
and equals zero otherwise. AC computes the percentage of the
documents whose predicted labels are exactly the same as their true
labels.

Though the accuracy measures are compatible with the loss func-
tion of classification, which is considered as a smoothed version of
0 − 1 loss, we are also interested in the practical goal of informa-
tion retrieval. For multiple label data sets, we usually use micro-
averaged F1 measure [19],

F1 =
2rp

r + p
, (17)

where p and r are the precision rate and the recall rate computed
globally over all binary decisions of all document-category pairs,
respectively. Since the micro-averaged F1 measure computes over
all binary decisions, the partial correctness of labeling is credited.

4.3 Experimental results
The first experiment is on the Reuters-21578 document corpus.

We used ten-fold cross validations to choose optimal regulariza-
tion parameters for all the three methods. Table 6 shows the eval-
uation results using the optimal parameters on ten 9 − 1 random
splits. To compare the performance of different methods, we use
one-sided Wilcoxon signed-rank test[18] which is a nonparamet-
ric paired test without assuming the underline distribution of the
tested values. Here, the alternative hypothesis is whether multi-
labelled maximum entropy method (MLME) has higher accuracies
(or, F1 measures). The p-values of one-sided Wilcoxon signed-
rank test between the given experiment and multi-labelled maxi-
mum entropy method are shown in Table 6. Although the improve-
ment of accuracies and F1 measure is small, the improvement is
significant (usually, if the p-value is smaller than 0.05 , the result is
significant). The improvement is not much, partially because that
the data set only contains 6.5% multi-labelled documents and the
percentage of documents not belonging to the ten categories are
relatively large, 32.4%.

The second experiment is on the mailing list data set. Table 7
shows the accuracy and F1 measure for using their optimal param-
eters on ten 9-1 random splits. The accuracy and F1 measure of the
MLME method are better than those of the other two methods for
every split, and the improvement is statistically significant.

4.4 The correlations among category labels
The intention of the proposed multi-labelled maximum entropy

model is to include the correlations among categories into the
model. Since the additional parameter Rij is the coefficient of cate-



acq corn crude earn grain interest money.fx ship trade wheat
acq 0.17 0.0100 0.0120 0.1124 0.0240 0.0226 0.0305 0.0082 0.0195 0.0149
corn 1.3e-08 0.019 0.0060 0.0193 0.4398 0.0056 0.0048 0.0000 0.0034 0.1269
crude 6.9e-13 0.0093 0.041 0.0255 0.0070 0.0070 0.0101 0.0284 0.0018 0.0029
earn 3.5e-175 1.4e-18 2.5e-31 0.3 0.0416 0.0343 0.0500 0.0192 0.0362 0.0222
grain 7e-21 0 0.00018 9.2e-44 0.045 0.0100 0.0111 0.0106 0.0018 0.4967

interest 1e-17 0.015 0.0005 4.9e-35 6.6e-05 0.036 0.1123 0.0060 0.0018 0.0063
money.fx 1e-26 0.0048 4.9e-06 1.3e-54 1.1e-06 3.4e-182 0.056 0.0076 0.0014 0.0080

ship 6.3e-08 0.91 1.2e-30 1.6e-19 1.1e-10 0.011 0.00097 0.021 0.0024 0.0007
trade 3.5e-17 0.033 0.045 3e-37 0.037 0.052 0.023 0.058 0.038 0.0011
wheat 3.7e-11 1.6e-170 0.032 1.3e-21 0 0.0077 0.00059 0.29 0.19 0.022

Table 4: Some facts of data set Reuters-21578. The normalized symmetric mutual information values between categories are shown
in the upper triangle. The p-values of Pearson’s chi-square test (χ2) for pairs of categories are shown in the lower triangle. The
numbers in the diagonal are the proportions of categories.

ASK DEL INFO NEGCOM POSCOM RAISE REP SP
ASK 0.31 0.0020 0.0087 0.0002 0.0004 0.0768 0.0007 0.1125
DEL 0.037 0.022 0.0044 0.0000 0.0000 0.0027 0.0005 0.0082
INFO 3e-05 0.36 0.02 0.0031 0.0031 0.0032 0.0012 0.0170

NEGCOM 0.54 0.63 0.64 0.013 0.0034 0.0074 0.0079 0.0007
POSCOM 0.28 0.99 0.18 0.062 0.055 0.0257 0.0036 0.0015

RAISE 5.1e-78 0.012 0.0053 0.0017 3.9e-12 0.22 0.0513 0.4194
REP 0.11 0.41 0.23 0.013 0.01 3.5e-46 0.13 0.0943
SP 4e-120 1.4e-06 5.3e-12 0.22 0.03 0 1.4e-83 0.61

Table 5: Some facts of the mailing list data set. The normalized symmetric mutual information values between categories are shown
in the upper triangle. The p-values of Pearson’s chi-square test (χ2) for pairs of categories are shown in the lower triangle. The
numbers in the diagonal are the proportions of categories.

gory i and category j in the model, we expect that Rij is somewhat
related the correlation between category i and category j. Figures
1 and 2 plot correlations among categories and corresponding pa-
rameters of R from one of the experiment runs. The figures clearly
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Figure 1: The correlations among categories and their corre-
sponding parameters of R in the Reuters-21578 data set. The
dotted line is the linear regression of the data points, which in-
dicates the trend of relation between the correlations and R.

show that the relation between the correlation and parameter R is
significant and a pair with large correlation usually has a larger
R parameter, especially when the correlations are far from zero.

The R parameters enforce the correlations among categories in the
model. These figures confirm our assumption and indicate that the
correlation terms (strictly speaking the second order moments of la-
bels) are important in these multi-labelled classification problems.

5. CONCLUDING REMARKS
In this paper, we propose a maximum entropy method for multi-

labelled classification, in which the correlations among category
labels are explicitly considered in the model. The experimental
results show that multi-labelled classification is beneficial in the
model considering the correlation between classes, especially when
the correlation is relatively strong. By examining the parameters of
the model, the experiments confirm our assumption that the corre-
lation terms are important in multi-labelled classification tasks.

One drawback of this method is in computing the term Z of
Eq. (13). One possible solution is to use a stochastic approach.
Another possible solution is to approximate Z(x) with the sum of
several important q(y|x).

During the simplification of the model, we assume that estimate
errors are independent from each other. We do not know how large
the impact is when this assumption does not hold. The future work
may also involve the investigation of correlations among estimate
errors.
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Multi-label Maximum Entropy (MLME)
Combined Single-label (COMB)

Heterogeneous Feature (HF)

MLME COMB HF
Accuracy AC
average 0.8935 0.8851 0.8852
p-value 0.0029 0.0045
test set 0.8857 0.8742 0.8724
Micro-averaged F1

average 0.9155 0.9105 0.9106
p-value 0.0068 0.0029
test set 0.9180 0.9104 0.9094

Table 6: The accuracies and F1 measures of experiments on the
Reuters-21578 dataset and their one-sided Wilcoxon signed-
rank test vs MLME.

Appendix
Here are some details of how we derive Eq. (13). For parameters
ηi and φil in Eq. (10) and θij in Eq. (11), we regularize them to
avoid the extreme results during estimating the parameters of the
model. Assuming the joint probability of estimate errors should be
reasonably large, say greater than a small number ε, we write

Pr(ηi, θij , φil) ≥ ε. (18)

To simplify this constraint of Eq. (18), we assume that those es-
timate errors are independent to each other. Hence, we can rewrite
this constraint in logarithm format as

X
i

− log Pr(ηi) +
X
ij

− log Pr(θij)

+
X

il

− log Pr(φil) ≤ − log ε.
(19)

According to the central limit theorem, the estimation errors fol-
low normal distribution. Let ηi ∼ N (0, σ2

η/n), θij ∼ N (0, σ2
θ/n)

and φil ∼ N (0, σ2
φ/n), where n is the number of data points. The

constraint can be simplified as

X
i

η2
i

2σ2
η/n

+
X
i<j

θ2
ij

2σ2
θ/n

+
X
i,l

φ2
il

2σ2
φ/n

≤ C, (20)

where C is a constant derived from ε, σ’s and n.
The Lagrangian of Eq. (3) subject to Eq. (10, 11, 20) and
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Multi-label Maximum Entropy (MLME)
Combined Single-label (COMB)

Heterogeneous Feature (HF)

MLME COMB HF
Accuracy AC
average 0.5287 0.4911 0.4929
p-value 0.0029 0.0029
Micro-averaged F1

average 0.6808 0.6603 0.6659
p-value 0.00098 0.0068

Table 7: The accuracies and F1 measures of experiments on the
mailing list data set and their one-sided Wilcoxon signed-rank
test vs MLME.

P
y q(y|x) = 1 is:

L(q(y|x), η, θ, φ, ,
¯
R, W, γ, ζ(x)) = 〈log q(y|x)〉Q

+
X

i

bi(〈yi〉P̃ + ηi − 〈yi〉Q)

+
X
i<j

Rij(〈yiyj〉P̃ + θij − 〈yiyj〉Q)

+
X
i,l

Wil(〈yixl〉P̃ + φil − 〈yixl〉Q)

+ γ(
X

i

η2
i

2σ2
η/n

+
X
i<j

θ2
ij

2σ2
θ/n

+
X
i,l

φ2
il

2σ2
φ/n

− C)

+
X
x

ζ(x)(1−
X
y

q(y|x)),

(21)

where b, R (strict upper triangle matrix), W , γ (≥ 0), and ζ are
the Lagrangian multipliers.

The Karush-Kuhn-Tucker (KKT) conditions require the deriva-
tives of the Lagrangian with respect to its parameters must be zeros
to maximize L. Therefore, we have:

∂L
∂q(y|x)

= p̃(x)[log q(y|x) + 1− y>(b + Ry + Wx)]

− ζ(x) = 0,

∂L
∂ηi

= bi + nγ
ηi

σ2
η

= 0,

∂L
∂θij

= Rij + nγ
θij

σ2
θ

= 0,

∂L
∂φij

= Wik + nγ
φik

σ2
φ

= 0.

(22)

When γ is zero, the problem is trivial. Now we assume that
γ > 0. It allows us to express q, η, θ and φ as functions of b, R,
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Figure 2: The correlations among categories and their corre-
sponding parameters of R in the mailing list data set. The dot-
ted line is the linear regression of the data points, which indi-
cates the trend of relation between the correlations and R.

W , and γ:

q̂(y|x) =
1

Z(x)
exp(y>(b + Ry + Wx)),

η̂i = −
σ2

η

nγ
bi, θ̂ij = − σ2

θ

nγ
Rij , φ̂ik = −

σ2
φ

nγ
Wik,

(23)

where the partition function, Z(x) =
P

y exp(y>(b + Ry +

Wx)). By plugging Eq. (23) into Eq. (21), we have Eq. (13).
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