
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

MULTI-LANGUAGE, OPEN-SOURCE MODELING USING THE MICROSOFT .NET ARCHITECTURE

Richard A. Kilgore

OpenSML and ThreadTec, Inc.
P. O. Box 7

Chesterfield, MO 63006, U.S.A.

ABSTRACT

This presentation reports on the opportunities and limitations
Microsoft .Net architecture for supporting the development
of a common, open-source, multi-language platform for
simulation software support. While the paper supporting the
presentation focuses on the underlying foundation within the
.Net architecture, the conference presentation represents an
important milestone in the OpenSML project corresponding
to the first release of a common library supporting the C#,
VB.Net and Java/J# languages.

1 INTRODUCTION

The software industry has gone through a number of rapid
transformations in the last 10 years, primarily led by the
development of the internet. While it was once sufficient
to develop a good business software application, now it is
necessary to develop good internet-capable business soft-
ware applications. To integrate support for internet capa-
bilities, a number of changes are taking place in basic pro-
gramming languages and software development tools.
These changes offer the opportunity for yet another re-
write, yet another redesign and yet another rethinking
about the future of simulation software.

The basic premise of the rethinking represented in this
paper is that this redesign and rewrite may be an opportu-
nity for a common, open-source, multi-language approach
to simulation software development. The fundamental
trends which create this opportunity include:

• the convenience of internet-based collaboration
• the success of the open-source/consortium model
• the acceptance of object-oriented programming
• the movement of performance responsibility (exe-

cution speed) from software to hardware
• the continuing lack of reusability, interoperability

and discipline in simulation software development

While considering this last trend, also consider the enor-
mous amount of academic, commercial and military

simulation software created over the last twenty years and
wonder at the number of times the simulation software
wheel has been reinvented and re-implemented. And
while each implementation builds on lessons learned
from previous developments, the resulting solutions con-
tinue to be proprietary solutions with rarely more than
one-time application.

This is one of three papers presented at this conference
that discuss related aspects of emerging general software
standards that further the reusability and interoperability of
commercial software. The unifying theme in these presen-
tations is the emergence of various standards in software
development and the opportunity these standards have for
similar standards for simulation software development.
The other papers look at topics of design patterns and web
services in the search for reusability and interoperability
(Kilgore 2002). This paper examines the role that open
source and common language runtimes could play in the
evolution of standards for interoperable software applica-
tions and the opportunities this creates for standards for in-
teroperable simulation applications and components. As
shown in Figure 1, the OpenSML initiative is intended as a
proving ground where these topics turn from discussions to
implementation.

Figure 1: Simulation Interoperability and Reusability

Web
 Services

Common
Language
Runtime

Open
Source

Design
Patterns

Reusability

Interoperability

Kilgo

Section 2 of this paper is an introduction to the Micro-
soft .Net common language runtime and multi-language
interoperability between C#, VB.Net and Java in
OpenSML and Section 3 is a review of the OpenSML open
source development model. Section 4 is an overview of
some OpenSML design goals. One source of the current
status of the OpenSML software is available at http://www.
sourcforge.net/opensml.

2 .NET COMMON LANGUAGE RUNTIME

The Microsoft .Net (Microsoft 2002) architecture consists
of many related initiatives, but the three basic elements are:

• .Net Framework as a unifying replacement to the

Windows API on the desktop
• .Net Enterprise Servers as a unifying replacement

to DNA and other dissimilar server-side software
• .Net integrated Web Services and ASP.Net devel-

opment support tools

The core of the .Net Framework is:

• the .Net Framework classes
• the .Net virtual machine known as the Common

Language Runtime (CLR)
• the .Net languages including C#, VB.Net,

C++.Net and J#

The feature of the Common Language Runtime most rele-
vant to the OpenSML project is the cross-language integra-
tion that can be achieved within this architecture. All .Net
languages compile to a common Microsoft Intermediate
Language (MSIL or IL), which is then compiled and exe-
cuted by the CLR. For example, the C# .Net class for
“Hello World”:

using System;

public class Module{
 public static void Main (String[] args) {
 Console.WriteLine(“Hello World”);
 }
}

is actually implemented in the following IL code:

.method public static void Main(string[]args)
{
 .entrypoint
 .maxstack 8
 ldstr “Hello World”
 call void System.Console::WriteLine(string)
 ret
}

re

which is very similar (but not completely identical) to the
corresponding IL file that would be produced by the fol-
lowing VB.Net code:

Imports System

Public Class HelloWorldVB
 Shared Sub Main()
 Console.WriteLine(“Hello World”)
 End Sub
End Class

In addition to the underling IL instructions, a .Net program
unit, called an assembly, contains the full and complete
metadata that fully describes each and every type (class,
structure, etc.) in this assembly and every externally refer-
enced assembly. Whereas previous COM components al-
lowed cross-language compatibility in binary code at run-
time, IL allows cross-language references at compile time.

At execution time, the IL instructions are compiled
into meaningful CPU instructions on the fly. As the IL in-
structions are compiled into machine code, .Net will cache
the results in memory. Subsequent calls made to methods
will use the cached instructions eliminating the perform-

ance penalty normally associated with interpreted software.
As shown in Figure 2, the actual core execution engine
within .Net framework is the mscoreee.dll library and the
base class library is mscorlib.dll.

In order to qualify as a .Net CLR language, a language
must adhere to certain standards known as the Common
Language Specification (CLS). Compatibility with the
CLS standards insures that your language will be com-
pletely interoperable with others programming to the CLS
no matter what language is being used. As expected, most
CLS rules relate to definitions and parameters for public
classes and methods and not to the internal implementation
of a .Net type. Ideally, the CLS specification has the po-
tential for cross platform execution beyond Windows. The
Mono project (Ximian 2002) is an open source, Linux-
based version of the NET development platform incorpo-
rating key .NET compliant components, including a C#

.Net Source Code
(C#, VB.Net, . . .)

.Net
Compiler

.dll or .exe
Assembly

.Net Execution
Engine

(mscoree.dll)

.Net Base Classes
(mscorlib.dll)

.Net Application

.Net References
(???.dll)

Figure 2: .Net Compilation and Exe-
cution Overview

http://www. sourcforge.net/opensml
http://www. sourcforge.net/opensml

Kilgore

compiler, a Common Language Runtime compiler and
class libraries.

3 OPEN SOURCE AND OpenSML

Just as the CLS specification enables interoperability be-
tween programming languages, the OpenSML (Open
Simulation Modeling Language) is a working title for a
project with the objective of enabling interoperability be-
tween simulation libraries (Figure 3). As an open-source
project, the details of how it does that exactly is up to those
who participate in the design and implementation. The ini-
tial scope of the project is to define an “extendible stan-
dard” for common implementation in compatible .Net ob-
ject-oriented programming languages.

Open source development means that the OpenSML
community or consortium will ultimately define what
OpenSML will be, not the author of this paper or the initial
authors of the software. Based on the experiences of the ini-
tial year, it is evident that a more complete starting point is
necessary to encourage participation. But ideally,
OpenSML will evolve based on the skills, passion, require-
ments and resources of the participants and their clients.
The current specification is simply one small step of a multi-
year, multi-language, multi-application journey that open
source initiatives like OpenSML experience. Consequently,
a positive outcome of this section will be a bold and pas-
sionate critique of everything written from this point on by
people who are also bold and passionate enough to put their
improvement out there for additional critique.

The mission of SML is to produce reusable simulation
software at both the simulation source code and modeling
source code levels. Reusability requires at a minimum that
the code be readable, modular, interoperable and ex-
tendible. Note that performance is not directly addressed
in the mission statement implying that OpenSML will sac-
rifice performance to achieve reusability.

Readability means that the target audience for the code
is closer to the first-time reader with limited programming
background than to the experienced hacker. Most simula-
tion practitioners are not computer science graduates and are
capable, but not expert programmers. The goal of
OpenSML readability is to encourage participation by part
time programmers interested in quickly finding and modify-
ing without extensive debugging and testing.

Modularity is related to readability in that a part time
developer can make a change to the source code or replace
an entire OpenSML module without having to understand
or modify large amounts of OpenSML source code.

Interoperability is related specifically to the degree to
which standards can be used to allow independent execut-
ing simulations to communicate through web services or
other custom programmed interaction.

Extendibility means that OpenSML is designed to be
easily modified and repackaged for specific applications.
SML Simulation Core Specification

public class EntSmiley extends Entity {

 public static Tally talQueTime = new Tally("Time in Queue");
 public static Tally talSysTime = new Tally("Time in System");
 public static Queue queEntity = new Queue("Smiley Server Queue");
 public static Resource resServer = new Resource("Smiley Server");
 public static Exponential expArrival = new Exponential(10.0, 12345);
 public static Exponential expService = new Exponential(8.0, 23456);

 public void process(){
 create(expArrival.getValue());
 qadd(queEntity); // Add to queue
 waituntil(resServer.isIdle(this)); // Wait until resource is idle
 qremove(queEntity); // Remove from queue
 tally(ri.t - tQueueStart, talQueTime);// Record time in queue
 seize(resServer); // Set resource busy status to true
 delay(expService.getValue()); // Delay for service time
 release(resServer); // Set resource busy status to false
 tally(ri.t - tStart, talSysTime); // Record time in system
 dispose();
 }
}

Java C++ VB.Net C#

Common Process-Oriented Language

Java C++ VB.Net C#SML Language-Specific Library

Figure 3: OpenSML Architecture

As mentioned previously, simulation languages are usually
biased towards a particular target application based on the
experiences and anticipated needs of the modeler or devel-
oper. But if properly designed, OpenSML methods for
manufacturing system simulation and communication sys-
tems simulation may appear unique at the modeling level, but
extend identical methods at the core simulation library level.

The original plan for OpenSML is to distribute simula-
tion language source code under a modified Lesser/Library
General Public License (Free Software Foundation, 2001)
that ends where the OpenSML simulation language ends
and the OpenSML-based simulation model starts. Nor-
mally, all extensions and modifications of LGPL licensed
software must be distributed under the same LGPL license
under which the software was acquired. Obviously, this
restriction cannot be applied to software that uses the SML
code to create a specific model.

For example, the current OpenSML code includes a
linked list queue object that holds an indexed list of
OpenSML entity objects. The OpenSML class includes a
qadd() method that adds an entity to the end of a queue. If
an OpenSML users needs a function that ranks and re-sorts
the list based on one or more properties, the user is allowed
under LGPL to add the additional capability to the lan-
guage. But the LGPL required that the user share that im-
provement by returning the revised code to the OpenSML
repository. Some might take the position that the im-
provement is a “modeling” function that cannot be shared
because the names and types of properties and ranking
rules used for the re-sort are proprietary to the modeling
application. Proper OpenSML sharing principles would
require that the user comply by depositing a generic or ex-
ample version of the method that does not contain proprie-
tary property names or ranking rules.

4 OpenSML DESIGN GOALS

The overall design goal of OpenSML is to improve the va-
lidity and the effectiveness of the use of simulation models in
the support of decision-making. Validity in this sense is a
long term improvement in that the starting point of simula-

Kilgore

Figure 4: OpenSML Demonstration
tion models is at a more advanced position because of the
greater potential of reuse of previously created simulation
code. OpenSML standards should cover not only rules for
the creation of simulation models, but also methods for ar-
chiving and reassembling models components. Effectiveness
is improved through flexibility and performance of simula-
tion related functions (data input generation, scenario speci-
fication, debugging, execution, output analysis). Even
though the validity of the simulation model sets the upper
bound on the potential value of a simulation study, the value
of simulation software is often measured on the effective-
ness of the software for the performance of these functions.

Usability refers to characteristics of simulation software
that support the ability to express model behavior consistent
with system descriptions. This is a obviously a subjective
goal in that the choice of expression is a personal preference
usually based on the users experience. But if there is one
design for readability that transcends syntax, grammar and
style, it is that each statement in OpenSML simulation code
should model one unit of system behavior. Even when the
underlying programming code is used to augment the simu-
lation code, the ability to wrap the detail in a readable
method is an essential design goal.

Because OpenSML is multi-lingual, only the common
denominator of core statements and keywords available in
all languages should be used. For example, the .Net archi-
tecture support a Java variant syntax called J#. In order to
maintain maximum interoperability within the .Net, the
OpenSML design only aims for implementation in J#.
5 SUMMARY

Probably the greatest challenge to the success of OpenSML
is cultural. The simulation industry is not large relative to
other industries where open source initiatives have been
successful. There are a limited number of individuals with
full time responsibilities writing simulation code and the
payoff from involvement in OpenSML is much more in-
tangible and uncertain that the payoff from continuing the
status quo. Of those simulation professionals with suffi-
cient programming background to consider software design
issues, few have ever worked in collaboration over long
periods. Nevertheless, as shown in Figure 4, demonstra-
tion models and OpenSML source code continues to stead-
ily develop toward a generic, multi-language standard.

Nevertheless, the OpenSML open source simulation
project continues to evolve and continues to leverage
emerging technologies and standards and apply them to
simulation software development model. The goal of co-
operating in simulation software, but competing in model-
ing software should retain the economic incentive neces-
sary to support commercial simulation companies. The
existence of common, powerful and inexpensive object-
oriented languages and an instantaneous, internet-based
worldwide communication means that simulation software
development need not be a product of proprietary, closed-
source, vendor-based licensing.

re
Kilgo

REFERENCES

Free Software Foundation, 2001. Available online via
<www.opensource.org>. [accessed July 1, 2002].

Kilgore, R. A. 2002. Object-Oriented Simulation with
Java, Silk and OpenSML .Net languages. In Proceed-
ings of the 2002 Winter Simulation Conference, ed., E.
Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Char-
nes. Piscataway, NJ: Institute of Electrical and Elec-
tronics Engineers.

Kilgore, R. A. 2002. Simulation Web Services with .Net
Technologies. In Proceedings of the 2002 Winter
Simulation Conference, ed., E. Yücesan, C.-H. Chen,
J. L. Snowdon, and J. M. Charnes. Piscataway, NJ:
Institute of Electrical and Electronics Engineers.

Microsoft 2002. The .Net Platform for XML Web Services,
Official Site. Available online via <www.micro
soft.com/net/> [accessed April 16, 2002].

Ximian Corp. 2002. Mono: Open Source implementation
of the .NET Development Framework. Available
online via <www.go-mono.net/index.html>
[accessed July 25, 2002].

AUTHOR BIOGRAPHIES

RICHARD A. KILGORE is a consultant in the develop-
ment of industrial simulation and scheduling solutions and
President of ThreadTec, Inc., the distributor of the Java-
based Silk simulation language. Dr. Kilgore has over 20
years of experience as a modeling consultant to Fortune
500 firms in a variety of industries with a variety of simu-
lation and scheduling tools. He received his B.B.A. and
M.B.A degrees from Ohio University and Ph.D. in Man-
agement Science from the Pennsylvania State University.
Formerly, he was a capacity-planning analyst with Ford
Motor Co. and Vice-President of Products for Systems
Modeling Corp. His e-mail address is <kilgore
@threadtec.com>.

http://www.opensource.org/
http://www.micro soft.com/net/
http://www.micro soft.com/net/
http://www.go-mono.net/index.html
mailto:kilgore@threadtec.com
mailto:kilgore@threadtec.com

