
139

Multi-language programming environments

for high performance Java computing

Vladimir Getov a,∗, Paul Gray b, Sava Mintchev a

and Vaidy Sunderam b

a School of Computer Science, University of

Westminster, Harrow HA1 3TP, UK
b Department of Mathematics and Computer Science,

Emory University, Atlanta, GA, USA

Recent developments in processor capabilities, software

tools, programming languages and programming paradigms

have brought about new approaches to high performance

computing. A steadfast component of this dynamic evolution

has been the scientific community’s reliance on established

scientific packages. As a consequence, programmers of high-

performance applications are reluctant to embrace evolving

languages such as Java. This paper describes the Java-to-

C Interface (JCI) tool which provides application program-

mers wishing to use Java with immediate accessibility to ex-

isting scientific packages. The JCI tool also facilitates rapid

development and reuse of existing code. These benefits are

provided at minimal cost to the programmer. While benefi-

cial to the programmer, the additional advantages of mixed-

language programming in terms of application performance

and portability are addressed in detail within the context

of this paper. In addition, we discuss how the JCI tool is

complementing other ongoing projects such as IBM’s High-

Performance Compiler for Java (HPCJ) and IceT’s metacom-

puting environment.

1. Introduction

It is generally accepted that large heterogeneous

distributed systems based on the emerging hybrid

shared/distributed memory architectures will become

the largest and most cost-effective supercomputers

over the next decade. They will provide a platform for

a new generation of high performance applications in-

cluding portable applications that can be executed on

*Corresponding author: V. Getov, School of Computer Science

University of Westminster, Watford Rd., Northwick Park, Harrow

HA1 3TP, UK. Tel.: +44 171 9115917; Fax: +44 171 9115906;

E-mail: V.S.Getov@wmin.ac.uk.

a number of Internet sites; resource-intensive applica-
tions that must aggregate distributed resources (mem-

ory, data, computation) to produce results for the prob-

lem sizes of interest; and coupled applications that

combine computers, immersive and visualization en-
vironments, and remote instruments. This makes the

search for the most appropriate programming model

and corresponding programming environments more

important than ever before. Arguably the most seri-
ous obstacle to the acceptance of parallel supercomput-

ers is the so-called software crisis. Software, in gen-

eral, is considered the most complex artifact in high-

performance computing; since the lifespan of paral-
lel machines has been so brief, their software envi-

ronments rarely reach maturity and the parallel soft-

ware crisis is especially acute. Hence, portability and

software re-use, in particular, are critical issues in en-
abling high-performance computing on the new type

of heterogeneous platforms. In order to avoid these

problems application programmers need flexible yet

comprehensive interfaces which offer the oportunity

for multi-language software design and implementa-
tion.

The Java language has several built-in mechanisms

which allow the parallelism inherent in scientific pro-

grams to be exploited. Threads and concurrency con-
structs are well-suited to shared memory computers,

but not large-scale distributed memory machines. Al-

though sockets and the Remote Method Invocation

(RMI) interface allow network programming, they are
rather low-level to be suitable for SPMD-style sci-

entific programming, and thus, codes based on them

would potentially underperform platform-specific im-

plementations of standard communication libraries
like MPI. Nevertheless, as a programming language,

Java has the basic qualities needed for writing high-

performance applications. With the maturing of com-

pilation technology, such applications written in Java
will doubtlessly appear. Fortunately, rapid progress is

being made in this area by developing optimizing Java

compilers, such as the IBM High-Performance Com-

piler for Java (HPCJ), which generates native codes

Scientific Programming 7 (1999) 139–146

ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved

140 V. Getov et al. / Multi-language programming environments for high performance Java computing

for the RS6000 architecture [12]. Since the Java lan-

guage is fairly new, however, it lacks the extensive sci-

entific libraries of other languages like Fortran-77 and

C. This is one of the major obstacles towards efficient

and user-friendly computationally intensive program-

ming in Java.

In order to overcome the above problems, we have

applied a Java-to-C Interface (JCI) generating tool to

create Java bindings for various legacy libraries [8]. In

this article we show that with the existing performance-

tuned libraries already available on different platforms

and the multi-language interfaces automatically cre-

ated by the JCI tool, we can build diferent kinds of

multi-language programming environments for high

performance Java computing in a flexible and elegant

way. In principle, the binding of native libraries to Java

has certain limitations though. In particular, for secu-

rity reasons applets downloaded over the network may

not load libraries or define native methods. We also

show one possible solution of this problem by using the

IceT virtual environment [11]. In this case both pro-

cesses and data would be allowed to migrate and to be

transferred throughout owned and unowned resources,

under flexible security measures imposed by the users.

We also present some evaluation results, which demon-

strate the efficiency of our approach.

2. Automatic binding of legacy codes to Java

Accesing native codes from Java looks not that diffi-

cult as Java implementations have a native method in-

terface specificaly designed for this purpose. Although

the native interface was not part of the original Java

language specification [10], and different vendors have

offered incompatible interfaces, the Java Native Inter-

face (JNI) [9] is now the definitive standard for inter-

facing native code to Java. Implementing JNI in soft-

ware development involves more than just dynamic

linking to the Java virtual machine. Complications

stem from the fact that Java data formats are in general

different from those of other languages like C, C++,

Fortran, etc. which obviously requires data conver-

sion of both arguments and results in multi-language

applications. This conversion is a natural part of the

native code in case both parts of a multi-language

piece of software are to be written from scratch. For

legacy codes, however, an additional interface layer

called binding or wrapper must be written which per-

forms data conversion and other functions if neces-

sary.

Binding a native legacy library1 to Java may also be

accompanied by portability problems as the JNI spec-

ification is not yet supported in all Java implemen-

tations on different platforms. Thus to maintain the

portability of the binding one may have to cater for a

variety of native interfaces. A large legacy library like

MPI, for example, can have over a hundred exported

functions, therefore the JCI tool which generates the

additional interface layer automatically plays central

role in creating flexible multi-language programming

environments.

A block diagram of JCI is shown in Fig. 1. The tool

takes as input a header file containing the C function

prototypes of the native library. It outputs a number

of files comprising the additional interface: a file of C

stub-functions, files of Java class and native method

declarations, and shell scripts for compiling and link-

ing the binding. The JCI tool generates a C stub-

function and a Java native method declaration for each

exported function of the native library. Every C stub-

function takes arguments whose types correspond di-

rectly to those of the Java native method, and converts

the arguments into the form expected by the C library

function. As we mentioned already, different Java na-

tive interfaces exist, and thus different code may be re-

quired for binding a native library to each Java imple-

mentation. We have tried to limit the dependence of

JCI output on the native interface version to a set of

macro definitions describing the particular native inter-

face. Thus it may be possible to re-bind a library to a

new Java machine simply by providing the appropriate

macros.

The JCI tool offers flexible Java bindings for na-

tive libraries. For example, by using different library

header files as input, we can create bindings for multi-

ple versions of a library, e.g., MPI-1.1, MPI-1.2, MPI-

2.0. Furthermore, JCI can be used to generate Java

bindings for libraries written in languages other than C,

provided that the library can be linked to C programs,

and prototypes for the library functions are given in

C. We have created Java bindings for the ScaLAPACK

constituent libraries written in Fortran-77: BLAS Level

1–3, PB-BLAS, LAPACK, and ScaLAPACK itself [8].

The C prototypes for the library functions have been

inferred by a Fortran-to-C translator f2c [6].

While automatic binding is certainly convenient,

sometimes there may be a price to pay: the data con-

version may impose a performance penalty. For exam-

1The most convenient representation of the native code is usually

in the form of a library.

V. Getov et al. / Multi-language programming environments for high performance Java computing 141

Fig. 1. JCI block diagram.

ple, some scientific native library functions take multi-

dimensional arrays (e.g., matrices) as arguments. The

JCI tool supports multidimensional arrays, but a run-

time penalty is incurred: such arrays must always be

relocated in memory in order to be made contiguous

before being supplied to a native function. When large

data arrays are involved the inefficiency can be sig-

nificant. In order to avoid it, we have chosen to rep-

resent matrices in Java as one-dimensional arrays in

our ScaLAPACK library bindings. On the other hand,

in the Java binding for MPI [13] multi-dimensional

arrays are left intact without significant inefficiency.

Large arrays used as data buffers can have their lay-

out described by an MPI derived data type, and the

Java binding performs no conversion for them. Multi-

dimensional arrays used in MPI as descriptors are rel-

atively small.

3. Environment based on conventional JVM

The initial structure of our programming environ-

ment including all basic components is illustrated in

Fig. 2. The JCI tool takes as input the header file con-

taining the C function prototype declarations of the na-

tive legacy library and generates automatically all files

comprising the wrapper as required. Then, the bound

libraries can be dynamically linked to the Java Virtual

Machine (JVM) upon demand and used during the ex-

ecution. So far we have done experiments with two va-

rieties of the JVM – the Java Development Kit (JDK)

for Solaris on a cluster of Sun workstations; and IBM’s

port of JDK for AIX 4.1 on the SP2.

Most JVMs contain a Just-in-Time (JIT) compiler

to improve the execution performance. A JIT compiler

turns Java bytecode into native code on-the-fly, as it is

loaded into the JVM. The JVM then executes the gen-

erated code directly, rather then interpreting bytecode,

which leads to a significant performance improvement.

In this way, the best performance results using the pro-

gramming environment in Fig. 2 can be achieved, but

the execution time is still much longer in compari-

son with similar computations using conventional lan-

guages such as Fortran-77 or C and the corresponding

compilers. The reason for this noticeable difference is

twofold – firstly, the JIT translation adds an extra over-

head to the execution time; and secondly, the compi-

lation speed requirements constrain the quality of op-

timisation that a JIT compiler can perform. Therefore,

the performance of this environment is relatively low

Fig. 2. Programming environment using a conventional Java virtual machine.

142 V. Getov et al. / Multi-language programming environments for high performance Java computing

Fig. 3. Execution time for the MATMUL benchmark (N = 1000) on the IBM SP2.

Table 1

Performance results for the MATMUL benchmark on the IBM SP2

Problem Lang MPI imple- No of processors

size (N) mentation 1 2 4 8 16

Execution time (sec):

Java LAM – 17.09 9.12 5.26 3.53

1000 F77 LAM – 16.45 8.61 5.12 3.13

F77 IBM MPI 33.25 15.16 7.89 3.91 2.20

Mflop/s total:

Java LAM – 117.0 219.4 380.2 566.9

1000 F77 LAM – 121.6 232.3 390.4 638.3

F77 IBM MPI 60.16 132.0 253.6 511.2 910.0

as there is usually a large imbalance between the ef-

ficiency of the performance-tuned implementations of

legacy libraries and the rest of the code at execution

time. If, however, the processing requirements of the

Java code are negligible, this programming environ-

ment can still deliver acceptable performance figures.

In order to evaluate the performance of the multi-

language environment based on conventional JVM, we

have used the Java version of the Matrix Multiplica-

tion (MATMUL) benchmark from the PARKBENCH

suite [14]. The original benchmark is in Fortran-77 and

performs dense matrix multiplication in parallel. It ac-

cesses the BLAS, BLACS and LAPACK libraries in-

cluded in the PARKBENCH 2.1.1 distribution. MPI

is used indirectly through the BLACS native library.

We have run MATMUL on a Sparc workstation clus-

ter, and on an IBM SP2 machine with 66MHz Power2

“thin1” nodes, 128Mbyte RAM, 64bit memory bus,

and 64Kbyte data cache. The results are shown in Ta-

ble 1 and Fig. 3.

4. Environment based on native Java compilers

An optimising native code compiler for Java can

be used instead of the JVM in order to overcome the

above problem. Such a compiler translates bytecode

directly into native executable code as shown in Fig. 4.

It works in the same manner as compilers for C, C++,

Fortran, etc. and unlike JIT compilers, the static com-

pilation occurs only once, before execution time. Thus,

traditional resource-intensive optimisations can be ap-

plied in order to improve the performance of the gen-

erated native executable code. In our experiments, we

have used a version of HPCJ, which generates native

code for the RS/6000 architecture. The input of HPCJ

is usually a bytecode file, but the compiler will also

accept Java source as input. In the latter case it in-

vokes the JDK source-to-bytecode compiler to produce

the bytecode file first. This file is then processed by a

translator which passes an intermediate language rep-

resentation to the common back-end from the family of

compilers for the RS/6000 architecture. The back-end

outputs standard object code which is then linked with

other object modules and the previously bound legacy

libraries to produce native executable code. In this way,

our programming environment conforms to the basic

V. Getov et al. / Multi-language programming environments for high performance Java computing 143

Fig. 4. Programming environment using the high-performance compiler for Java which generate native executable code.

requirements for high-performance computing as the
experimental results in the next section show.

Further experiments to evaluate the performance of
the environment based on HPCJ have been carried out
with a Java translation of a C + MPI benchmark – the
Integer Sort (IS) kernel from the NAS Parallel Bench-
mark suite [1], version NPB2.2. The program sorts an
array ofN integers in parallel; where the problem size
(class A) is specified as N = 8M. The original C and
the new Java versions of IS are quite similar, which al-
lows a meaningful comparison of performance results.

We have run the IS benchmark on two platforms:
a cluster of Sun Sparc workstations, and an IBM SP2
system with 120 MHz POWER2 Super Chip proces-
sors, 256 MB of memory, 128 KB data cache, and
256 bit memory bus. The results obtained on the SP2
machine are shown in Table 2 and Fig. 5. The Java
implementation we have used is IBM’s port of JDK
1.0.2D (with the JIT compiler enabled). The commu-
nications library we have used is the LAM implemen-
tation (version 6.1) of MPI from the Ohio Supercom-
puter Center [4]. The results for the C version of IS un-
der both LAM and IBM MPI are also given for com-
parison.

It is evident from Fig. 3 that Java MATMUL ex-
ecution times are only 5–10% longer than Fortran-
77 times. These results may seem surprisingly good,
given that Java IS is two times slower than C IS
(Fig. 5). The explanation is that in MATMUL most of
the performance-sensitive calculations are carried out
by the native library routines (which are the same for
both Java and Fortran-77 versions of the benchmark).
In contrast, IS uses a native library (MPI) only for com-
munication, and all calculations are done by the bench-
mark program.

It is important to identify the sources of the slow-
down of the Java version of IS with respect to the

Table 2

Performance results for the NPB IS kernel (class A) on the IBM SP2

Class Language MPI imple- No of processors

mentation 1 2 4 8 16

Execution time (sec):

A JDK LAM — 48.04 24.72 12.78 6.94

hpj LAM — 23.27 13.47 6.65 3.49

C LAM 42.16 24.52 12.66 6.13 3.28

C IBM MPI 40.94 21.62 10.27 4.92 2.76

Mop/s total:

A JDK LAM — 1.75 3.39 6.56 12.08

hpj LAM — 3.60 6.23 12.62 24.01

C LAM 1.99 3.42 6.63 13.69 25.54

C IBM MPI 2.05 3.88 8.16 14.21 30.35

C version. To that end we have instrumented the

JavaMPI binding, and gathered additional measure-

ments. It turns out that the cumulative time spent in the

C functions of the JavaMPI binding is approximately

20 milliseconds in all cases, and thus has a negligible

share in the breakdown of the total execution time for

the Java version of IS. Clearly, the JavaMPI binding

does not introduce a noticeable overhead in the results

from Table 2.

5. Virtual environment using IceT

Up to this point, the motivation behind mixing lan-

guages has been driven by a goal to increase perfor-

mance of a stand-alone process, in which case the uti-

lization of native codes has significant attraction. Al-

though in most cases the performance improvement

when utilizing native codes is substantial, a relatively

small price has to be paid. This has already been

mentioned, namely the additional overhead incurred in

144 V. Getov et al. / Multi-language programming environments for high performance Java computing

Fig. 5. Execution time for the NPB IS kernel (class A) on the IBM SP2.

the data translation which is an unavoidable part of

the wrapping code when passing between languages.

Other costs which are incurred, however, are in porta-

bility and platform independence. These aspects are

not as pronounced in the situation of a stand-alone pro-

cess. However, high-performance computing often en-

tails multi-process computations which span multiple

architectures, operating systems, networks, and filesys-

tems. Such an inhomogeneous environment is ideally

suited for pure Java processes, where the bytecode rep-

resentation of the process gives a high-level of assured-

ness that any component of the multi-process compu-

tation can be moved to and executed on any of the re-

sources. This is not the case when one begins mixing

languages.

Fortunately, this is not to say that the aspects of

portability and platform independence are entirely lost.

Such has been the focus of the computational envi-

ronment of IceT, where Java’s bytecode representation

is used to give large degrees of portability to mixed-

language-based distributed computations. In this sense,

the benefits to distributed computations are two-fold:

Processes enjoy executional speeds of native-language

codes and maintain levels of portability similar to

pure-Java processes.

For example, Java portability is often recognized in

the form of Java-based applets being downloaded over

the network and run locally within one’s web browser.

However, a Java-based process which has been writ-

ten to take advantage of the JCI binding of MPI for a

specific architecture such as Solaris would have little

chance in being downloaded to be executed on a Win-

dows95 PC. This lacking aspect of portability is ad-

dressed in IceT.

A process’ use of native codes is detectable by a

judicious investigation of the process’ bytecode rep-

resentation. In IceT, process portability is realized

through detecting a process’ use of native codes and

then supplying the necessary shared library format for

the appropriate architecture and operating system. The

utility of JCI for automating the wrapping of native

libraries is attractive in the sense that a Java-binding

of native libraries can be easily generated for multiple

platforms. The result of the JCI Java-binding for MPI

is a shared library, “libJavaMPI_MPI.so” which

holds the MPI compilation for the specific architecture

and operating system (e.g., Sparc/Solaris, SP2/AIX,

etc.). The particular shared library is required in order

for the process to successfully execute. In this example,

we’ve used the JCI-generated MPI library to support

a distributed message-passing process which is soft-

installed onto a remote, pre-configured MPI cluster us-

ing IceT.

To accomplish this task, an application programmer

writes the programs based upon the JavaMPI binding.

Using IceT, JavaMPI calls, and various shell scripts

which are located on the remote MPI cluster, the pro-

grammer is able to soft-install both the Java-based pro-

gramming units and the supporting JCI-generated MPI

library as shown in Fig. 6.

V. Getov et al. / Multi-language programming environments for high performance Java computing 145

Fig. 6. An IceT user (left) merges with a six-node MPI cluster (right) to soft-install and execute an MPI program on the remote cluster.

This example illustrates the additional and often

overlooked benefits to Java-wrapping native codes.

The MPI program collective in this example enjoys ef-

fective communication between processes through the

native MPI calls which enables high performance com-

puting. Moreover, the Java-based aspects of the pro-

gram collective permit a programmer to write and de-

bug MPI applications locally as well as allowing soft-

installation of the application onto a larger MPI clus-

ter, or perhaps onto a different MPI configuration such

as on an IBM SP2 or Intel Paragon.

6. Discussion and related work

Many research groups and vendors are pursuing re-

search to improve Java’s performance which would en-

able more scientific and engineering applications to be

solved in Java. The need for access to legacy libraries

is one of the burning problems in this area. Several ap-

proaches can be taken in order to make the libraries

available from Java:

• Hand-writing existing libraries in Java. Consid-

ering the size of the available libraries and the

number of years that were invested in their devel-

opment, rewriting the libraries would require an

enormous amount of manual work [2].

• Automatically translating Fortran-77/C library co-

de into Java. We are aware of two research groups

that have been working in this area – Univer-

sity of Tennessee [5] and Syracuse University [7].

This approach offers a very important long-term

perspective as it preserves Java portability, while

achieving high performance in this case would

obviously be more difficult.

• Manually or automatically creating a Java wrap-

per for an existing native Fortran-77/C library.

Obviously, by binding legacy libraries, Java pro-

grams can gain in performance on all those hard-

ware platforms where the libraries are efficiently

implemented.

The automatic binding, which we are primarily inter-

ested in, has the obvious advantage of involving the

least amount of work, thus reducing dramatically the

time for development. Moreover, it guarantees the best

performance results, at least in the short term, because

the well-established scientific libraries usually have

multiple implementations carefully tuned for maxi-

mum performance on different hardware platforms.

Last but not least, by applying the software re-use

tenet, each native legacy library can be linked to Java

without any need for re-coding or translating its imple-

mentation.

After the initial period when the first Java versions

were built for portability, the Java compiler technology

has now entered a second phase where the new ver-

sions are also targeting higher performance. For exam-

ple, JIT compilers have dramatically improved their ef-

ficiency, and are now challenging mature C++ compil-

ers. The developers of HPCJ have adopted the ‘native

compiler’ approach in order to gain faster execution

times. A different strategy has been chosen by the au-

thors of Toba [15]. Toba translates Java bytecode into

C source code, which is then compiled with the ap-

propriate compiler optimisation flags for high perfor-

mance. Another advantage of this approach is that it is

as portable as any other C software.

146 V. Getov et al. / Multi-language programming environments for high performance Java computing

7. Conclusions

This paper presents a general approach to com-
bine Java and legacy code written in Fortran and/or C
into multi-language programming environments where
Java serves as a front-end wrapper for existing native
libraries. The JCI tool for automatic creation of inter-

faces to such libraries (whether for scientific compu-
tation or message-passing) substantially improves the
flexibility and applicability of such interfaces. In ad-
dition to the JCI-generated bindings, the basic com-
ponents of our high-performance Java programming

environments include performance-tuned implementa-
tions of scientific and communications libraries avail-
able on different machines, and a native Java compiler
such as IBM’s HPCJ. We also believe that our appoach
is practical in a sense that legacy code is ubiquitous and

it would be much too tedious to port all of it to Java. If
Java is to gain acceptance as a high performance lan-
guage it has to interface with such existing native li-
braries.

One of the primary goals of our approach has been

to gain portability by using Java without sacrificing
performance from highly optimized native code. The
use of the JCI tool clearly extends Java’s usefulness
and provides rapid solution to the multi-language in-
terfacing problem, but the JNI-wrapping techniques in-

troduce certain limitations on application portability
and mobility. Our solution to this problem is based
on extensions to the functionality of the IceT vir-
tual collaborative environment by providing the ability
to spawn remote Java applications on machines run-

ning an IceT daemon and then soft-loading any miss-
ing software components such as native libraries and
multi-language bindings to remote Java processes. In
this case application programmers are given the best
of both worlds – their codes enjoy enhanced portabil-

ity and wider accessibility to resources similar to pure
Java applications and are able at the same time to de-
rive high performance levels exclusive to conventional
languages such as C and Fortran.

Acknowledgements

The authors acknowledge the use of the IBM SP2
installations at both the Cornell Theory Center and the
University of Southampton.

References

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,

L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasin-

ski, R. Schreiber, H. Simon, V. Venkatakrishnan and S. Weer-

atunga, The NAS parallel benchmarks, Technical Report RNR-

94-007, NASA Ames Research Center, http://science.nas.nasa.

gov/Software/NPB/, 1994.

[2] A. Bik and D. Gannon, A note on native level 1 BLAS in Java,

Concurrency: Pract. Exper. 9(11) (1997), 1091–1099.

[3] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,

K. Stanley, D. Walker and R. Whaley, ScaLAPACK: A linear

algebra library for message-passing computers, in: Proceed-

ings of SIAM Conference on Parallel Processing, 1997.

[4] G. Burns, R. Daoud and J. Vaigl, LAM: An open cluster envi-

ronment for MPI, in: Proceedings of Supercomputing Sympo-

sium ’94, Toronto, http://www.osc.edu/lam.html, 1994.

[5] H. Casanova, J. Dongarra and D. Doolin, Java access to numer-

ical libraries, Concurrency: Pract. Exper. 9(11) (1997), 1279–

1291.

[6] S.I. Feldman and P.J. Weinberger, A portable Fortran 77 com-

piler, in: UNIX Time Sharing System Programmer’s Manual,

10th ed., AT&T Bell Laboratories, 1990.

[7] G. Fox, X. Li, Z. Qiang and W. Zhigang, A prototype of

Fortran-to-Java converter, Concurrency: Pract. Exper. 9(11)

(1997), 1047–1061.

[8] V. Getov, S. Flynn-Hummel and S. Mintchev, High-perform-

ance parallel programming in Java: Exploiting native libraries,

Concurrency: Pract. Exper. 10(11–13) (1998), 863–872.

[9] R. Gordon, Essential JNI: Java Native Interface, Prentice-Hall,

1998.

[10] J. Gosling, W. Joy and G. Steele, The Java Language Specifi-

cation, Version 1.0, Addison-Wesley, Reading, MA, 1996.

[11] P. Gray and V. Sunderam, The IceT environment for par-

allel and distributed computing, in: Y. Ishikawa, R. Olde-

hoeft, J. Reynders and M. Tholburn (eds), Scientific Computing

in Object-Oriented Parallel Environments, LNCS, Vol. 1343,

Springer, 1997, pp. 275–282.

[12] IBM Corp., High-Performance Compiler for Java: An Optimiz-

ing Native Code Compiler for Java Applications, http://www.

alphaWorks.ibm.com/formula/, 1997.

[13] S. Mintchev and V. Getov, Towards portable message pass-

ing in Java: Binding MPI, in: M. Bubak, J. Dongarra and

J. Waśniewski (eds), Recent Advances in PVM and MPI,

LNCS, Vol. 1332, Springer, 1997, pp. 135–142.

[14] PARKBENCH Committee (assembled by R. Hockney and

M. Berry), PARKBENCH report-1: Public international bench-

marks for parallel computers, Scientific Programming 3(2)

(1994), 101–146.

[15] T. Proebsting, G. Townsend, P. Bridges, J. Hartman, T. New-

sham and S. Watterson, Toba: Java for applications – a way

ahead of time (WAT) compiler, in: Proceedings 3rd Conference

on Object-Oriented Technologies and Systems (COOTS ’97),

1997.

[16] D. Souder, M. Herrington, R. Garg and D. DeRyke, JSPICE:

A component-based distributed Java front-end for SPICE, Con-

currency: Pract. Exper. 10(11–13) (1998), 1131–1141.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

