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Abstract. In this paper, we propose a robust multi-layer background subtraction technique
which takes advantages of local texture features represented by local binary patterns (LBP) and
photometric invariant color measurements in RGB color space. LBP can work robustly with
respective to light variation on rich texture regions but not so efficiently on uniform regions.
In the latter case, color information should overcome LBP’s limitation. Due to the illumination
invariance of both the LBP feature and the selected color feature, the method is able to handle local
illumination changes such as cast shadows from moving objects. Due to the use of a simple layer-
based strategy, the approach can model moving background pixels with quasi-periodic flickering as
well as background scenes which may vary over time due to the addition and removal of long-time
stationary objects. Finally, the use of a cross-bilateral filter allows to implicitly smooth detection
results over regions of similar intensity and preserve object boundaries. Numerical and qualitative
experimental results on both simulated and real data demonstrate the robustness of the proposed
method.
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1 Introduction

Foreground objects detection and segmentation from a video stream captured from a stationary camera
is one of the essential tasks in video processing, understanding and visual surveillance. A commonly
used approach to extract foreground objects consists of performing background subtraction. Despite
the large number of background subtraction methods [2, 6, 7, 8, 10] that have been proposed in the
past decade and that are used in real-time video processing, the task remains challenging when the
background contains moving objects (e.g. waving tree branches, moving escalators) as well as shadows
cast by the moving objects we want to detect, and undergoes various changes due to illumination
variations, or the addition or removal of stationary objects.

Much work has been done since the introduction of the Mixture of Gaussian (MoG) model by
Stauffer and Grimson [10]. In their approach, the mixture of K(= 3, 4, 5) Gaussians representing the
statistics of one pixel over time can cope with multi-modal background distributions. However, a
common problem for this approach is to find the right balance between the speed at which the model
adapts to changing background, and the stability, i.e. how to avoid forgetting background which is
temporarily occluded. Lee et al. [7] proposed an effective scheme to improve the update speed without
compromising the model stability. To robustly represent multi-modal scenes (e.g. wavering trees or
moving escalators), Tuzel et al. [11] proposed to estimate the probability distribution of mean and
covariance of each Gaussian using recursive Bayesian learning, which can preserve the multi-modality
of the background and estimate the number of necessary layers for representing each pixel. Most of
these methods use only pixel color or intensity information to detect foreground objects. They may
fail when foreground objects have similar color to the background. Heikkila et al. [2] developed a
novel and powerful approach based on discriminative texture features represented by LBP histograms
to capture background statistics. The LBP is invariant to local illumination changes such as cast
shadow because LBP is obtained by comparing local pixels values. However, at the same time, it can
not detect changes in sufficiently large uniform regions if the foreground is also uniform. In general,
most of the methods that tackle the removal of shadow and highlight [3, 4] proposed to do it in a post-
processing step. Jacques et al. [4] proposed to use the zero-mean normalized cross-correlation (ZNCC)
to first detect shadow pixel candidates and then refine the results using local statistics of pixel ratios.
Hu al. [3] proposed a photometric invariant model in the RGB color space to explain the intensity
changes of one pixel w.r.t. illumination changes. Kim et al. [6] present a similar approach, but directly
embedded in the background modeling, not as a post-processing step. They also proposed a multi-
layer background scheme which, however, needs more memories and computation costs. Javed et al.
[5] proposed to integrate multiple cues (color and gradient information) to detect moving foreground
objects in three distinct levels, i.e. pixel level, region level and frame level.

In this paper, we propose a layer-based method to detect moving foreground objects from a video
sequence taken under a complex environment by integrating advantages of both texture and color
features. Compared with the previous method proposed by Heikkila et al. [2], several modifications
and new extensions are introduced. First, we integrate a newly developed photometric invariant color
measurement in the same framework to overcome the limitations of LBP features in regions of poor
or no texture and in shadow boundary regions. Second, a flexible weight updating strategy for back-
ground modes is proposed to more efficiently handle moving background objects such as wavering tree
branches and moving escalators. Third, a simple layer-based background modeling/detection strat-
egy was developed to handle the background scene changes due to addition or removal of stationary
objects (e.g. a car enters a scene and stays there for a long time). It is very useful for removing the
ghost produced by the changed background scene, detecting abandoned luggage, etc. Finally, the fast
cross bilateral filter [9] was used to remove noise and enhance foreground objects as a post-processing
step.

The rest of this paper is organized as follows. A brief introduction on texture and color features
is given in Section 2. Our proposed method for background modeling and foreground detection is
described in Section 3. Experimental results on simulated and real data are reported in Section 4.
Finally conclusions are given in Section 5.
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2 Texture and Color Features

In this section, we introduce the local binary pattern used to model texture and the photometric
invariant color measurements, which are combined for foreground detection.

2.1 Local Binary Pattern

LBP is a robust gray-scale invariant texture feature. The LBP operator consists of labeling a pixel
with a binary number obtained by thresholding the gray-scale difference between the gray-scale value
of each neighbor of the pixel and the pixel’s gray-scale value, and considering the multiple 0, 1 output
as a binary number. More formally, the LBP of the pixel x in an image I can be represented as follows:

LBPP,R(x) = {LBP
(p)
P,R(x)}p=1,...,P , (1)

LBP
(p)
P,R(x) = s(Ig(vp) − Ig(x) − n), s(x) =

{

1 x ≥ 0,
0 x < 0,

where Ig(x) denotes the gray value of the pixel x in the image I and {vp}p=1,...,P as a set of P equally
spaced pixels located on a circle of radius R and center x. The parameter n is a noise parameter which
should make the LBP signature more stable against noise (e.g. like compression) in uniform areas.
It is the minumum amount of positive gray-scale variation that is considered as a significant change.
Note that the LBP can be extended to color images with the LBP computed on each separated color
channel. Also, multi-scale LBP can be defined with different radiuses at different levels.

LBP has several properties that are beneficial to its usage in background modeling. As a (binary)
differential operator, LBP is robust to monotonic gray-scale changes, whether global or local illumina-
tion. In the latter case, cast shadow can be coped with when the shadow areas are not too small and
the chosen circle radius for the LBP features is small. Finally, LBP features are very fast to compute,
which is an important property from the practical implementation point of view.

Heikkila et al. [2] proposed to represent LBP texture feature using a 2P -bin LBP histogram over
a neighborhood region. The main limitation is that both memories and computation costs increase
exponentially with the increasing of P . In this paper, we prefer to represent the LBP feature by a set
of P binary numbers, with memory and computation cost linearly proportional to P .

2.2 Photometric Invariant Color

The LBP features work robustly for background modeling in most cases. However, it fails when
both the background image and the foreground objects share the same texture information. This is
especially frequent in region of low (or no) texture, like image areas such as wall or floor and flat
foreground object such as color clothes. To handle these situations, we proposed to utilize a shadow
invariant color distance in the RGB color space to compare an observed color value with a color mode
in our algorithm. Speak about invariant color descriptors (e.g. hue, saturation), whose computation
is unstable for dark or gray color values. Hence, we observed how pixel values change over time under
lighting variation using a color panel and found that there is the same phenomenon as described in [6].
We observe that pixel values changed due to illumination changes are mostly distributed along in the
axis going toward the RGB origin point (0, 0, 0). Thus, we proposed to compare the color difference
between an observed color pixel and a background color pixel using their relative angle in RGB color
space with respect to the origin and the changing range of the background color pixel up to last time
instant.

3 Background Subtraction Algorithm

In this section, we introduce our approach to perform background modeling subtraction. We describe
in turn the background model, the overall algorithm, the distance used to compare image features
with modes, and the foreground detection step.
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3.1 Background Modeling

Background modeling is the most important part of any background subtraction algorithms. The
goal is to construct and maintain a statistical representation of the scene to be modeled. Here, we
chose to utilize both texture information and color information when modeling the background. The
approach exploits the LBP feature as a measure of texture because of its good properties, along with
an illumination invariant photometric distance measure in the RGB space. The algorithm is described
for color images, but it can also be used for gray-scale images with minor modifications.

Let I = {It}t=1,...,N be an image sequence of a scene acquired with a static camera, where the
superscript t denotes the time. Let Mt = {Mt(x)}x represent the learned statistical background
model at time t for all pixels x belonging to the image grid. The background model at pixel x
and time t is denoted by Mt(x) = {Kt(x), {mt

k(x)}k=1,...,Kt(x), B
t(x)}, and consists of a list of

Kt(x) modes mt
k(x) learned from the observed data up to the current time instant, of which the

first Bt(x)(≤ Kt(x)) have been identified as representing background observations. Each pixel has
a different list size based on the observed data variation up to the current instant. To keep the
complexity bounded, we set a maximal mode list size Kmax. In the following unless explicitly stated
or needed, the time superscript t will be omitted to simplify the presentation. Similarly, when the
same operations applies to each pixel position, we will drop the (x) notation.

For each pixel x, each mode consists of 7 components according to mk = {Ik, Îk, Ǐk,LBPk, wk,

ŵk, Lk}, k = 1, . . . ,K. Ik denotes the average RGB vector Ik = (IR
k , IG

k , IB
k ) of the mode. Îk and Ǐk

denote the estimated maximal and minimal RGB vectors1 that the pixels associated with this mode
can take. LBPk denotes the average local binary pattern learned from all the LBPs that were assigned
to this mode. wk ∈ [0, 1] denotes the weight factor, i.e. the probability that this mode belongs to
the background. ŵk represents the maximal value that this weight achieved in the past. Lk is the
background layer number to which the mode belongs, where Lk = 0 means that mk is not a reliable
background mode and Lk = l > 0 indicates that it is a reliable background mode in the l-th layer).
The use of layers allows us to model/detect multi-layer backgrounds. The motivation of multi-layered
background modeling and foreground detection is to be able to detect foreground objects against all
backgrounds which were learned from past observations but which were subsequently covered by long-
time stationary objects, and then suddenly uncovered. Without these background layers, interesting
foreground objects (e.g., people) will be detected mixed with other stationary objects (e.g., car). In
addition, it should be useful to detect abandoned luggage and background scene changes (such as
graffiti or posters) in visual surveillance scenarios.

3.2 Background Model Update Algorithm

The algorithm works as follows. Given the LPBt and RGB value It measured at time t (and po-
sition x), the algorithm first seeks to which mode of the background it belongs to by computing
a distance between these measurements and the data of each mode mt−1

k . This distance, denoted

Dist(mt−1
k ), will be described later. The mode that is closest to the measurements is denoted by k̃

(i.e. k̃ = arg mink Dist(mt−1
k )). If the distance to the closest mode is above a given threshold (i.e.

Dist(mt−1

k̃
) > Tbgu), a new mode is created with parameters {It, It, It,LBPt, winit, winit, 0} where

winit denotes a low initial weight. This new mode is either added to the list of modes (if Kt−1 < Kmax)
or replaces the existing mode which has the lowest weight (if Kt−1 = Kmax). On the contrary, if the
matched mode k̃ is close enough to the data (i.e. if Dist(mt−1

k̃
) < Tbgu) its representation is updated

1The maximal (minimal) RGB vector values are defined componentwise.
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as follows:
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with αi
w = αw(1 + τŵt−1

k̃
)

ŵt

k̃
= max(ŵt−1

k̃
, wt

k̃
),

Lt

k̃
= 1 + max{Lt−1

k }k=1,...,Kt−1,k 6=k̃,

if Lt

k̃
= 0 and ŵt

k̃
> Tbw

(2)

while the other modes are updated by recopy from the previous time frame (i.e. mt
k = mt−1

k ) with
the exception of the weight, which decreases according to:

wt
k = (1 − αd

w)wt−1
k with αd

w =
αw

1 + τŵt−1
k

(3)

In the above, β ∈ [0, 1) is the learning rate involved in the update rule of the minimum and maximum
of color values, whose goal is to avoid the maximum (resp. minimum) value keeping increasing
(resp. decreasing) over time. This make the process robust to noise and outlier measurements. The
parameter α ∈ (0, 1) is the learning rate that controls the update of the color and texture information.
The threshold Tbw is used to check whether the updated mode has become a reliable background
mode.

wt

k̃
= (1 − αi

w)wt−1

k̃
+ αi

w, with αi
w = αw(1 + τŵt−1

k̃
), ŵt

k̃
= max(ŵt−1

k̃
, wt

k̃
). (4)

For the update of the weight, we have proposed a novel ‘hysteresis’ scheme which works as follows.
First, note that the weight decreasing factor αd

w is proportional to a constant factor αw, as usually
found in other approaches, but also depends on a constant τ and on the maximal weight ŵk. The larger
the value of τ or the value of ŵk, the smaller the value of αd

w, and thus the slower the weight decreases.
Thus, if in the past, the mode has been observed for a sufficiently long amount of time, we will reduce
the chances of forgetting it (e.g. this is the case when the background is covered by a stationary
object, e.g. a parked car). Similarly, the increase weight factor αi

w depends on αw, the constant τ
and the maximal weight ŵk. The larger the value of τ or the value of ŵk, the larger the value of αi

w,
i.e. the faster the weight increases. This proposed scheme allows to handle either background space
repeatedly recovered by moving objects, or moving background pixels with quasi-periodic flickering,
such as escalators. For instance, consider a pixel where a moving background matches a mode in 10
frames of the video and then disappears in the next 90 frames. The weight updating results with
different constants τ are shown in Figure 1. With the classical setting (τ = 0), the weight increases,
but soon saturates at a small value (around 0.1 in the example). By using other reasonable values
of τ (e.g. 2 or 3), the memory effect due to the introduction of the maximum weight can allow a
faster increase of the weight, and a saturation at a larger value better reflecting that this mode may
belong to the background. Note that at the same time, due to the use of both color and texture, the
chances that moving foreground objects generate a consistent mode over time (and beneficiate from
this effect) are quite small.

Finally, after the update step, all the modes {mt
k}k=1,...,Kt are sorted in decreasing order according

to their weights, and the number of modes deemed to belong to the background are the first Bt modes
that satisfy

∑Bt

k=1
wt

k

/

∑Kt

k=1
wt

k ≥ TB , (5)

where TB ∈ [0, 1] is a threshold.
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Figure 1: Evolution of a mode weight for a quasi-periodic pixel x, where the data repeatedly match the
mode for 10 frames, and don’t match the mode for the subsequent 90 frames (αw = 0.005, winit = 0.01),
with different constants τ .

3.2.1 Texture- and Color-based Distance

The proposed measurement distance integrating texture information and color information is defined
as follows:

Dist(mt−1
k ) = λDtext(LBPt−1

k (x),LBPt(x))

+(1 − λ)Dc(I
t−1
k (x), It(x)), (6)

where the first term measures the texture distance, the second term measures the color distance and
λ ∈ [0, 1] is a weight value indicating the contribution of the texture distance to the overall distance.
The smaller the distance Dist(mt−1

k ), the better the pixel x matches the mode mt−1
k .

The texture distance is defined as:

Dtext(LBPa,LBPb) =
1

P

P∑

p=1

D0|1

�
LBP

(p)
a , LBP

(p)
b

�
, (7)

where D0|1(·, ·) is a binary distance function defined as:

D0|1(x, y) =

{

0 |x − y| ≤ TD,
1 otherwise,

(8)

where TD ∈ [0, 1) is a threshold. Note that, from Eq. 6, the LBP values measured at time t, LBPt(x),
comprising either 0 or 1, will be compared to the LBP values of LBPt

k(x), composed of averages of
0 or 1. Hence, the distance in Eq. 8 is quite selective: a measured LBP value (e.g. 0) will match its
corresponding average only if this average is close enough (e.g. below TD = 0.2). In other words, the
distance of a measured data to a ‘noisy’ mode for which the previously observed data lead to average
LBP values in the range [TD, 1 − TD] will systematically be 1. In this way, the selected distance will
favor modes with clearly identified LBP patterns.
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The color distance Dc(I
t−1
k (x), It(x)) is defined as:

Dc(I
t−1
k (x), It(x)) = max

�
Dangle(I

t−1
k (x), It(x)),

Drange(I
t−1
k (x), It(x))

�
, (9)

where Dangle(I
t−1
k (x), It(x)) and Drange(I

t−1
k (x), It(x)) are two distances based on the relative angle

formed by the two RGB vectors It−1
k (x) and It(x), and the range within which we allow the color

changes to vary, respectively, as illustrated in Figure 2. The distance Dangle is defined as:

Dangle(I
t−1
k (x), It(x)) = 1 − e−κ max(0,θ−θn), (10)

where θ is the angle formed by two RGB vectors It−1
k and It (w.r.t. the origin of the RGB color space)

and θn is the largest angle formed by the RGB vector It and any of the virtual noisy RGB vectors
{Ĩt = It + In, ‖In‖ ≤ nc}, where In denotes the noise (esp. compression noise) that can potentially
corrupt the measurements, and where nc parameterizes the maximum amount of noise that can be
expected. As a result, we have θn = arcsin(nc/‖I

t‖) 2. Like the noise parameter n presented in Eq. 1
for calculating the LBP, the parameter nc (we used the same value for n and nc) will allow to correctly
account for noise in the color distance. This is particularly important for dark pixels where standard
alternative color invariants (e.g. hue or saturation) are particularly sensitive to noise. The involved
angles are illustrated in Figure 2.

The distance Drange(I
t−1
k (x), It(x)) is defined as:

Drange(I
t−1
k , I

t) =

�
0 if I

t
∈ [Ǐt

shadow,k, Ît
highlight,k],

1 otherwise.
(11)

where It(x) ∈ [Ǐt
shadow,k, Ît

highlight,k] means that the measurement belongs to the volume defined by

the minimum and maximum color values of Ǐt
shadow,k and Ît

highlight,k, as illustrated in Figure 2. These
extremes represent the potentially darkest “shadow” and brightest “highlight” color values that the

pixel can take, and are defined by Ǐt
shadow,k = min

(

µIt
k, Ǐt

k

)

and Ît
highlight,k = max

(

νIt
k, Ît

k

)

where

µ and ν are shadow and highlight factors, respectively, that define the range of measures that can
correspond to a shadowed or highlighted pixel. Typically, µ ∈ [0.4, 0.7] and ν ∈ [1, 1.2].

3.3 Foreground Detection

Foreground detection is applied after the update of the background model. First, a background
distance map Dt = {Dt(x)}x is built, which can be seen as the equivalent of the foreground proba-
bilities in the Mixture of Gaussian (MoG) approach. For a given pixel x, the distance is defined as
Dt(x) = Dist(mt−1

k̃
(x)), which is the distance to the closest mode as mentioned in Subsection 3.2,

unless we have k̃ > Bt(x) and Lk̃(x) = 0 (i.e. the mode was never identified as a reliable background
mode in the past). In this latter case, the distance is set to max(Dist(mt−1

k̃
(x)), 2Tbg), where Tbg is a

foreground/background threshold. To filter out noise, we propose to smooth the distance map using
the cross bilateral filter introduced in [1]. It is defined as:

D̃t(x) =
1

W̃(x)

∑

v

Gσs
(‖v − x‖)Gσr

(|Ig,t(v) − Ig,t(x)|)Dt(v),

where W̃(x) is a normalizing constant, Ig,t denotes the gray-level image at time t, σs defines the size
of the spatial neighborhood to take into account for smoothing, σr controls how much an adjacent
pixel is downweighted because of its intensity difference, and Gσ denotes a Gaussian kernel. As can be
seen, the filter smoothes values that belong to the same gray-level region, and thus prevents smoothing
across edges. The filter is implemented using a fast approximation method [9]. Finally, the foreground
pixels are those for which D̃t(x) is larger than the Tbg threshold.

2Since in practice compression noise happens to be proportional to the intensity, we defined a minimum value θ̌n for
θn.



8 IDIAP–RR 07-67

R

G

B

O

θ
n

θ

n
c

∧∧∧ ∧

∨∨∨ ∨
Ishadow,k

�

Ihighlight,k

�

I
�

I
∼∼∼∼ �

Ik

� ✁
✂

Figure 2: The proposed photometric invariant color model.

4 Experimental Results

In this section, we examined the performance of our proposed method on both simulated and real
data.

4.1 Simulated Data

To evaluate the different components of our method, we performed experiments on simulated data,
for which the ground truth is known:
Background Frames (BF): For each camera, 25 randomly selected background frames containing
no foreground objects were extracted from the recorded video stream.
Background and Shadow Frames (BSF): In addition to the BF frames, we generated 25 back-
ground frames containing highlight and (mainly) shadow effects. The frames were composite as
illustrated in Figure4, by removing foreground objects from a real image and replacing them with
background content.
Foreground Frames, without (FF) or with Shadow (FSF): To evaluate the detection, we gen-
erated composite images obtained by clipping foreground objects (see Figure 3) at random locations
into a background image3. This way, the foreground ground truth is known (see Figure 5). The
number of inserted objects was randomly selected between 1 and 10. When a BF (resp. BSF) frame
was used as background, we denote the result a FF (resp. FSF) image.
Evaluation protocol: The experiments were conducted as follows. First, a sequence of 100 BF
frames was generated and used to build the background model. This model was then used to test the
foreground detection algorithm on a simulated foreground image. This operation was repeated 500
times. Two series of experiments were conducted: in the first one, only FF images were considered as
test images (this corresponds to the ‘Clean’ condition). In the second case, only FSF images were used

3To generate photo-realistic images without sawtooth phenomenon, we blend the background image and foreground
objects together using continuous alpha values (opacity) at the boundaries.
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Figure 3: Typical foreground objects (out of 50).

foreground removal

mixture

Figure 4: Generation of a Background and Shadow frame (BSF) (bottom right), by filling the holes
in the bottom left image with the content of a background image (top right).

(this is the ‘Shadow’ condition). Finally, note that the experiments were conducted for 4 different
scenes, as shown in Figure 6. The first three are real metro surveillance videos. Scene 1 and 2 contains
strong shadows and reflections, while scene 3 contains a large number of moving background pixels
due to the presence of the escalator. Scene video 4 is a typical outdoor surveillance video.

Parameters and performance measures: The method comprises a large number of parameters.
However, most of them are not critical. Except stated otherwise, the same parameters were used
for all experiments. The values were: the LBP6,2 feature was used, with n = 3 as noise parameter;
Tbgu = 0.2, winit = β = α = αw = 0.01, τ = 5 and Tbw = 0.5 for the update parameters; TD = 0.1 for
the texture distance; nc = 3, θ̌n = 3◦, µ = 0.5 and ν = 1.2 in the color distance computation. In these
experiments, the bilateral filter was not used (only a gaussian smoothing with small bandwidth σ = 1).

Figure 5: An example of simulated image, with its corresponding foreground ground truth mask.
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(a)  Scene Video 1 (b)  Scene Video 2

(c)  Scene Video 3 (d)  Scene Video 4

Figure 6: The four scenes considered.

As performance measures, we used the recall = Nc/Ngt and precision = Nc/Ndet measures, where
Nc denotes the number of foreground pixels correctly detected, Ngt the number of foreground pixels
in the ground-truth, and Ndet the number of detected foreground pixels. Also, we used the F-measure
defined as F = 2 · (precision·recall)/(precision+recall).
Results: Figure 7 displays the different curves obtained by varying the threshold values Tbg (cf
Subsection 3.3). We also show the performance of a multi-scale LBP feature, LBP{6,8},{2,4} where
14(=6+8) neighboring pixels located on two circles with radiuses 2 and 4 were compared to the central
pixel. As can be seen, this does not produce obviously better results than the use of the LBP feature
at the single scale. From these results, in the ‘Clean’ condition (Figure 7(a) and Figure 7(b)), we
observe that the combination of both color and texture measures provide better results than those
obtained with each of the feature taken individually. Overall, in this case, a value of λ = 0.75 (with
the distance threshold Tbg = 0.2) gives the best performance. In the ‘Shadow’ condition (Figure 7(c)
and Figure 7(d)), we can observe a performance decrease in all cases. However, the performance of
the texture feature drops more, which indicates that the texture feature is not so robust when shadow
or reflection exists in the scenes. Nevertheless, again, the combination of features is useful, and the
best results are obtained with λ = 0.25.

4.2 Real Data

For the real data, the experiments were as follows: for the first 100 frames, the parameters indicated
in the simulated data were used to quickly obtain a background model. Then, the update parameters
were modified according to: winit = β = α = αw = 0.001. The parameters of the cross bilateral filter
were set to σs = 3 and σr = 0.1 (with an intensity scale of 1), and we used λ = 0.5 and Tbg = 0.2,
as a compromise between the clean and shadow simulated experiments. As a comparison, the MoG
method [10] was used. We used the OpenCV implementation with default parameter as reference.

In the first experiment, a real metro surveillance video with a moving escalator was used. The
foreground detection results on three typical frames are shown in Figure 8. We observe that our
method provides better performance than the MoG method: not only the moving background pixels
are well classified, but the foreground objects are also successfully detected. The results in the second
example (Figure 9), where the background exhibits waving trees and flowers confirm the ability of the
model to handle moving background.

In the third sequence, the video exhibits shadow and reflection components. The results (Figure 10)
demonstrate that our method, though not perfect, handles this shadow better than the MoG method.
The fourth sequence (Figure 11) is taken from the CAVIAR corpus. Results with both λ = 0 (only
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Figure 7: Precision-Recall and F-measure curves, for different values of λ, in the ‘Clean’ (a)-(b), and
‘Shadow’ (c)-(d) conditions.

color is used) and λ = 0.5 are provided, and demonstrate the benefit of using both types of features.
In the last two experiments, we test our multi-layer scheme, which should be useful to avoid

‘ghosts’ produced by traditional approaches, and which should be useful for detecting left luggages
for instance. The results on an outdoor camera monitoring traffic and pedestrians at a crossroad are
shown in Figure 12, where a pedestrian (framed by red boxes) is waiting at a zebra crossing for a
long time, and becomes part of the background before crossing the road. The MoG method produced
a ghost after the pedestrian left. Thanks to the maintenance of previous background layers in our
algorithm, such a ghost was not produced in our case. Another video from PETS’2006 was used for
abandoned luggage detection. The results are shown in Figure 13 where a person left his luggage and
went away.

5 Conclusions

A robust layer-based background subtraction method is proposed in this paper. It takes advantages
of the complementarity of LBP and color features to improve the performance. While LBP features
work robustly on rich texture regions, color features with an illumination invariant model produce
more stable results in uniform regions. Combined with an ‘hysteresis’ update step and the bilateral
filter (which implicitly smooths results over regions of the same intensity), our method can handle
moving background pixels (e.g., waving trees and moving escalators) as well as multi-layer background
scenes produced by the addition and removal of long-time stationary objects. Experiments on both
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Frame 103 Frame 129 Frame 174

Figure 8: Results on a metro video with a moving escalator (first row: original images; 2nd row: our
method; 3rd row: MoG method).

Frame 757 Frame 778 Frame 805

Figure 9: Results on a sythetic video with a real moving background scene and a synthetic moving
people (first row:original images; 2nd row: our method; 3rd row: MoG method).
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Frame 738 Frame 1588 Frame 2378

Figure 10: Results on a metro video with cast shadows and reflections (first row: original images; 2nd
row: our results; 3rd row: MoG method).

simulated and real data with the same parameters show that our method can produce satisfactory
results in a large variety of cases.
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Frame 1075 Frame 2287 Frame 2359

Ghost

Figure 12: Results on an outdoor monitoring video (first row: original images; 2nd row: our results;
3rd row: MoG method).
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Figure 13: Left luggage detection on a PETS’2006 video (first row: original images with detected
luggage covered by blue color; 2nd row: foreground detection results of our method).


