
c© 2017 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 3, Issue 1, 2017

http://www.ronpub.com/ojiot
ISSN 2364-7108

Multi-Layer Cross Domain Reasoning over
Distributed Autonomous IoT Applications

Muhammad Intizar Ali A, Pankesh Patel B

Soumya Kanti Datta C , Amelie Gyrard D

A Insight Centre for Data Analytics, National University of Ireland, Galway Ireland, ali.intizar@insight-centre.org,
B ABB Corporate Research, India, pankesh.patel@in.abb.com,

C Communication Systems Department, EURECOM, France, dattas@eurecom.fr
D Univ Lyon, MINES Saint-Etienne, CNRS, Laboratoire Hubert Curien, France, amelie.gyrard@emse.fr

ABSTRACT

Due to the rapid advancements in the sensor technologies and IoT, we are witnessing a rapid growth in the use

of sensors and relevant IoT applications. A very large number of sensors and IoT devices are in place in our

surroundings which keep sensing dynamic contextual information. A true potential of the wide-spread of IoT devices

can only be realized by designing and deploying a large number of smart IoT applications which can provide

insights on the data collected from IoT devices and support decision making by converting raw sensor data into

actionable knowledge. However, the process of getting value from sensor data streams and converting these raw

sensor values into actionable knowledge requires extensive efforts from IoT application developers and domain

experts. In this paper, our main aim is to propose a multi-layer cross domain reasoning framework, which can

support application developers, end-users and domain experts to automatically understand relevant events and

extract actionable knowledge with minimal efforts. Our framework reduces the efforts required for IoT applications

development (i) by supporting automated application code generation and access mechanisms using IoTSuite, (ii) by

leveraging from Machine-to-Machine Measurement (M3) framework to exploit semantic technologies and domain

knowledge, and (iii) by using automated sensor discovery and complex event processing of relevant events (ACEIS

Middleware) at the multiple data processing layers and different stages of the IoT application development life

cycle. In the essence, our framework supports the end-users and IoT application developers to design innovative

IoT applications by reducing the programming efforts, by identifying relevant events and by suggesting potential

actions based on complex event processing and reasoning for cross-domain IoT applications.
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VLIoT@VLDB 2017 are published in the Open Journal of Internet

of Things (OJIOT) as special issue.

1 INTRODUCTION

The growing popularity of IoT and easy access to sensing

technologies are leading to a great increase in the number

of sensors available in our surrounding. These sensors

produce a tremendous amount of data in a streaming

fashion. However, a true value from this large amounts
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of data can only be realized by harnessing these large

amounts of sensor streams and analyze these streams in

real-time to detect relevant events [3]. A large number

of IoT applications are being designed to process sensor

data streams and provide various valuable services. IoT

technologies have a great potential of bringing a very

positive impact on many aspects of our day-to-day lives

[2, 28].

Nowadays, we can see different innovative IoT

applications are designed in various areas such as

agriculture and smart farming, health and fitness, smart

home, smart cars and smart-x applications in smart cities.

While an easy and cheap access to sensor technologies

(e.g. raspberry pi) have made it possible for everyone to

design and build their own innovative IoT applications,

still it is not easy to learn underlying technologies

required to build a complete IoT application. There are

a few IoT toolkits available to support IoT application

development but they are still in their infancy and

usually, developers have to tackle many development

and domain related issues before designing any IoT

application.

With the growing popularity of IoT, we can easily

foresee that in the near future there will be a massive

deployment of IoT devices in various domains, bringing

tremendous challenges and opportunities for scientific

and economic activities. The biggest challenge for IoT

applications is to bridge the gap between the physical

and the cyber world [21, 27]. A few of the sample

questions any IoT developer faces before designing an

IoT applications are;

Q1: What kind of data is produced by this sensor?

Q2: How can I access data from this sensor?

Q3: What kind of meaningful events be detected and

extracted from sensor data?

Q4: Can I quickly design and build my own IoT

application?

Q5: Can I combine multiple sensors data in a single IoT

application?

Q6: How can I easily make multiple IoT silo

applications inter-operable?

In this paper, our aim is to support IoT application

developers by reducing the efforts and expertise

required to build any IoT application and facilitate

developers to easily get answers to the above mentioned

questions. We propose a framework for Multi-layer

Cross-domain Reasoning over Distributed Autonomous

IoT Applications, and our framework reduces the

application development effort. The framework is

designed by combining three existing frameworks,

namely (i) IoTSuite, (ii) M3 Framework, and (iii) ACEIS

Middleware. The main functionalities of our main

framework can be described as;

• Understanding sensor data and identifying

relevant events (Q1 & Q3): Our framework

support developers and end-users to understand the

structure of data produced by any sensor. It uses

semantic technologies to identify relevant events

from sensor data. A high level specification

or domain area is provided to our framework,

these specifications are used to identify relevant

information model and ontologies already designed

for the given domain. Reasoning and querying

over the relevant ontologies help to identify relevant

events which can be produced and monitored using

the given sensor.

• Providing automation at different phases of

application development life-cycle (Q2): Our

toolkit provides a set of high-level modeling

languages to specify each development concern

and abstracts the heterogeneity related complexity.

It integrates code generation, task-mapping, and

linking techniques. Code generation supports the

application development phase by producing a

programming framework that allows stakeholders

to focus on the application logic, while our

mapping and linking techniques together support

the deployment phase by producing device-specific

code to result in a distributed system collaboratively

hosted by individual devices.

• Reducing the time spent for developing WoT

application (Q4): In order to create inter-

operable and cross-domain SWoT applications,

developers have to perform various tasks such as

designing an application, semantically annotating

data and interpreting data. To perform these tasks,

developers have to learn semantic web technologies

and tools, which is a time consuming process and

can take a substantial amount of time. Reducing

this gap as much as possible can be done by

empowering a framework that assists developers in

designing inter-operable applications with minimal

knowledge of semantic web technologies.

• Reducing the learning curve required by

WoT developers to integrate semantic web

technologies (Q5 & Q6): Fast prototyping of

semantic-based WoT applications by hiding the

use of semantic web technologies as much as

possible is required to avoid the developers’ burden

on designing ontologies, semantic annotators and
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reasoning mechanisms to enrich their data. An

extensive work with Web frameworks (e.g. Drupal,

Wordpress) has been done to design pre-defined

templates to automatically generate websites to

avoid users dealing with Web technologies. Based

on this idea, pre-defined templates to design SWoT

applications can be created.

Outline. The remainder of this paper is organized as

follows: We emphasize the need of our framework by

presenting a motivating scenario in Section 2. In Section

3 we present an overview of the existing frameworks

for IoT application development. Section 4 presents our

multi-layer cross domain reasoning framework and its

underlying components. We evaluate the information

flow and applicability of our framework in Section 5. We

discuss state of the art technologies in Section 6 before

concluding in Section 7.

2 MOTIVATING SCENARIO

Consider a real world scenario, where Alice, an

enthusiastic IoT developer, wishes to design and

build innovative IoT applications. She has access to

basic IoT hardware such as raspberry pi and a few

sensors like temperature, humidity, and proximity sensor

etc. Alice wishes to design her own innovative IoT

applications performing basic smart home automation

tasks. The home automation system should be capable

of performing various daily tasks automatically such

as controlling heating system, lights, and burglar alarm

system. Starting to develop such application, Alice needs

to understand the data produced by sensors, their access

mechanisms, and relevant events. This can be easily

done by using a combination of functionalities supported

by M3 and IoTSuite, where M3 processes a single sensor

data and provides a concrete list of relevant events for

that particular sensor, while IoTSuite generates code to

access data from the sensor. We call single sensor based

reasoning and code generation support as the first layer

of IoT application for a singular device.

Now consider that Alice can process high-level events

by combining data from multiple sensors e.g. a

combination of temperature and humidity sensor can

detect events like the presence of fog. Again, a

combination of M3 & IoTSuite can identify relevant

multi-sensor level events and facilitate code generation

to detect these events. We call multiple sensors based

reasoning and code generation support as a second layer

of IoT application for multiple sensing devices.

Using the singular sensor and multiple sensors based

reasoning and developing support, Alice is able to build

a complete home automation system. Additionally,

Alice also owns a smart car, which is well equipped

with modern sensing technologies and a smart car

supporting software (developed using IoTSuite & M3) is

also available for communication among various sensors

within the car as well as with external sources of

information. Both the home automation and smart car

applications are performing their required tasks within

the specified domain of each application.

Now, consider a cross-domain reasoning and events

processing scenario, where both applications could

leverage from data and information collected from each

of these two applications as well as external information

sources. These combined rich sources of information

can extend the functionality of existing applications

by benefiting from the knowledge derived by another

application in a completely different domain. For

example, a smart home automation system at Alice

home operates using a pre-planned schedule for home

heating system after considering daily routine patterns

of Alice arrival and departure times form the home to

work. On a busy Monday evening on her way back

to home from work, Alice is stuck into a severe traffic

jam and her car automation system reports an expected

delay of more than an hour than her usual arrival time at

home. Our framework can support building applications

that could potentially process the information from

car automation system to deploy actuation over the

home automation system for delaying the triggering of

an automated heating system and thus conserving the

energy consumption. ACEIS can support an automated

discovery and integration of relevant IoT streams by

querying over cross domain IoT applications.

We also envision another scenario related to

autonomous vehicles and their intersection with

the IoT. Consider, Alice is traveling on such a vehicle.

The car must be able to detect environmental situations

(e.g. fog, heavy precipitation) and react to them

automatically. For this purpose, the vehicular sensors

(e.g. location, speed) can obtain data from other

platforms like local environment sensors (e.g. humidity,

precipitation) and combine them to determine if there is

fog. Our cross-domain reasoning framework can support

building intelligent applications which can process data

form multiple silo IoT applications by (i) converting

the heterogeneous sensor data formats into a uniform

format (e.g., RDF) and (ii) providing a uniform and

interoperable mechanism for cross-domain reasoning

and computation. Various actuation suggestions can be

generated by our framework e.g., in the case of dense

fog in the environment, the vehicle driver can receive

suggestions to turn on fog lamps and reduce the speed to

a certain level.
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3 EXISTING FRAMEWORKS

Our framework for multi-layer cross domain reasoning

is a combination of three frameworks, to provide a

necessary background for readers. In this section, we

summarize these frameworks:

• IoTSuite [10] creates a necessary infrastructure

that enables IoT applications1. It takes high-

level specifications as input, parses them, and

generates device-specific code to result in a

distributed software system collaboratively hosted

by individual IoT devices. It is described in

Section 3.1.

• The Machine-to-Machine Measurements (M3)

framework2 [20] takes semantic data as inputs,

reasons over them by leveraging semantic web

technologies and provides suggestions to users. It

is described in Section 3.2.

• ACEIS Middleware3 can process IoT application

request to automatically discover and integrate

relevant IoT streams to address application

requests. It can also perform complex event

processing over streams and their events. ACEIS is

discussed in detail in Section 3.3.

3.1 IoTSuite

A generic framework of IoTSuite is depicted in Figure

1, in what follows we present necessary steps to develop

IoT application using IoTSuite:

Specifying high-level specification. This step involves

the writing of high-level specifications (Step 1 in

Figure 1). This step involves the writing of four

specifications: (1) Domain specification: It includes the

writing of domain-specific concepts such as sensors (it

observes entities of interest), actuators (it affects the

environment), and storage (it stores information about

entities of interest). (2) Architecture specification:

It includes the writing specification of computational

components and interactions with other components.

Computational services are fueled by sensors and

storage. They process inputs data and take appropriate

decisions by triggering actuators. (3) User interaction

specification: It includes data exchange between an

application and a user. (4) Deployment specification:

It describes a device and its properties of a target

deployment.

1 https://github.com/pankeshlinux/IoTSuite
2 https://github.com/pankeshlinux/SWoTSuite
3 https://github.com/CityPulse/

Stream-Discovery-and-Integration-Middleware

Compiling high-level specification. This step generates

a framework (Step 2 in Figure 1) in a general-purpose

programming language. The framework contains

abstract classes, corresponding to each concept defined

in high-level specifications. The abstract classes contain

concrete and abstract methods as well as interfaces.

The concrete methods are used to hide interactions

with other software components. The abstract methods

are implemented to write application-specific logic (an

example of application logic could be, e.g. opening a

window when an average temperature value is greater

than a certain threshold). The generated interfaces

implement user interfaces that connect UI elements to

concrete methods of the generated framework.

Generating deployment packages. It consists of two

steps (Step 3 in Figure 1). The first step is to map

a set of computational components (specified in an

architecture specification) to a set of devices (specified

in a deployment specification). The second step

combines the mapping outputs and the generated code

of Step 2 , and generates device-specific packages as

final outputs that result into a distributed software system

collaboratively hosted by individual devices.

3.2 M3 Framework

Figure 2 represents M3 framework, M3 contains the

following sub-components;

Semantic annotator. It transforms varying formats to

the standardized RDF format. A common RDF format

enables reasoning over sensor data in a unified way. It

annotates sensor data according to the M3 taxonomy [20,

p. 93], which is an extension of W3C Semantic Sensor

Network (SSN).

Storage. It stores M3 ontologies, datasets and rules as

well as annotated RDF sensor data in a triple store [20].

Moreover, M3 compatible SPARQL queries are stored as

flat files to assist developers.

Knowledge manager. It updates the storage with a

domain-specific knowledge that is further used in a

reasoning process. M3 uses Linked Open Vocabularies

for the Internet of Things (LOV4IoT)4. The LOVIoT

provides domain ontologies, datasets, and rules that

could be reused to design cross-domain IoT applications.

Reasoning engine. It infers high-level knowledge using

Jena inference engine and M3 rules. The M3 rules are

extracted from LOV4IoT and they are re-designed in

compliance with M3 taxonomy [22].

Query engine. It executes SPARQL queries and

provides suggestions to users. The query engine executes

4 http://sensormeasurement.appspot.com/?p=

ontologies

79

 https://github.com/pankeshlinux/IoTSuite
 https://github.com/pankeshlinux/SWoTSuite
https://github.com/CityPulse/Stream-Discovery-and-Integration-Middleware
https://github.com/CityPulse/Stream-Discovery-and-Integration-Middleware
http://sensormeasurement.appspot.com/?p=ontologies
http://sensormeasurement.appspot.com/?p=ontologies


Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

Figure 3: ACEIS Architecture

SPARQL queries overloaded M3 ontologies, datasets,

and knowledge deduced from the reasoning engine in

order to provide suggestions to users. M3 implements

the query engine using ARQ5, a SPARQL process for

Jena.

3.3 ACEIS Middleware

The ACEIS core module serves as a middleware between

low-level IoT data streams and upper-level Smart City

applications [16]. ACEIS core is capable of discovering,

composing, consuming and publishing complex event

processing capabilities as reusable services [17]. We

call these services (primitive or complex) event services.

ACEIS architecture is depicted in Figure 3. ACEIS

core consists of two major components: resource

management and data federation & complex event

processing. In the following, we introduce their

functionalities and interactions.

Resource Manager. The resource management

component is responsible for discovering and composing

event services based on static service descriptions. It

receives event requests generated by the application

interface containing users functional/non-functional

requirements and preferences, and creates composition

plans for event requests, specifying which event

services are needed to address the requirements in

5 https://jena.apache.org/documentation/query/

event requests and how they should be composed.

Resource management component contains two sub-

components: resource discovery component and event

service composer. The resource discovery component

uses conventional semantic service discovery technique

to retrieve IoT services delivering primitive events.

It deals with the primitive event requests specified

within event requests. The event service composer

creates service composition plans to detect the complex

events specified by event requests based on event

patterns. We refer readers to [18] for further details

of the composition algorithm used by the event service

composer.

Data Federation & Complex Event Processing.

The data federation component is responsible for

implementing the composition plan over event service

networks and process complex event logics using

heterogeneous data sources. The composition plan

is firstly used by the subscription manager which

will make subscriptions to the event services involved

in composition plan. Later, the query transformer

transforms the semantically annotated composition plan

into a set of stream reasoning queries to be executed on

a stream query engine. The query transformer produces

two kinds of stream queries: regular event queries that

detect the complex events specified by event requests and

constraint validation queries that monitor the constraints

specified in event requests. Thus the query engine
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produces two kinds of results: (i) event query results are

forwarded to the application interface and (ii) constraint

violations are detected by constraint validation queries

and sent to the adaptation manager. Adaptation manager

decides whether an automatic adaptation is possible. If

so, it creates and deploys a new composition plan that

conforms with the constraints to replace the existing one.

It dispatches a notification to the application interface.

4 MULTI-LAYER CROSS DOMAIN

REASONING OVER DISTRIBUTED

AUTONOMOUS IOT APPLICATIONS

We propose a generic framework for cross-domain

reasoning over multiple IoT applications by combining

the strengths of three different frameworks designed to

serve specific tasks in their respective domains. Our

proposed framework is capable to extensively support

IoT application developers to understand data produced

by individual sensors, combine multiple sensors to get

meaningful events, and perform cross-domain reasoning

over multiple autonomous distributed application for

knowledge extraction and use this knowledge for

actuation across multiple distributed and autonomous

applications.

4.1 System Architecture

Figure 4 presents an overall architecture of the

framework. Our cross domain reasoning framework

facilitates an easy access of data from sensors by

automatically generating and deploying applications for

IoT devices using IoTSuite. These applications hide the

technicalities of accessing physical plane (e.g., sensor

hardware specifications), communication plane (e.g.,

network protocols) and data access plane (e.g., data

wrappers, APIs).

The M3 framework supports a multi-layer reasoning

facility, at the single sensor based reasoning level

it processes individual sensor data (e.g., temperature

sensor data) and suggests potential events (e.g., cold,

warm etc.). At multiple sensors based reasoning level,

it processes multiple sensor data in combination (e.g.,

temperature, humidity etc.) to suggest relevant events

(e.g., fog, rain, and snow etc.). At the cross-domain

application level reasoning, M3 supports processing

of events collected from autonomous applications by

extracting additional knowledge to deduce additional

events. Additional extracted knowledge and deduced

events are processed by complex event processing engine

in ACEIS middleware to produce actionable knowledge.

Once the actionable knowledge is extracted IoTSuite

can trigger actuation for individual sensors or for the

complete IoT application.

In the following, we present elements of the

architecture (Figure 4) and describe the functionality of

each element realized using our frameworks: IoTSuite,

M3, and ACEIS middleware.

4.2 System Components for Data Processing &
Reasoning Layers

In this section, we discussed different data processing

layers, reasoning layers at a singular sensor, multiple

sensors and applications’ levels. Below, we briefly

introduce different components used at these layers.

4.2.1 Device Plane

This layer consists of a variety of devices ranging from

resource constrained devices (e.g., microcontrollers)

to powerful devices (e.g., smartphones, desktop

computers). An IoT application may execute on a

network consisting of different types of devices. For

example, a smart home application consists of devices,

including sensing devices (e.g., temperature sensors),

actuating devices (e.g., heaters), user interface devices

(e.g., smart phones, monitors), storage devices (e.g.,

profile storages on different database systems such as

MySQL or MongoDB). Moreover, each device may

exhibit heterogeneous platforms. For instance, a device

could be running Android mobile OS, Raspbian on

Raspberry PI, a desktop computer with OS such as

GNU/Linux, Windows, or microcontroller with no OS.

To address the above mentioned heterogeneity

challenges at the device plane, IoTSuite lets developers

write a domain specification. In a domain specification,

concepts such as sensors, actuators, storage are

specified in a high-level manner to abstract low-level

platform specific details from developers. For instance,

while writing a temperature sensor code in a domain

specification, developers do not have to think about a

temperature sensor is hosted on which a platform (e.g.,

Android OS, Raspbian OS). This complexity is taken

care by IoTSuite.

4.2.2 Communication Plane

This layer is responsible for communicating data

from devices at the device plane to the outside

world. The communication with devices is realized

using different communication protocols. Each

protocol exhibits its own interaction patterns. Some

of the common interaction modes with devices

are request/response, publish/subscribe, stream, and

command. An IoT application executes on a network

consisting of heterogeneous devices, each may have

different interaction mode and implement a different

protocol. This heterogeneity at the communication plane
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Figure 4: An overview of the cross-domain reasoning framework

largely spreads into the application code and makes the

portability of code difficult.

To address these challenges, IoTSuite provides

high-level abstractions that abstract heterogeneous

interactions among devices. So, a developer does

not have to handle these low-level details. Moreover,

to integrate a communication protocol, IoTSuite

implements well-defined interfaces [31]. The

implementation of these interfaces with a protocol

library which integrates the support of a communication

protocol into a system.

4.2.3 Data Access Plane

This layer is responsible for accessing devices using

different interaction modes and protocols available at the

communication plane. The accessed data is generally

in a raw format and may not provide any explicit

information. In order to address data interoperability

problems among heterogeneous devices, this layer

annotates raw sensor data and transforms it into a format

that can be used further at the layer above. A popular

data representation format, such as Resource Description

Framework (RDF), can be used as a data exchange

format for IoT devices. However, sometimes devices

may not be able to annotate data with RDF because

of its resource constraints such as memory, processing

& transmission power, and bandwidth. An alternate

solution is to use a lightweight format such as Sensor

Markup Language (SenML)6 and transform it to RDF

6 https://tools.ietf.org/html/

draft-jennings-senml-10

format at the application level.

To perform the above mentioned functionality,

M3 framework interacts with devices using various

interaction modes and protocols. It gets sensor metadata

(such as measurement type, sensor type, and value)

from devices and converts sensor metadata in a unified

description using semantic web technologies such as

RDF/XML. Sensor metadata is semantically annotated

using M3 ontology. This is an essential step to provide a

basis for reasoning, described in the next section.

4.2.4 Singular Sensor Reasoning & Event
Detection

This layer takes RDF data as inputs and processes them

further to derive new knowledge and facts. It is essential

to push a part of reasoning over RDF data on a device

because it has several advantages such as: (i) scalability

can be achieved at a device because it distributes the

computation, (ii) data transmission cost from a device

to a centralized node could be reduced because a device

has to send refined results rather than raw data, and (iii)

the local data processing contributes to privacy as only

pre-defined processed data is sent.

The above mentioned functionality is implemented

in M3. It integrates Jena inference engine and M3

rules. The M3 rules are extracted from LOV4IoT and

they are re-designed in compliance with M3 taxonomy.

Moreover, M3 ports a lightweight version of the

reasoning engine to enable the reasoning process on

Android devices [14].
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4.2.5 Application Level Reasoning & Event
Detection

At the application level reasoning and event detection,

we used multiple sensors within an application, a

combination of two independent sensor data can be used

to detect additional events which are not possible to

detect from two individual sensors. For example, a

combination of temperature and humidity sensors can

suggest a possibility of detecting fog.

4.2.6 Cross Domain Reasoning & Event
Detection

IoT applications are currently designed while keeping

a single application domain in view, most of these

applications target a domain specific problem. We

used cross domain reasoning techniques to monitor and

process events from totally independent applications and

a cross domain reasoning over a combination of data

from these two separate applications supports additional

knowledge extraction and inference which was not

possible from data generated by a single application.

As described earlier in the motivating scenario, a cross

domain reasoning allows to deduce additional events

from silo IoT applications and can be turned into useful

actuation for different applications, e.g., a delay in the

traffic and estimated travel time can be used to delay

the predefined schedule of heating system by the number

minutes of delay reporting by traffic navigation system or

a fog forecast from weather stations can be used by smart

car to make decisions and suggestions such as turning

on fog lamps and reducing the car speed based on the

density of fog.

4.2.7 Actuation Module

It consumes the extracted knowledge from the cross-

domain reasoning layer and uses this information to take

appropriate actions of an application. An automated

actuation from the cross-domain reasoning layer could

be: (1) triggering an actuator (e.g., switching off a

heater by an application), (2) event-based interaction

with users such as notifying users (e.g., informing users

whenever a dangerous situation such as fire around), or

(3) periodic updates to users (e.g., displaying average

energy consumption of a house on users dashboard or

mobile device periodically). To define user interactions,

IoTSuite provides a set of abstract interactors, similar to

work [5], which denotes information exchange between

an application and a cross domain reasoning layer.

A developer specifies abstract interactors in a user

interaction specification [9]. The compilation of this

specification generates code that can be deployed on

mobile devices or display devices, which let users

interact with applications.

4.2.8 Sensor Discovery & Complex Event
Processing

To lower the barrier between on-demand application

request by end-users and IoT infrastructure, this module

enables dynamic service discovery and automatic service

composition over IoT infrastructure. We use ACEIS

middle-ware to map the end-users or application request

to discover relevant IoT resources and sensors. ACEIS

is capable of processing application requests on the

fly and can trigger its universal discovery module to

search relevant sensors that can answer application

request. ACEIS considers every sensor data stream as

a service, hence the granularity level of the discovery

module is at the sensor level rather than the application

level. This feature allows cross-domain application

requests to process individual sensors data from multiple

applications.

Once the relevant data stream are identified ACEIS

can compose sensor data streams by using complex event

processing techniques. A composition plan generated by

ACEIS ensures that a combination of individual sensor

data streams provides answers to the application request

specified by the end-user.

5 SYSTEM INFORMATION FLOW

In this section, we evaluate the feasibility of our

system by showing information flow between various

components of the framework. We provide various code

snippets and examples to showcase the overall procedure

which can be followed by IoT applications’ developers

while designing any application. In what follows, we

use different examples to show the support provided by

our framework at the different levels of the cross-domain

reasoning frameworks.

5.1 Reasoning and Application Development
Support for Singular Sensor Based
Applications

Listing 1 provides a sample set of events for temperature

sensors. M3 gets user input about a sensor type (e.g.

temperature sensor) and its specific domain (weather

forecast). M3 uses its internal repository of ontologies

and provides a set of events with their specific thresholds.

These events are helpful for the developers to monitor

and detect relevant events for that sensor.

Listing 2 shows a sample excerpt of the code

generated by IoTSuite, which is automatically generated

and creates templates for developers to specify their
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1

2 [Cold:

3 (?measurement rdf:type m3:Temperature)

4 (?measurement m3:hasValue ?v)

5 greaterThan(?v,0)

6 lessThan(?v,10)

7 −>

8 (?measurement m3:isRelatedTo weather−dataset:Cold)

9 ]

10

11 [SunnyTemperature:

12 (?measurement rdf:type m3:WeatherTemperature)

13 (?measurement m3:hasValue ?v)

14 greaterThan(?v,25)

15 −>

16 (?measurement m3:isRelatedTo weather−dataset:Sunny)

17 ]

18

19 [WinterTemperature:

20 (?measurement rdf:type m3:WeatherTemperature)

21 (?measurement m3:hasValue ?v)

22 lessThan(?v,10)

23 −>

24 (?measurement m3:isRelatedTo naturopathy−dataset:Winter

)

25 ]

Listing 1: Rule interpreting temperature

measurements

1 structs:

2 TempStruct

3 tempValue: double;

4 unitOfMeasurement : String;

5 SmokeStruct

6 smokeValue:double;

7 unitOfMeasurement:String;

8 resources:

9 sensors:

10 periodicSensors:

11 TemperatureSensor

12 generate tempMeasurement:TempStruct;

13 sample period 1000 for 6000000;

14 eventDrivenSensors:

15 SmokeDetector

16 generate smokeMeasurement:SmokeStruct;

17 onCondition smokeValue > 650 PPM ;

18 actuators:

19 Alarm

20 action On();

Listing 2: IoTSuite Sensor code example

desired values, e.g. monitoring interval, events threshold

etc.

5.2 Reasoning and Application Development
Support for Multi Sensor Based
Applications

Listing 3 shows an example with two different kinds

of measurement (temperature and precipitation) to

1

2 @prefix rdf: http://www.w3.org/1999/02/22−rdf−syntax−ns#

3 @prefix m3: http://sensormeasurement.appspot.com/m3#

4 @prefix weather−dataset: http://sensormeasurement.appspot.com/

weather−dataset/

5

6 [Snowy:

7 (?measurement rdf:type m3:WeatherTemperature)

8 (?measurement m3:hasValue ?value)

9 le(?value,0)

10

11 (?measurement2 rdf:type m3:Precipitation)

12 (?measurement2 m3:hasValue ?value2)

13 greaterThan(?value2,0)

14 −>

15 (?measurement m3:isRelatedTo weather−dataset:Snowy)

16 (?measurement2 m3:isRelatedTo weather−dataset:Snowy)

17 ]

18 ]

Listing 3: Rule requiring measurement from two

sensors

1 structs:

2 VisualizationStruct

3 tempValue:double;

4 humidityValue:double;

5 resources:

6 userInteractions:

7 DashBoard

8 notify DisplaySensorMeasurement(

sensorMeasurement :

VisualizationStruct);

Listing 4: IoTSuite Dashboard code

deduce more complicated events (e.g., Snowy).

The rule also takes into account the context,

and indeed a temperature measurement can be

generated in different locations (outside, inside,

body thermometer). The rule explicitly explains that the

rule applies only for weather temperature measurements

through the triple ?measurement rdf:type

m3:WeatherTemperature.

IoTSuite also creates templates containing sample

code to design a dashboard for IoT applications. Listing

4 contains a sample code to generate a visualization

module to design a dashboard for temperature and

humidity sensors.

5.3 Reasoning and Application Development
Support for Cross-Domain Applications

Listing 5 shows a logical rule example implemented

as a Jena Rule language. The rule checks the type of

the measurement (eg., precipitation) according to the

dictionary compliant with the M3 framework. The value

is compared to specific values to be able to deduce higher
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1

2 @prefix rdf: http://www.w3.org/1999/02/22−rdf−syntax−ns#

3 @prefix m3: http://sensormeasurement.appspot.com/m3#

4 @prefix weather−dataset: http://sensormeasurement.appspot.com/

weather−dataset/

5

6 [HeavyRain:

7 (?measurement rdf:type m3:Precipitation)

8 (?measurement m3:hasValue ?value)

9 (?measurement m3:hasUnit ?unit)

10 greaterThan(?value,20)

11 lessThan(?value,50)

12 −>

13 (?measurement m3:isRelatedTo weather−dataset:HeavyRain)

14 ]

Listing 5: Rule to interpret precipitation

measurement

1 <transport:SafetyDevice rdf:about=”Wiper”>

2 <rdfs:label xml:lang=”en”>Wipers</rdfs:label>

3 <m3:hasRecommendation rdf:resource=”&weather−dataset;

Rainy”/>

4 <m3:hasRecommendation rdf:resource=”&weather−dataset;

LightRain”/>

5 <m3:hasRecommendation rdf:resource=”&weather−dataset;

HeavyRain”/>

6 </transport:SafetyDevice>

Listing 6: RDF instance to link cross-domain datasets

(weather and transport)

level, in this example greaterThan(?value,20).

The main novelty of such rules is to follow Linked

Data principles. The property m3:isRelatedTo

enables the linking with external domain knowledge

(e.g., weather dataset).

Listing 6 shows that a transport dataset is

using the weather dataset through the property

m3:hasRecommendation. This example

demonstrates that from a precipitation measurement,

new knowledge can be inferred and linked to cross-

domain knowledge: weather and transport. These

rule-based mechanisms can be integrated into a smart

car, with a precipitation sensor deployed on the car to

automatically switch on wipers for instance.

5.4 Cross-Domain Reasoning in Mobile
Applications

Cross-domain semantic reasoning is possible in high-

end smartphones and tablets due to the availability

of resources. Also, at present, mobile devices have

become the de-facto human-to-IoT interfacing system.

To integrate the building blocks of the M3 Framework

in a mobile application, its life-cycle is categorized into

following steps.

Figure 5: Semantic reasoning and suggestions in the

Android application

Discovery and Provisioning. The first step triggers a

discovery method which searches for available sensors

and domains. We assume that the sensors are described

using IETF standard protocols like CoRE Link Format7

and each the descriptions are registered into a central

registry database. During the first step, the Android

application connects to the registry and queries the

database. It returns one/more URI(s) corresponding to

the sensor(s). A detailed mechanism of the discovery

procedure is mentioned in [13]. This is followed by

provisioning where a sensor or a combination of sensors

and domain(s) of operation (corresponding to the overall

application scenario) are communicated to the M3 cloud.

Provisioning M3 Templates. Following the discovery

and provisioning, the M3 cloud returns a set of cross-

domain templates to the Android application. Based

on the application logic, one of the templates should

be chosen. This step can also be configured in the

background to run as an Android service.

Semantic Reasoning and Suggestions. Once a

template is chosen, the M3 cloud internally generates a

template containing rules, ontologies, datasets, domain

knowledge necessary for cross-domain reasoning. The

template is downloaded into the Android application.

The sensor(s) are queries directly to get sensor metadata.

Following the semantic reasoning, SPARQL queries are

executed to generate suggestions. These suggestions

are presented to the end-users who can select an action.

It triggers an actuation module from the application.

Figure 5 shows this mechanism embedded in Android

powered devices. In the same way that the wiper

suggestion has been proposed previously, in the case, fog

lamp suggestion is provided.

The advantage behind the above three steps is that

the process is generic enough to accommodate with a

range of cross-domain M3 templates. This allows the

7 https://tools.ietf.org/pdf/rfc6690.pdf

85

https://tools.ietf.org/pdf/rfc6690.pdf


Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

same application to be reused in multiple application

logics, which in turn reduces the time for development

and shortens time-to-market.

6 RELATED WORK

To address the research challenges and questions

discussed in Section 1, a commonly accepted technique

is to design a framework or middleware. Initial

approaches for IoT platforms design focused on data

collections and sensors interoperability, while later on

the focus shifted towards the provision of value added

services. In this article, we mainly focus on semantics

based solutions proposed for IoT applications.

6.1 Semantics based IoT Middlewares,
Frameworks and Toolkits

We classify the existing frameworks/middleware into

three broad categories: (1) to hide IoT system

complexity, middleware (such as ACEIS) exposes

services (such as service discovery, service composition)

through various APIs and let developers to use their APIs

to develop an application, (2) to address interoperability

issues in IoT, frameworks (such as M3) leverage

semantic web technologies and provide intelligent

suggestions in cross-domain to users, and (3) to reduce

IoT application development complexity, toolkits (such

as IoTSuite) provides high-level abstractions to develop

an IoT application.

In the following, we present a state of the art of each

category briefly:

Semantic Based IoT Middlewares. Different

middlewares for IoT data collection have been proposed

over the past [15,23,32]. OpenIoT is designed to reduce

the heterogeneity issues and provide a universal platform

for IoT data collection and acquisition [23]. The Global

Sensor Network (GSN) middleware facilitates flexible

discovery and integration of physical sensors [1],

while X-GSN is its extension to support virtual as

well as physical sensors [7]. In the context of smart

cities, various semantic based IoT data platforms are

proposed [28]. ACEIS middleware is part of large-scale

realtime data analytics platform of CityPulse Framework

and contains various on-the-fly sensor discovery and

composition tools for real-time data analytics over IoT

streams.

Semantic-Enabled Framework. Similar to the M3

framework, Chen et al. have discussed intelligent

processing for IoT data related to domain specific-

applications [11]. The need for cross-domain

applications with semantic interoperability and data

management in IoT applications are described in [25].

They clearly explain a lack of standardization related

to ontologies and data formats but do not provide any

solutions. The authors of [29] have presented know-how

on semantically annotating IoT sensor data and the need

of domain ontologies. This is further explained in [26]

where the authors employ domain-specific ontologies

and ontologies matching and alignment tools to build IoT

applications. However, they do not explicitly describe

the issues encountered if developers want to combine the

domain ontologies.

IoT Toolkits. To reduce IoT application development

effort, a macro-programming is a popular approach.

Developers use high-level programming constructs (such

as visual programming constructs that can be dragged

and dropped) around APIs provided by a middleware

to develop various applications. For instance, Node-

RED is a programming tool for wiring together IoT

devices, APIs, and online services. However, one of the

limitations of this approach is that platform-dependent

design prevents its portability and re-usability across

different platforms.

To address development effort and platform-

dependent design issues, Model-driven Development

(MDD) approach has been proposed. It applies the basic

separation of concerns [24] principle both vertically

and horizontally. Vertical separation principle reduces

the application development complexity by separating

the specification (Platform Independent Model–PIM)

of the system functionality from its platform (Platform-

Specific Model–PSM) such as programming languages

and run-time systems. Horizontal separation principle

reduces the development complexity by describing a

system using different system views, where each view

describes a certain facet of the system. MDD tools such

as IoTSuite, DiaSuite [8] adopts MDD approaches.

6.2 Delineation from similar IoT Frameworks

In this section, we briefly discuss two of the most

well-known frameworks for IoT application design e.g.

FIWARE and SOFIA2 Platform. We then discuss

novelties presented in our framework and how our

proposed framework can support application developers

to easily build semantics based IoT applications from

cross-domain reasoning and also compliments individual

components designed and developed for the above

mentioned existing frameworks.

FIWARE. FIWARE8 aims at providing an open

cloud based system to design, develop and deliver

cost-effective Future Internet (FI) applications and

services including the IoT. The main ingredients of

the architecture are Generic Enablers (GE) [12], [4]

8 http://www.fi-ware.org/
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which allows IoT service enablement. Through the

GEs, physical devices (e.g. sensors, actuators) become

available, search-able, accessible and usable by high

level IoT applications and services that belong to various

vertical markets. The GEs relevant to IoT are - (i)

IoT Service Enablement (further categorized into IoT

Backend and IoT Edge) which is hosted in a Cloud

Data center [30], (ii) Data/Context Management which

enables development of smart, personalized and context

aware IoT applications, (iii) Applications, Services and

Data Delivery which is responsible for creating an

IoT ecosystem of applications, services and business

intelligence, (iv) Security which is centered around

identity [6] & access management and access control

policies.

SOFIA2 Platform. This platform9 [19] provides several

functionalities to the IoT ecosystems–(i) implementing

standard data formats (e.g., JSON), protocols (e.g.,

MQTT), RESTful web services, (ii) Independence of

IoT device firmware (e.g., Android, Linux, iOS),

(iii) Support for Java based application toolkits, (iv)

scalability and extendibility. The SOFIA2 platform

performs well for vertical IoT markets.

6.3 Progress Beyond State-of-the-art

While both FIWARE and SOFIA2 are considered

successful platforms for IoT applications development

support, we consider that our proposed approach for

multi-layer and cross domain reasoning progresses

beyond state-of-the-art for two main reasons, (i)

provision of cross-domain reasoning at the horizontal

layer among multiple IoT applications and (ii) a

comprehensive support for application developer to

automatically build cross domain IoT applications. The

above mentioned current platforms mainly focused

on vertical applications design while we promote

horizontal reasoning over distributed autonomous IoT

applications. Moreover, the interoperability among the

mentioned platforms among is not tested while our work

successfully integrated three separate frameworks into

one.

It is worth mentioning that contrary to the single

application design as advocated in FIWARE and

SOFIA, we emphasize on cloud-based applications,

where two totally independent applications can benefit

from cross-domain reasoning and get fruitful insights

from data analytics which were not possible from an

application designed to build a single domain dependent

applications. Additional to interoperability and cross

domain reasoning, we also believe that our work on

facilitating application developers by providing useful

9 http://sofia2.com

templates and reduce the learning curve of application

development is also a considerable advancement beyond

state of the art. We expect that our framework will

gain the attention of a wider community and have good

potential for noticeable impact on IoT research and

development community.

7 CONCLUSION & FUTURE WORK

In this paper, we propose a multi-layer cross-

domain reasoning framework, which combines various

features of three separate frameworks in order to

support a complete application design and development

framework for cross-domain IoT applications. Our main

aim in this paper was to showcase the feasibility of this

approach and emphasize the usability of our framework

to assist and expedite the IoT application development

process.

In future, we intend to extensively evaluate the

performance of our framework and attract a large

community of application developers to get benefit

from application development support provided by our

framework.

ACKNOWLEDGEMENTS

This research work has been partially supported by

Science Foundation Ireland (SFI) under grant No.

SFI/12/RC/2289.

REFERENCES

[1] K. Aberer, M. Hauswirth, and A. Salehi, “A

middleware for fast and flexible sensor network

deployment,” in Proc. of VLDB2006. VLDB

Endowment, 2006, pp. 1199–1202.

[2] M. I. Ali, N. Ono, M. Kaysar, K. Griffin, and

A. Mileo, “A semantic processing framework

for iot-enabled communication systems,” in

Proceedings of 14th International Semantic Web

Conference, Bethlehem, PA, USA, October 11-15,

2015, pp. 241–258.

[3] M. I. Ali, N. Ono, M. Kaysar, Z. U. Shamszaman,

T.-L. Pham, F. Gao, K. Griffin, and A. Mileo,

“Real-time data analytics and event detection

for iot-enabled communication systems,” Web

Semantics: Science, Services and Agents on the

World Wide Web, vol. 42, pp. 19–37, 2017.

[4] P. Andriani, L. Briguglio, L. Lombardo,

M. Nigrelli, D. Pellegrino, J. S. Torres, and

A. Voulkidis, “Fiware generic enablers as building

blocks of a marketplace for energy,” in eChallenges

e-2015 Conference, Nov 2015, pp. 1–10.

87

http://sofia2.com


Open Journal of Internet of Things (OJIOT), Volume 3, Issue 1, 2017

[5] E. Balland, C. Consel, B. N;Kaoua, and
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