
Multi-Layer Depth Peeling via Fragment Sort

Baoquan Liu Li-Yi Wei Ying-Qing Xu

Microsoft Research Asia

MSR-TR-2006-81

Abstract

We present an accelerated depth peeling algorithm for order-
independent transparency rendering on graphics hardware. Unlike
traditional depth peeling which only peels one layer of transparent
pixels per rendering pass, our algorithm peels multiple layers si-
multaneously per rendering pass. Our acceleration is achieved via
our fragment program which sorts and writes multiple fragment col-
ors and depths via MRT. A notable feature of our algorithm is that
it is robust against the unreliable parallel read-after-write behav-
ior in current graphics hardware, guaranteeing correct transparency
ordering. For ordinary scenes rendered under RGBA8 color preci-
sion, we achieve up to 8× speed-up over conventional depth peel-
ing with current generation graphics hardware. Our algorithm is
simple to implement on current GPU without any hardware modi-
fication. In addition, it does not require applications to perform any
pre-sorting of transparent geometry.

Keywords: order-independent transparency, depth peeling, mul-
tiple render target, concurrent read/write hazards, sorting, graphics
hardware

1 Introduction

We present an algorithm for order-independent transparency ren-
dering on commodity graphics hardware. Our algorithm is up to 8
times faster than traditional depth peeling [Everitt 2001], a simple
and yet robust algorithm for rendering transparency for real-time
applications. Similar to [Everitt 2001], our algorithm does not re-
quire hardware modifications and does not require applications to
pre-sort transparent geometry.
The price we pay for such acceleration is several MRT (multiple-

render-target) buffers, as well a more complex fragment program
for sorting multiple layers of transparent fragments.
The basic idea of our algorithm is to perform M con-current

depth peeling via MRT, where the M transparent layers are sorted
via our fragment program. Since M is a constant, our fragment
program can be implemented with great efficiency. The theoreti-
cal speed improvement by our algorithm is M; however, due to the
unreliable read-after-write behavior in current hardware implemen-
tation of MRT (e.g. multiple transparent fragments written to the
same pixel in a single rendering pass), the performance of our algo-
rithm degrades slightly. However, our algorithm guarantees correct
final transparency rendering even under this uncertainty.
Our algorithm is easy to implement, and provides significant

speed improvement for rendering order-independent transparency
in real-time applications.

1.1 Background

Since the conceptual introduction of alpha compositing by [Porter
and Duff 1984], transparent objects has become an indispensable
component for real-time graphics for either native transparency
[Kelley et al. 1994; Diefenbach and Badler 1997; Akenine-Moller
and Haines 2002] or volumetric effects [Weiler et al. 2002]. The
major challenge for rendering transparency is that, unlike opaque
objects which only the front-most one matters (a minimum-finding

problem), correct rendering of transparent objects requires sorting
in order to achieve the correct compositing effect; unfortunately,
efficient sorting is difficult to implement on SIMD graphics hard-
ware.
One simple method is to require applications to perform sorting.

However, this can be time consuming and tedious, since the sort-
ing needs to be done every time the view point or scene geometry
change. In particular, application sorting could not take advantage
of the massive computation power of z-buffer graphics hardware.
There exists a variety of techniques that exploits commodity

graphics hardware for sorting transparency without requiring any
hardware modifications. Among these techniques, depth peeling
[Everitt 2001; Mammen 1989] has attracted significant interests due
to its simplicity and robustness. The technique requires O(N) ren-
dering passes to render order-independent transparency with depth
complexity N. Each render pass requires pass downing all the

transparent geometry, with a resulting total time complexity O(N2).
[Wexler et al. 2005] improves the time complexity of depth peeling
from quadratic to linear, but requires the application to sort scene
objects into depth batches.
A variety of techniques have been proposed to avoid sending

geometry multiple times by re-circulating [Wittenbrink 2001] or
delaying [Aila et al. 2003] transparent fragments. However, these
techniques require adding features not available in current genera-
tion commodity graphics hardware.

1.2 Our Contribution

Our major contribution is the core concept allowing multiple con-
current and independent depth peelings via a simple insertion sort
performed in fragment program. In particular, our algorithm guar-
antees correct result even under the unreliable concurrent read-
after-write behavior in current graphics hardware. Despite the pop-
ularity of depth peeling, so far it has been restricted to peeling only
one layer per rendering pass; to our knowledge, we are the first
to allow parallel, multi-layer depth peeling with guaranteed correct
result.
We believe our algorithm provides immediate benefit for inter-

active and real-time applications community.

2 Algorithm

Since our algorithm extends from depth peeling [Everitt 2001], for
clarity, we begin with a brief summary of [Everitt 2001]. We then
describe our extensions and improvements. For clarity, we summa-
rize our algorithm in Table 1 with a simple example illustrated in
Figure 1.

2.1 Brief Review of Depth Peeling

Essentially, depth peeling renders transparent fragments in the cor-
rect order similar to selection sort. The algorithm employs multi-

pass rendering, and within ith pass the ith layer (nearest to the eye)
is selected and rendered. The selection is controlled by proper z-
range culling; specifically at each rendering pass the depth value of
the recently rendered layer is recorded, preventing already rendered



fragments from being rendered again in the next pass. The peeling
process stops until no more transparent fragments are rendered (this
can be determined by occlusion query [Craighead 2002]). [Everitt
2001] provides more detailed implementation and extensions of
depth peeling on GPU, but in general the algorithm needs O(N)
rendering passes where N is the number of layers of transparent
fragments in the scene. Each pass requires a complete geometric
transformation and rasterization of all transparent polygons.

2.2 Our Approach

The major disadvantage of depth peeling is the need for O(N) ren-
dering passes; in particular, each pass would require an occlusion
query, which needs to wait for pipeline flushing.
In our approach, we provide a simple acceleration that reduces

the required number of rendering passes up to a constant number
M; even though this does not reduce the asymptotic time complex-
ity of the algorithm, our approach does reduce the actual computa-
tion time significantly for real scenes. Our speed factor M depends
on the frame-buffer color precision and number of MRT (multiple-
render-target) used; in particular,M == 8 when using 4 MRT with
RGBA8 color precision, providing 8× speedup for transparency
rendering, which is significant for real-time applications like gam-
ing.
Our algorithm achieves at this speedup at the expense of several

color+depth MRT buffers. Basically, we peel M transparent layers

in one pass, storing color+depth for the ith layer in MRT bucket
i. (Each pass requires an occlusion query similar to [Everitt 2001].)
SinceM is a constant, we can achieve this via a simple insertion sort
inside our fragment program. Assuming no concurrent read/write
hazards, our algorithm would perfectly peelM layers per rendering
pass. However, since this may not happen (see Figure 1 for ex-
amples), we might need multiple passes to correctly to peel off the
current M layers. Fortunately, assuming that a fragment writes to
MRT buffers are atomic (i.e. a fragment write to multiple buffers
either all succeed or all fail), our algorithm is guaranteed to produce
at least one more correct element per pass, so it will (1) terminate
and (2) produce a final correct result.

After the current M layers are peeled, we composite the color
results from the M MRT, and update the z-near buffer so that we
could perform proper z-range culling to process the next M layers.
Below, we describe our algorithm in detail, as summarized in

Table 1. A simple example is also illustrated in Figure 1. The
algorithm presented below operates per frame.

Initialization Similar to depth peeling [Everitt 2001], we first ren-
der opaque objects into the color and z-far buffers. In addition, we
clear the value of the z-near buffer to some minimum value. The
z-near and z-far buffers define the proper z-range for the current ac-
tive M transparent layers; specifically, fragments outside this range
are culled away.

MRT Buffer Encoding GivenMrt MRT buffers with Bm bytes per
pixel, we could store M buckets worth of color (with Bc bytes) and
depth (with Bd bytes) values:

M =
Mrt ×Bm

Bc+Bd
(1)

For example, given Mrt = 4 MRT with Bm = 16 bytes per pixel
(4×FP32), we can encode M = 16 buckets of Bd = 4 FP32 depth
values, orM = 8 buckets of Bc = 4 RGBA8 color plus Bd = 4 FP32
depth values.
In our current implementation, we utilize M = 8 with Mrt = 4,

Bm = 16, Bc = 4, and Bd = 4, but these numbers can be changed
based on specific application needs and available hardware re-
sources.

Initialization
render all opaque objects into color and z-far buffers
z-near buffer← z-min

Transparency Rendering

done_entire_scene← false
while(not done_entire_scene)
done_entire_scene← true
done_peeling← false
clear MRT buffers
while(not done_peeling)
begin-occlusion-query
depth peeling all transparent geometry
// culled via z-near and z-far buffers
// first M non-culled layers sorted in pixel shader
end-occlusion-query
done_peeling← get-occlusion-query == 0
if(not done_peeling) done_entire_scene← false

end while
composite M MRT results into color buffer
z-near buffer← z values from the last MRT

end while

Table 1: Pseudocode of our algorithm. M is the maximum number of
simultaneous depth peelings allowed by the color precision and number of

MRT buffers used. The entire process is repeated for each frame.

Transparency Rendering We now render the transparent objects
and composite them in the correct order (front-to-back), regardless
of their actual sequence of arrival. We achieve this by simultane-
ously peeling the front-most M active transparent layers by inser-
tion sort in our fragment program, which writes the color and depth

values of the ith layer into the ith MRT bucket.
Due to the concurrent read/write hazards as illustrated in Fig-

ure 1, our algorithm may require multiple passes to correctly ren-
der the currentM layers. Assuming that fragment writes to multiple
MRT are atomic (i.e. all succeed or all fail), then it can be easily
shown that our algorithm will produce at least one more correct
result per pass; as a result, our algorithm takes at most M passes
(reducing to traditional depth peeling) and more importantly, the
result is guaranteed to be correct.
Note that if the atomic write assumption fails, our algorithm

might fall into an infinite loop, as illustrated in Figure 2. How-
ever, since we have never experienced such race condition during
our extensive experiments, we believe our atomic commitment as-
sumption holds true on real hardware.
After finish peeling the current M active voxels, we composite

the results in the M MRT buckets into the final color/depth frame-
buffers. We then update z-near buffer from the farthest MRT buffer,
so that later on we will not touch layers already rendered. We iterate
this process until the entire scene is rendered.

3 Implementation Details

We now describe further implementation details that are essential
for achieving full efficiency and quality of our algorithm.

3.1 Stop criteria

As shown in Table 1, our algorithm requires two stop criteria, cor-
responding to the peeling of active layers (inner while loop via
variable done_peeling) and the termination of the entire algorithm
(outer while loop via variable done_entire_scene).
The termination of the inner loop can be easily determined via

occlusion query similar to [Everitt 2001]; specifically, when no



8

layer 1−4

1 & 2 2

2 44

3 2 3 4

5 2 3 4 5

1 2 3 41

layer 5−8 1 2 3 4

1 2 3 45 & 8 & 7 7

2 wins

7 wins

6

5 & 8

5

1

1

1

2

2

2

3

3

3

4

4

4

76

76 8

5 6 87

8 wins

final 1 2 3 4 5 6 7

Figure 1: A simple example illustration of our algorithm. Time progresses
from top to bottom. Here we are allowed M = 4 con-current depth peelings.

Notice the possibility of concurrent fragment read/write as illustrated.

infinite loop

layer 1−4

1

1 33

5 1 3 5

1 3 5

1 3 3 5

1 3 5 7

1

7 7

2&4&6&8 4 wins at layer 1&2
2 wins at layer 3&4

7

Figure 2: A simple example illustration potential race condition. This
illustration is similar to Figure 1, except that due to the possibility of non-

atomic write (where both fragment 2 and 4 commits half of their target), the

algorithm might run into a cycle. Note that in this example we assume the

duplicated fragment 3 is cleaned out by the fragment program; if not, the

final result will be incorrect.

more transparent fragments are rendered in the current depth peel-
ing pass, it signals that we have completed processing the current
M active layers and are ready to move on to process layers further
away.

The termination of the outer loop is trickier. Essentially, we can
stop the algorithm when no transparent fragments exist within the
current z-range defined by z-near and z-far buffers. Intuitively, this
situation happens if and only if the GPU renders zero fragments af-
ter the last MRT compositing and z-near updating (as shown in the
last steps in Table 1). This fact can be determined through the oc-
clusion query already performed for the inner loop, as shown in the
assignment of the done_entire_scene variable. In particular, once
the entire scene is rendered, we will need only one more occlusion
query to quit the entire process.

3.2 Fragment program

Since current FBO does not support multiple z-buffers, we simply
disable all z testing and instead simulate z comparison in our frag-
ment program, as shown in Table 2. Specifically, we write fragment

z values as 32-bit floating point color values into MRT, and perform
z-comparison by reading back the stored z-values inside our frag-
ment program.

Table 2: Our fragment shader in HLSL.

4 Results

Here we discuss our quality and performance results; all render-
ing and timing measurements shown below are performed on a
NVIDIA Geforce 6800 card.

Ground truth verification with depth peeling

We have performed a variety of directed and random tests to en-
sure that our algorithm indeed produces identical results with re-
spect to [Everitt 2001], which we consider as ground truth. Our



Figure 3: Comparison with ground truth. The first 5 images demonstrate
directed tests via objects with different geometry/topology, while the bottom-

right image demonstrates random test.

tests cover a variety of objects with different shape and complexity,
mixed and arranged under different numbers and configurations,
and viewed from different angles. Screen shots of a small subset of
our tests are demonstrated in Figure 3. In all these tests, we have
verified that our algorithm produces identical results with respect to
the ground truth, indicating that our atomic write assumption might
indeed hold true in real graphics chips.

Transparency rendering with real scenes

Figure 4 demonstrates transparency rendering for a variety of
real scenes. In all these cases, our algorithm produces identical im-
ages with [Everitt 2001]. In addition, our algorithm achieves faster
performance especially for scenes with greater depth complexity of
transparent geometry.

5 Conclusions and Future Work

We have presented an algorithm for depth peeling multiple layers
of transparent pixels per rendering pass at the expense of multiple
MRT buffers. Our core innovation is sorting multiple transparent
layers via GPU fragment program, and the robustness of our al-
gorithm under unreliable concurrent read/write hazards in current
generation graphics chips. Despite the simplicity of our algorithm,
it provides practical benefit for speeding up transparency render-
ing. In addition, the approach is easy to integrate with application
pipelines as we require neither hardware modification nor applica-
tion sorting of transparent geometry.
Currently, the speed of our algorithm degrades by the unreliable

concurrent read/write in MRT. If future graphics hardware guaran-
tees correct such read-after-write behaviors, the speed of our al-
gorithm will be automatically and significantly improved. Unfortu-
nately, since the future trend for GPU is wider and deeper pipelines,
supporting this feature would incur significant performance cost.
As a result, we envision alternative future hardware modification,
instead of depth-peeling, a more viable approach for supporting
order-independent transparency.

References

AILA, T., MIETTINEN, V., AND NORDLUND, P. 2003. Delay streams for graphics

hardware. ACM Trans. Graph. 22, 3, 792–800.

AKELEY, K. 1993. Reality engine graphics. In SIGGRAPH ’93: Proceedings of the

20th annual conference on Computer graphics and interactive techniques, 109–

116.

AKENINE-MOLLER, T., AND HAINES, E. 2002. Real-Time Rendering (2nd Edition).

AK Peters.

grass tree

villy stpaul

Scene # poly # depth our (fps) [Everitt 2001] (fps)

grass 384 20 2.11 1.09

tree 384 20 2.23 1.18

villy 15472 31 4.51 2.62

stpaul 14780 23 4.72 3.15

Figure 4: Transparency rendering for a variety of real scenes. # poly
indicates the number of scene polygons, and # depth measures the maximum

number of transparent layers.

CARPENTER, L. 1984. The a -buffer, an antialiased hidden surface method. In SIG-

GRAPH ’84: Proceedings of the 11th annual conference on Computer graphics

and interactive techniques, 103–108.

CRAIGHEAD, M., 2002. Nv_occlusion_query. http://oss.sgi.com/

projects/ogl-sample/registry/NV/occlusion_query.txt.

DIEFENBACH, P. J., AND BADLER, N. I. 1997. Multi-pass pipeline rendering: realism

for dynamic environments. In SI3D ’97: Proceedings of the 1997 symposium on

Interactive 3D graphics, 59–ff.

EVERITT, C. 2001. Interactive order-independent transparency. Tech. rep., NVIDIA

Corporation.

KELLEY, M., GOULD, K., PEASE, B., WINNER, S., AND YEN, A. 1994. Hardware

accelerated rendering of csg and transparency. In SIGGRAPH ’94: Proceedings

of the 21st annual conference on Computer graphics and interactive techniques,

177–184.

MAMMEN, A. 1989. Transparency and antialiasing algorithms implemented with the

virtual pixel maps technique. IEEE Comput. Graph. Appl. 9, 4, 43–55.

PORTER, T., AND DUFF, T. 1984. Compositing digital images. In SIGGRAPH ’84:

Proceedings of the 11th annual conference on Computer graphics and interactive

techniques, 253–259.

WEILER, M., KRAUS, M., AND ERTL, T. 2002. Hardware-based view-independent

cell projection. In VVS ’02: Proceedings of the 2002 IEEE symposium on Volume

visualization and graphics, 13–22.

WEXLER, D., GRITZ, L., ENDERTON, E., AND RICE, J. 2005. Gpu-accelerated

high-quality hidden surface removal. In HWWS ’05: Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, 7–14.

WITTENBRINK, C. M. 2001. R-buffer: a pointerless a-buffer hardware architecture.

In HWWS ’01: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop

on Graphics hardware, 73–80.


