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Multi-Layer Feature Selection Incorporating Weighted
Score-Based Expert Knowledge toward Modeling Materials
with Targeted Properties

Yue Liu, Jun-Ming Wu, Maxim Avdeev, and Si-Qi Shi*

Selecting proper descriptors or features is one of the central problems in

exploring structure–activity relationships of materials using machine learning

models. The current feature selection algorithms usually require tedious

hyperparameter tuning and do not actively consider the prior knowledge of

domain experts about the features. Here, this work proposes a data-driven

multi-layer feature selection method incorporating domain expert knowledge

named DML-FSdek, which is automated, with users entering training data

without manual tuning of the hyperparameters. The domain expert

knowledge is quantified by means of weighted scoring and integrated into the

selection process to eliminate the risk of crucial features being removed. The

test studies on ten material properties datasets demonstrate the potential of

the approach to automatically search for a reduced feature set with lower root

mean square errors than those for the initial feature set. Essentially, the most

relevant material features, the number of which is much smaller than that in

the original feature set, are automatically selected to establish a closer and

more accurate structure–activity relationship for the materials of interest. As a

result, the method represents the targeted properties of materials with a

smaller and more interpretable set of features while ensuring equal or better

prediction accuracy.

1. Introduction

Machine learning (ML) is rapidly gaining popularity as an ap-
proach to accelerate the design and development of advanced
materials. It has been used for material properties prediction
and optimization,[1–3]new materials discovery,[4] improvement of
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parameters for computational studies,[5]

and has proved its efficiency and accuracy.
The universal procedure of ML in material
properties prediction is schematically illus-
trated in Figure 1. The representations of
a material dataset, called “descriptors” or
“features,” not only uniquely define each
material in the input dataset but also corre-
late with its target properties.[6–8] One of the
critical aspects of constructing a machine
learning model is to select appropriate de-
scriptors to reflect material properties.[9]

Ideally, only the relevant features are picked
and redundant and irrelevant features are
discarded as they reduce the prediction per-
formance of the ML model and increase
computational complexity.
For instance, in ion conductivity predic-

tion of lithium battery materials,[10] crystal
enthalpy does not correlate with ion con-
ductivity and thus should be regarded as
irrelevant attribute for an ML model. A
more complicated example is lattice con-
stant prediction.[11] When three features
such as composition, average coordination
number, and atomic valence are present in

the original feature set simultaneously, all of them strongly corre-
late with the target property, that is, lattice constant. However, it
is also known that the average coordination number can be pre-
dicted for a given composition via the known atomic radii and
valence. In this case, the average coordination number can be
eliminated as a redundant attribute. In summary, in predicting
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Figure 1. The procedure of combining machine learning with feature selection (FS) in materials properties prediction. FS removes redundant and
irrelevant information present in the original dataset, reduces computational cost and the risk of overfitting for the prediction model, and improves its
prediction accuracy.

material properties, complex and unclear correlations exist not
only between the features and target properties but also among
features themselves and it is essential to identify and eliminate
the irrelevant and redundant features and retain only the repre-
sentative features of the original feature set.
Feature selection (FS) is one of themost important steps in the

machine learning process for constructing quantitative structure-
activity relationships,[12–14] as identification and ranking of the
most relevant features greatly affect the computational speed and
predictive ability and interpretability of the model.[12,15] Recently,
in the machine learning study of the thermodynamic stability
of perovskite oxides, Morgan et al. applied three different FS
methods, that is, stability selection, recursive feature elimination,
and univariate feature selection based on mutual information.[16]

Based on the basic principles of these algorithms, we will re-
fer them in this work as Wrapper, Embedded, and Filter meth-
ods, respectively. By applying these methods, the authors were
able to reduce the initial 791 features to 70 and construct an ML
model without significant overfitting. In order to avoid overfit-
ting, Zhang et al.[17] employed L1 (Wrapper) method for feature
selection before model training. After a series of parameter ad-
justment and model selection, the model with good generaliza-
tion performance was achieved.
In summary, many researchers in the field of computational

materials science have begun to adopt a variety of FS algorithms
to quantify the relevance of material descriptors to the proper-
ties of interest. Nevertheless, given the diversity of the available
FS methods, domain experts usually face a problem of choos-
ing the appropriate methods. Additionally, even if a FS method
that is suitable for handling a certain type of domain problem
is determined, the hyperparameters and strategies involved re-
quire manual setting and adjustment, which is usually time-

consuming and labor-intensive. For example, for the filter meth-
ods, users usually manually define the number of selected fea-
tures and the filtering threshold, thewrappermethods needman-
ual input of the subset search strategy to generate a candidate
feature subset. The embedded methods employ the machine-
learning algorithms, such as Lasso and gradient boosting regres-
sion (GBR), to measure importance of the features, in which
the hyperparameters of the algorithm (e.g., the number and
max-depth of decision trees in GBR) also need to be manually
searched and optimized to achieve better performance. Conse-
quently, domain experts may face difficulties in selecting easy-
to-use but accurate methods, as parameter adjustment requires
practical experience in using machine learning. On the opposite
side, the prior knowledge of domain experts on the importance
or relevance of the features is typically ignored in the FS process,
even though domain experts may know in advance which fea-
tures are more important, which leads to the reduction of the
model development efficiency and its predictive ability.
Although such information can be introduced into some ma-

chine learning models such as support vector machines (SVMs)
to indirectly help select features,[18] in general domain experts’
prior knowledge is rarely incorporated into the selection proce-
dure of material features. Therefore, it would be very useful to
develop an automatic feature selection approach combining with
domain expert knowledge.
Herein, we propose a multi-layer approach utilizing the in-

trinsic characteristics of data to evaluate the importance of fea-
tures from different perspectives to eliminate the irrelevant and
redundant features from the original training set. The whole pro-
cess is automated and does not require the user to have experi-
ence in feature selection. Moreover, the integration of domain
expertise prevents key features from being ignored. In Table 1,
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Table 1. The comparison of the filter, wrapper, embedded, and our
approach.

Items The filter The wrapper
or embedded

Our
approach

Processing speed Slow Fast Slow

Prediction accuracy Low High High

Incorporates domain

expert knowledge

No No Yes

Requires setting

parameters/Automated

Yes/No Yes/No No/Yes

Figure 2. The flow chart of the filter.

we compare the filter, wrapper, and embedded methods and our
approach. As we demonstrate below, our method has advantages
except for slow processing speed, that can be mitigated in the fu-
ture through parallelization. The results discussed below in de-
tail indicate that the proposed method can successfully replace
time-consuming trial-and-error process of model hyperparame-
ters and provide equal or better prediction performance with a
smaller in size and interpretable feature set.
The remainder of the paper is structured as follows: Section

2 briefly reviews the existing feature selection methods (Filter,
Wrapper, and Embedded) and their working principles. Section 3
describes the details of themethod proposed in this work. Section
4 demonstrates the effectiveness and feasibility of the method
for ten material property datasets. Finally, the conclusions of this
study are given in Section 5.

2. Preliminaries

The overall goal of feature selection (FS) is to identify a subset
of features that contains the most representative information on
the properties of interest in the original data. In recent years, the
feature selection (FS) process has attracted widespread attention
due to its importance for further analysis and understanding the
data. Thus, several approaches have been presented, which can
be generally grouped into three categories: filter methods, wrap-
per methods, and embedded methods.[19]

Figure 2 presents the working procedure of the filters. Filter
methods[20,21] attempt to use evaluation criteria based on statisti-
cal theory and information theory such as distance function,[22]

statistical correlation coefficient,[23] mutual information,[24] etc.,

Figure 3. The flow chart of the wrapper.

to assess the relevance of the features and rank them according
to their importance. Then the features with high scores are used
in the ML model. The advantages of the filter approach are its
simplicity and efficiency. Nevertheless, a common disadvantage
is that selection process is decoupled from the classifier used to
further build the predictor and ignores the effects of a selected
feature subset on the performance of the ML model that in gen-
eral leads to its lower prediction accuracy.[25]

In contrast to the filter approach, wrapper methods[25,26] use
the prediction performance of a machine-learning model (e.g.,
support vector machine (SVM), neural network (NN)) as criteria
to evaluate the quality of the candidate feature subset. The work-
flow of wrappers is schematically illustrated in Figure 3. First,
the wrapper generates an initial candidate feature subset based
on the predefined search strategies, such as sequential backward
selection, sequential forward selection, sequential forward float-
ing selection, or sequential backward floating selection, and then
aMLmodel is trained and tested to estimate the candidate feature
subset. This process is performed iteratively until the selected
feature subset meets the specified requirement. The better re-
sults and higher prediction accuracy of the wrappers are achieved
at the cost of computational time and complexity.
Embedded methods[27,28] utilize types of ML models, such as

linear model (Linear, Lasso, or Ridge regression), support vector
machine (SVM) and random forest, to guide the feature selection
process and define a criterion depending on a class of regression
or classification function.
In general, filter methods are faster than the wrapper and em-

bedded methods in terms of processing speed but produce in-
ferior results because they are independent of the specific ML
algorithms.

3. The Principles of the Proposed DML-FSdek
Method

To our knowledge,many non-machine learning experts often rely
on either a tedious trial-and-error process or personal biased ex-
perience in choosing feature selection (FS) methods. Moreover,
current FS algorithms tend to ignore the prior knowledge of do-
main experts about what features are more relevant which may
lead to removal of some crucial features. Hence, we develop a
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Figure 4. The framework of our proposed approach.

novel multi-layer feature selection method, DML-FSdek, that in-
corporates domain expert knowledge.
The overall framework of our approach is illustrated in

Figure 4. First, based on the domain expert knowledge applied to
the initial features in the material database, an a priori model of
feature relevance is constructed and used to drive the process of
DML-FSdek. Then, in DML-FSdek, the problems of sparsity, irrel-
evance, and redundancy of the input data can be hierarchically
addressed by three corresponding processing layers, which ul-
timately ensures that selected features are highly differentiated
and highly correlated with the target attributes. To sum up, the
key idea behind DML-FSdek is that statistical analysis method
and information theory (see Section 3.1.1) are employed to an-
alyze the relationship between features and target attributes to
remove the most interrelated (redundant) features or the least
relevant to the target attributes. Further, in feature subset evalu-
ation (see Section 3.1.2), each layer generates an initial subset of
features (candidate feature subset) using a default initial filtering
threshold 𝜀, and then constructs a specific ML model to evalu-
ate the subset. If it is better than the previous subset of features,
then the threshold is adaptively updated and a new subset of the
features generated. This whole process is iteratively performed
until a subset of features that meets the specific requirements is
found. Finally, the best subset of features is picked considering
domain expert knowledge and used for subsequent prediction of
material properties.
The design of the DML-FSdek three-layer structure, quantita-

tive representation of domain expert knowledge, and strategies
to combine them are covered in the following subsections.

3.1. Data-Driven Multi-Layer Feature Selection

3.1.1. The Trigger Conditions Design for DML-FSdek Layers

The proposed DML-FSdek includes the three processing layers:
sparsity evaluation, correlation evaluation, and redundancy eval-
uation, which analyze the importance of features from differ-

ent perspectives depending on the characteristics of the data.
Thus, the trigger conditions for DML-FSdek layers are designed as
follows.

Multi_Layer(X)

=

⎧⎪⎨⎪⎩

Layer1(X), if ∃xi ∈ X and xi. sparsity <= 𝜀

Layer2(X), if ∃xi ∈ X and xi. correlation <= 𝜑

Layer3(X), if ∃xi ∈ X and xi. redundancy >= 𝛾

(1)

whereX indicates the input features, xi indicates the i
th feature. 𝜀,

𝜑, 𝛾 are the sparsity threshold, correlation threshold, and redun-
dancy threshold, respectively. Layer1(X), Layer2(X), andLayer3(X)
will be defined in the following Equations (2), (3), and (9), respec-
tively. In the first layer (Layer1(X)), in order to address the prob-
lem of sparsity in discrete and continuous variables, numerical
statistical (NS) method and variance score (VS) are adopted for
preprocessing. For a continuous variable, if its variance is close
to zero, it indicates that the variable fluctuates in a small range
and thus its correlation with the target attribute cannot be pre-
cisely assessed and the variable should be ignored. Similarly, if
the fraction of a certain value of a discrete variable exceeds 95%
of the total number of samples, this also implies that the discrete
variable is sparse and can be disregarded. Thus, in this layer, the
numerical type of each feature is first determined and then cor-
responding evaluation criteria are used to calculate the sparsity
value. In summary, if the sparsity value of features meets the
sparsity threshold, the feature will be discarded, otherwise, re-
tained. The calculation of NS and VS of each feature is defined
as follows:

Layer1(X) = Sparsity(xi)

=

⎧⎪⎪⎨⎪⎪⎩

NS(xi) =
1

n

n∑
i=1

xi, if xi.type = bool

VS(xi) =
1

n − 1

n∑
i=1

(xi − xi)
2
, otherwise

(2)
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where n represents the total number of samples, xi denotes the
ith eigenvector, and xi represents the mean value of the ith eigen-
value.
After the sparse features are removed, the second layer

(Layer2(X)) is used to eliminate irrelevant features only weakly
correlated to the target attribute. The Mutual information (MI)
and Pearson correlation coefficient (PCC) are chosen to measure
the correlation between the features themselves and between the
features and target attributes, respectively. From Equation (3), it
follows that the corresponding correlation evaluation methods
are selected according to different trigger conditions. If the num-
ber n of samples is less than or equal to k1 and the target attribute
y is discrete, the MI is used to calculate the correlation value, oth-
erwise, the PCC. Finally, if the correlation between the features
and attributes is lower than the correlation threshold, the feature
will be discarded, otherwise, retained.

Layer2(X ) = Correlation(xi, y)

=

{
MI(xi, y), if n<= k1 or y.type = bool

|PCC(xi, y)|, otherwise
(3)

PCC(X, Y) =
Cov(X, Y)√

Var(X)
√
Var(Y)

(4)

where xi is the i
th feature, y is the target attribute, n is the amount

of training data, k1 is the threshold of data size, Cov() is the co-
variance and Var() is the variance.

H(Y) = −

∑
y

p(y) log (p(y)) (5)

H(Y|X) = −

∑
X

∑
Y

p(x, y) log (p(y|x)) (6)

MI(Y,X) = H(Y) −H(Y|X) (7)

In Equation (3), MI evaluates howmuch information each fea-
ture can provide. Equations (4)–(6) are the steps for calculating
MI. Equation (5) calculates the uncertainty (information content)
in all classes Y. Equation (6) implies that by observing a variable X,
the uncertainty in the output Y is reduced. The decrease in uncer-
tainty is given as Equation (7). That gives themutual information
(MI) between Y and X meaning that if X and Y are independent
then MI is going to be zero, otherwise they are interdependent.
Similarly, PCC measures the correlation between two variables
as defined in Equation (4).
The irrelevant features are eliminated in the Layer2, thus there

is strong correlation between the remaining features and target
attributes. However, in the subset of features obtained, some of
the featuresmay still be correlatedwith the other features.Hence,
in the third layer (Layer3(X)), DCC (Distance correlation coeffi-
cient calculated by Equation (8)) and PCC are used to evaluate
the redundancy among features. As shown in Equation (9), if the
number n of samples is less than or equal to k1 or the number
d for the features is less than or equal to k2, the DCC is used
to calculate the correlation coefficient (redundancy) among fea-
tures, otherwise, the PCC is calculated. If the redundancy value
is greater than the redundancy filtering threshold, one of the two

features will be removed, otherwise, the two features will be both
retained.

DCC(u, v) =

∧

dCov(u, v)√
∧

dVar(u, u)
∧

dVar(v, v)

(8)

where
∧

dCov() is distance covariance and
∧

dVar() is distance vari-
ance.

Layer3(X) = Redundancy(xi, xj)

=

{
DCC(xi, xj), if n ≤ k1 or d ≤ k2

|PCC(xi, xj)|, otherwise
(9)

3.1.2. Feature Subset Evaluation Based on Machine Learning Model

Themerits of the feature subsets obtained in each layer are evalu-
ated by testing them in ML model and only the best set is passed
onto the next layers. Figure 5 presents the procedure of feature
subset evaluation. First, a candidate feature subset is generated;
next, the subset evaluation step is performed, which estimates the
quality of the current feature set. In this step, the learning model
is determined by the user according to specific learning prob-
lems, such as support vector machines (SVMs), neural network
(NN), decision tree, etc. In addition, evaluation criteria are also
adaptively chosen based on different learning problems, such as
root mean square error (RMSE), mean absolute percentage error
(MAPE), etc. These steps are performed iteratively, until a stop-
ping criterion is met, which happens either when the results be-
gin to deteriorate or the number of features reaches a predeter-
mined threshold.

3.2. The Weighted Scoring for Domain Expert Knowledge

When the DML-FSdek is applied for machine learning in practice,
the importance of the features depends, among other things, on
the domain knowledge of the user. We quantify that aspect by the
score s that includes the importance score (weight) of the feature
given by the user and rating weight of the user himself. The im-
portance score (weight) su, sp of the feature given by the user is
described by

su, sp =

⎧
⎪⎨⎪⎩

0

0.5

1

(10)

where su represents the current user, sp represents experienced
user, su, sp = 0 indicates that the user thinks the feature is not
important, su, sp = 0.5 indicates that the user is uncertain about
the importance of the feature, and su, sp = 1 indicates that the
user considers the feature is crucial. The rating weight d of the
user is described by

d =

⎧
⎪⎨⎪⎩

1

1.5

2

(11)
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Figure 5. Evaluation procedure for the candidate feature subset of materials.

where d = 2 indicates that the user is a material expert, d = 1.5
indicates that the user is a computer expert, and d = 1 indicates
that the user is neither a material expert nor a computer expert.
The rating weight is determined according to the users’ exper-
tise in the problem domain. The higher the weight is, the more
significant the suggestion of this user is. For example, for a prob-
lem in the material domain, the material experts have the most
abundant domain knowledge and experience, their judgments
are the most authoritative, and thus the weight d is given the
higher value of 2. For a computer expert, whomay also have some
background in material science with the rapid development of
machine learning inmaterials discovery andmaterials properties
prediction, consequently, the weight d is given to 1.5. Finally, for
the users who are neither material experts nor computer experts,
the judgment may not be well founded and thus the weight d is
given to 1.
When analyzing data using our method, any kind of human

expert can theoretically participate. However, in order to ob-
tain good prediction results, a great deal of domain expertise
with high professional level should be acquired. The greater the
amount of domain expert knowledge is and the higher the pro-
fessional level is, the more suitable it is to obtain good results.

3.3. Collaborative Feature Selection between DML-FS and
Domain Expert Knowledge

When we perform the feature selection procedure utilizing the
proposed DML-FS layers, the importance score sa of each feature
can be described as follows:

sa =

{
0

1
(12)

where 0 means removing the feature and 1 means retaining the
feature. This means that when the DML-FS layer considers that

a feature has little or no effect on the result, the feature is scored
as 0, otherwise, the feature is scored as 1.
On the other hand, based on the presentation of domain expert

knowledge proposed above, the expert experience score s for each
feature can be described quantitatively as follows:

s = su ∗

√
1 −

c2(m − n)2

c1m
2

+

∑
sp ∗ d∑
d

∗

⎛⎜⎜⎝
1 −

√
1 −

c2(m − n)2

c1m
2

⎞⎟⎟⎠
(13)

Where m is the total number of people who had scored the fea-
ture, n is the number of people who gave the feature the same

score as the current user in the m people and
∑
sp∗d∑
d
is the histor-

ical users’ score which is the weighted average of the scores of
all historical users. The current user’s score su is given a weight√
1 −

c2(m−n)2

c1m
2

and the historical users′ score is given another

weight (1 −

√
1 −

c2(m−n)2

c1m
2
), where c1 and c2 are unknown con-

stants and c1 ≤ c2. The specific values of c1 and c2 can be de-
termined based on experimental data and experts’ experience to
distinguish the credibility of current user’ score from historical
users’ scores. Here, we consider that the parameters c1 and c2 are
set to 9 and 8, respectively, because in the expert experience score
s, the weight of the current user’ score (less than 1/2) should be
less than theweight of the historical users’ scores (more than 1/2)
(the minority is subordinate to the majority). Therefore, we can
see from the Equation 13 that the range of s is between 0 and 1.

Using the weight

√
1 −

c2(m−n)2

c1m
2
, we canmeasure the credibility of

historical users’ scores. When n is unchanged and m increases,
the weight of the current user’ score will become smaller, but the
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degree of reduction will be reduced. This ensures the dominance
of the current user. However, when m does not change and n be-
comes smaller, the weight of the current user’ score will decrease,
and the degree of reduction will increase. This reflects the trust-
worthiness of historical users.
Finally, we embed the domain expert knowledge into the three

DML-FS layers. We define the comprehensive importance score
of the feature (FCIS) as follows:

FCIS = sa + s (14)

where sa represents the feature importance score obtained
through DML-FS layer, s represents the experience score which
is rated by domain experts. Therefore, if FCIS of the feature is
greater than 0.5, the feature would be retained, removed other-
wise. The FCIS contains the following six core ideas:

1) The current user′s experience, historical users′ experience,
and the result of the DML-FS layer are needed to jointly de-
termine whether to remove the feature;

2) The expert experience score considers the expert’s domain is-
sues and establishes weights to divide the differences in each
field, which can improve the credibility of the scores;

3) The weighted sum of the current user’s score and the histori-
cal users’ score is 1, which can integrate the experience of the
current user with the experience of the historical user;

4) The DML-FS layers result in the fact that the feature should
be retained, and the feature will be retained;

5) The current user and historical users consider that the feature
is very important, then the feature will not be removed;

6) The current user believes that this feature is unrelated, how-
ever, based on the experiences of historical users, this feature
has the potential to be retained.

4. Experimental Section

In this section, we evaluate our proposed method on ten mate-
rial properties datasets. We first introduce the datasets. Then we
introduce the parameter setups of the experiments. Finally, we
provide the analysis and discussions of experimental results.

4.1. Experimental Datasets

In order to validate the performance of the proposed method,
this paper collected ten groups of material properties data sets
from the published references or online resources. The brief in-
formation on the data sets is shown in Table 2, which involves the
macro and micro properties of materials. Since all ten datasets
have been publicly released, the authenticity and reliability of
the data can be guaranteed. Moreover, the ten datasets also cover
various sizes and dimensions of samples, which can sufficiently
verify the adaptability of the method in different data scenarios.
Datasets 1, 2, 7, 8, and 9 have a small amount of data and a
low dimension. The dimension of dataset 3 is also relatively low,
but the amount of data is relatively large. The original feature

Table 2. Statistics of the material datasets with targeted properties. N is
the number of examples, F is the number of material descriptors, TP is
the targeted properties of materials.

Datasets N F TP

1[10] 128 6 The ionic conductivity of Lithium

superionic conductors

2[11] 161 6 Lattice constant

3[29] 1302 5 Crystal enthalpy

4[30] 5619 47 The density of organic materials

5[30] 669 18 The viscosity of organic material

6[31] 77 27 Creep fracture life of Ni-based single

crystal superalloy

7[32] 160 5 The ionic conductivity of nanocomposite

solid polymer electrolyte system

8[33] 117 6 The oxide ionic conductivities in ABO3

perovskites

9[34] 136 16 Lattice misfit of Ni-based single crystal

superalloy

10[35] 9 7 The onset temperature (Tg) of GexSe1 − x

glass transition

sets of datasets 1, 2, 3, 6, 8, and 10 are summarized by domain
experts’ experiences, so the space for optimization by feature
selection method is limited. Datasets 4 and 5 have large data vol-
ume and high dimension, and there are many sparse, irrelevant,
and redundant features in the two datasets, which are suitable for
feature selection algorithm testing.

4.2. Experimental Setups

The DML-FSdek is used to perform feature selection experiments
on the collected data sets, in which the subset of features obtained
from each layer serves as the input of the next layer, and sup-
port vector regression (SVR) is employed to evaluate the merit
of the feature set. The details of the process are as follows. In
the first layer, the sparsity filtering threshold is initially set as
0.01, and the threshold is automatically adjusted with until the
prediction accuracy of the model is no longer improved. In the
second layer, the correlation filtering threshold is initially set as
0.4, and the threshold is automatically adjusted until the predic-
tion accuracy of the model is no longer improved. Finally, in the
third layer, the redundancy filtering threshold is initially set as
0.88, and the threshold is automatically adjusted until the predic-
tion accuracy of the model is no longer improved. To evaluate the
generalization performance of the constructed machine learning
model on unseen data and reduce the risk of overfitting, fivefold
cross-validation is used to assess the comprehensive predictive
power of the learning model. In addition, to achieve better pre-
diction performance of the models, some specific search strate-
gies such as random search and grid search, can be used to find
the optimal model parameters from the hyperparameter space.
Herein, grid search is used to optimize the hyperparameters of
the model.
All the algorithms covered in this paper are implemented in

Python and call the scikit-learn toolkit.[36]
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Table 3. Expert scoring table of features for each group of material dataset
(a sample or template).

Domain experts Feature1 Feature2 Feature3 Feature4 … FeatureN

Index Scoring weight

1 2 1 1 1 1 … 1

2 2 1 1 0. 1 … 1

3 1.5 0.5 0.5 1 1 … 1

4 1 0.5 0.5 0.5 1 … 1

5 1 0.5 0.5 1 1 …. 1

6 2 0.5 0.5 1 1 … 0.5

7 2 1 1 1 1 … 1

4.3. Experimental Results and Analysis

Referring to the scoring rules in Section 3.2, we have invited
seven material experts from different fields to score the features
contained in ten groups of datasets, and designed an expert scor-
ing table of features shown in Table 3 for each group of dataset
(which has been uploaded to https://github.com/wujunming1/
material-attribute-datasets). The expert experience score of each
feature on the ten material properties data sets can be calculated
through Equation (13) based on the score records of seven ex-
perts fromdifferent fields, as shown in Figure 6. In order to speed
up the convergence of our model and eliminate the influence of
dimensionality on the prediction accuracy, the Max–Min normal-
ization processing is first performed on all datasets. For compari-
son, we also conducted thematerial properties predictionwithout
employing any feature selection method. For all the ten datasets
support vector regression (SVR) is used as a predictor.RMSE and
MAPE are used to evaluate the prediction accuracy of the model.
The results are listed in Table 4. The prediction accuracies of the
models on data sets 2, 3, and 4 are relatively high, which indicates
that the original features well reflect the distribution of data. The
data sets 1, 2, 3, 7, 8, 9, and 10 have fewer original features and
limited feature selection space. In addition, when the original fea-
ture set is used, the predictive ability of the model on datasets 1,
5, 6, and 8 is relatively poor, and their RMSEs even two orders of
magnitude higher than those for the dataset 3. Therefore, there
is still room for improvement in the prediction accuracy of the
model on the four data sets.
Finally, the results and analysis of the sparsity, correlation, re-

dundancy evaluation on the ten data sets are described and ana-
lyzed in the following subsections.

4.3.1. Results and Analysis of Sparsity Evaluation

Sparsity evaluation is conducted on the original data, and the re-
sults are listed in Table 5. It can be observed that the number of
features of datasets 1, 2, 3, 8, 9, and 10 has no change, indicating
that there are no sparse features in the six data sets. The number
of features of dataset 4 is reduced significantly from the original
47 to 34, among which the thirteen features including Y25, Y26,
Y22, Y21, Y20, Y19, Y16, Y13, Y12, Y11, Y9, Y8, and Y6, are below
the sparsity filtering threshold and thus are eliminated. The num-
ber of features of datasets 5 and 6 is reduced from the original 18

(27) to 17 (25), respectively. Among them, only the feature Y5 in
dataset 5 is screened out because its calculated variance is close
to zero, and only the features Y (mass fraction of the Y element)
and a_2time (The second stage aging treatment time) in dataset
6 are also removed because their sparsity evaluation values do
not meet the threshold requirement. On dataset 7, the number
of features is decreased from a total of five to three, among which
the feature X1 and X2 are eliminated. The feature subset evalua-
tion on the selected features shows that the prediction accuracies
on the datasets 4, 5, 6, and 7 are slightly improved, which indi-
cates that the sparse features have little influence on the predic-
tion accuracy of the model. Furthermore, when the collaborative
selection based on sparsity evaluation layer and domain expert
knowledge is performed on the datasets 4, 5, and 7, the num-
ber of selected features is different from that of DML-FS layer,
which may indicate that some of the features that domain ex-
perts consider to be crucial for systemmodeling are retained. For
instance, for dataset 4, the number of features selected through
the pure DML-FS layer is 34, while the DML-FS with domain ex-
pert knowledge (DML-FSdek) has picked out 38 features in which
four key features including Y25, Y22, Y19, and Y16 that domain
experts consider important are retained (high expert experience
scores, see Figure 6). Moreover, we can observe that the RMSE
for the two selected feature sets (0.0611 and 0.0581) maintain at
the same level. As for dataset 5, the removed feature Y5 is also
retained due to the integration of domain expert knowledge.

4.3.2. Results and Analysis of Correlation Evaluation

The results of the correlation evaluation of the remaining fea-
tures from the first layer are listed in Table 6. As can be seen, no
features on the datasets 2, 6, 8, and 10 are removed, indicating
that there is no irrelevant information in the four datasets. On the
other hand, some of the features are discarded due to the weak
correlation between features and target attribute in the other six
data sets. For dataset 1, the features X3 and X6 are discarded. The
feature Specimen Thickness on dataset 9 is removed. As for the
dataset 3, the feature X5 is removed. And for the dataset 7, the
feature X5 is eliminated. In addition, the number of features is
decreased from 34 (17) to 31 (15) for the datasets 4 and 5, respec-
tively. To be specific, the three features including Y18, Y10, and
Y4 for the dataset 4, are deleted because their correlations with
target property (density of organic materials) are all lower than
the correlation filtering threshold. Moreover, the two features G
and Y23 are also removed for the dataset 5. Finally, compared
with the previous feature subset, the selected features are evalu-
ated via a subset evaluation procedure in this layer, and it can be
concluded that the data sets 1, 3, 4, and 5 reach improvement in
the prediction accuracy, which is mainly reflected in the decrease
of RMSE. In particular, the prediction accuracy is improved sig-
nificantly for the dataset 1 and its RMSE is decreased by 19.2%.
The above results indicate that uncorrelated features have an im-
pact on the prediction performance of the model. Furthermore,
when the collaborative selection based on correlation evaluation
layer and domain expert knowledge is performed, the key feature
X3 is preserved for the dataset 1 and for the dataset 5 the key fea-
ture G is also retained as the result of domain expert knowledge
integration.
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Figure 6. Expert experience scores for each feature in ten material properties data sets. The red dotted line (0.5) represents the dividing line of the
experts’ experience score. When the experts’ experience score for a feature is greater than 0.5, the feature is considered so important by domain experts
that it cannot be removed from the model.

4.4. Results and Analysis of Redundancy Evaluation

Redundancy assessment is conducted for the output feature sub-
set from the previous layer to eliminate redundant features and
the results are listed in Table 7. The number of features for the
datasets 1, 2, 3, and 7 do not change, which indicates that the
features in the four datasets are independent of each other or
very weakly correlated. However, for the datasets 4, 5, 6, 8, 9, and
10, the number of features is decreased. To be specific, the num-
ber of features is reduced from 31 to 20 for the dataset 4, among
which the eleven features including A, X3, X4, X5, X10, X15, X16,
X17, X22, Y1, and Y24 are removed due to their correlation with

other features. The size of the feature subset is reduced from 15
to 11 for the dataset 5, in which the four features including A,
X11, X13, and Y17 are removed. For the dataset 6, only the fea-
ture B (mass fraction of B element) is discarded. For the dataset
8, the feature X3 is removed. Regarding dataset 9, the four fea-
tures of Ni, Al, W, Ti are removed. The features x, <r> and K on
dataset 10 are deleted because of their high correlation with other
features. Finally, as shown in Table 7, the RMSEs of the predic-
tion models for the six data sets are decreased slightly, indicating
that redundant features have little impact on the prediction per-
formance. Furthermore, when the collaborative selection based
on redundancy evaluation layer and domain expert knowledge is
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Figure 6. Continued

Table 4. Prediction accuracies of the models using the original feature set.

Dataset Number of
features

Prediction accuracy (fivefold
cross validation)

RMSE MAPE

1 6 0.1611 0.1310

2 6 0.0820 0.0695

3 5 0.0373 0.0265

4 47 0.0620 0.0510

5 18 0.1964 0.1482

6 27 0.1679 0.1446

7 5 0.1145 0.0809

8 6 0.1807 0.1458

9 16 0.1206 0.0956

10 7 0.1289 0.1239

performed, the size of the feature subset selected is different
from that of DML-FS, which may imply that some of the features
that domain experts consider to be crucial for system modeling
are retained. For instance, for the dataset 4 the number of fea-
tures selected using only DML-FS layer is 20, while the DML-
FS with domain expert knowledge retained 30 features in which
the six key features including A, X4, X15, X16, X17, and Y24 are
considered important by domain experts. Moreover, we can ob-
serve that the RMSEs for the two selected feature sets (0.0513

Table 5. Number of features and prediction accuracies after sparsity eval-
uation.

DML-FS DML-FSdek

Dataset Number
of Input
features

Number of
remaining
features

RMSE MAPE Number of
remaining
features

RMSE

1 6 6 0.1611 0.1310 6 0.1600

2 6 6 0.0819 0.0695 6 0.0819

3 5 5 0.0373 0.0265 5 0.0373

4 47 34 0.0611 0.0500 38 0.0581

5 18 17 0.1953 0.1461 18 0.1964

6 27 25 0.1672 0.1436 25 0.1672

7 5 3 0.1140 0.0805 4 0.1138

8 6 6 0.1807 0.1458 6 0.1807

9 16 16 0.1206 0.0956 16 0.1206

10 7 7 0.1289 0.1239 7 0.1289

and 0.0545) remain at the same level. For the dataset 5, the two
features including X11 and X13 are retained due to high expert
experience scores (see Figure 6, index = 10, index = 12) and the
prediction accuracy is maintained at the same level (0.1789 and
0.1786). The features Ni and Al have a great influence on the lat-
tice misfit of Ni-based single-crystal superalloy, and domain ex-
perts also give these two features high expert experience scores
(see Figure 6, index= 0, index= 1). Thus, our approach ultimately
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Table 6. Number of features and prediction accuracies after correlation
evaluation.

DML-FS DML-FSdek

Dataset Number
of Input
features

Number of
remaining
features

RMSE MAPE Number of
remaining
features

RMSE

1 6 4 0.1302 0.0467 5 0.1301

2 6 6 0.0819 0.0695 6 0.0819

3 5 4 0.0364 0.0263 4 0.0364

4 34 31 0.0565 0.0379 35 0.0573

5 17 15 0.1886 0.1459 17 0.1880

6 25 25 0.1672 0.1436 25 0.1672

7 3 2 0.1137 0.0776 3 0.1136

8 6 6 0.1807 0.1458 6 0.1807

9 16 15 0.1152 0.1113 15 0.1152

10 7 7 0.1289 0.1239 7 0.1289

Table 7.Number of features and prediction accuracy after redundancy eval-
uation.

DML-FS DML-FSdek

Dataset Number
of Input
features

Number of
remaining
features

RMSE MAPE Number of
remaining
features

RMSE

1 4 4 0.1302 0.0467 5 0.1301

2 6 6 0.0819 0.0695 6 0.0819

3 4 4 0.0364 0.0263 4 0.0364

4 31 20 0.0513 0.0359 30 0.0545

5 15 11 0.1789 0.1443 15 0.1786

6 25 24 0.1663 0.1414 24 0.1663

7 2 2 0.1137 0.0776 3 0.1136

8 6 5 0.1428 0.1076 5 0.1428

9 15 11 0.1134 0.0897 13 0.1104

10 7 4 0.1235 0.1146 5 0.1214

retains these two important features, which is consistent with ac-
cepted knowledge of the physical and chemical domains.
In order to verify the superiority of our model in predicting

performance and interpretability of materials, we compared our
method with two existing sparsity methods (Lasso, Elastic net) on
ten groups of materials properties datasets collected. The exper-
imental results are shown in Table 8. For these ten datasets, our
method is lower than Lasso and Elastic net in terms of RMSE,
which shows a better prediction performance. The number of
features selected by our method is more than that of the spar-
sity methods. This is because the introduction of domain expert
knowledge allows the domain experts to consider important fea-
tures to be retained, which is consistent with the accepted domain
knowledge ofmaterials physical-chemistry. Especially, for dataset
2, Lasso and Elastic net selected only one feature, while the DML-
FSdek selected six features due to the combination of domain ex-
pertise, which not only improved thematerial interpretability but
also improved the predictive accuracy by 40% (RMSE is decreased

Table 8. Comparison between Lasso and Elastic Net methods and ours on
ten groups of materials properties dataset.

Feature selection models

Lasso Elastic net Our method

Dataset Initial Selected RMSE Selected RMSE Selected RMSE

1 6 2 0.1448 3 0.1373 5 0.1301

2 6 1 0.2166 1 0.2166 6 0.1301

3 5 4 0.0422 5 0.0383 4 0.0364

4 47 36 0.0640 44 0.0624 30 0.0545

5 18 9 0.1941 9 0.1826 15 0.1786

6 27 18 0.1678 20 0.1688 24 0.1663

7 5 2 0.1437 2 0.1437 3 0.1136

8 6 4 0.1546 3 0.1657 5 0.1428

9 16 7 0.1242 8 0.1315 13 0.1104

10 7 4 0.2511 4 0.2475 5 0.1214

*Initial: Number of initial features; *Selected: Number of final selected features

Table 9. Highly correlated pairs of features on dataset 6.

Features Highly correlated
features

Correlation
coefficient

1 C B 0.9353

2 B a_2T 0.8692

3 Ni Co −0.8487

4 B Nb 0.8431

5 Co a_2T −0.8073

by about 40%). Similarly, for dataset 10, Lasso and Elastic net
selected four features, while our method selected five features
due to the assessment of the expert experience scores, result-
ing in a 52% improvement in prediction accuracy (RMSE is de-
creased by approximately 52%). Except for dataset 3 and 4, our
method selected more features in the other eight datasets than
the two sparse methods (the features that domain experts consid-
ered important were retained), and the predictive performance of
the model was better. In general, compared with the two sparsity
methods, the proposed method can improve the predicted per-
formance while ensuring that the selected features are coincided
with domain expert knowledge (i.e., the materials physics and
chemistry information can be interpreted).
Next, taking the dataset 6 as an example, sparsity, correlation,

and redundancy evaluation were conducted for all its features.
The sparsity of the features is shown in Figure 10. We can observe
that the variances of the two features Y (mass fraction of Y ele-
ment) and a_2time (The second stage aging treatment time) are 0
and 0.0174, respectively, lower than the updated filtering thresh-
old of 0.02. Combining the experts′ experience score in Figure 6
with the proposed collaboration strategy in Section 3.3, we have
calculated that the FCISs for these two features are less than 0.5.
Thus, the two features were discarded in this procedure. Then,
correlation evaluation was further conducted for the remaining
features and the result is shown in Figure 11. We can observe
that the correlations between all the retained features and target
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Figure 7. Size and prediction accuracy of the subset of output features in each layer of DML-FS on ten datasets (DML-FS without domain expert
knowledge). a) Number of features. b) Prediction error.

Figure 8. Size and prediction accuracy of the subset of output features in each layer of DML-FS on ten datasets (DML-FS with domain expert knowledge).

attribute are all strong, exceeding the updated correlation filter-
ing threshold of 0.3. Therefore, in this layer, no features were
removed. Finally, we conducted redundancy analysis on the re-
maining features from the previous layer. Figure 12 presents the
correlation relationship between features and top 5 highly corre-
lated pairs of features are listed in Table 9. It can be observed that
high correlation or interdependence between features C and B, B
and a_2T, Ni and Co, with their correlation coefficients of 0.9353,
0.8692, −0.8487, respectively. Further, the correlation coefficient
between the C and the B is greater than the updated redundancy
filtering threshold of 0.88, so feature C is retained, but the feature
B is discarded (its FCIS is also below 0.5).
Finally, we accumulated statistics on the prediction accuracy

for the above ten testing models, as shown in Figure 7b. It can
be clearly observed that after passing through the three layers of
DML-FS, the prediction error has decreased, particularly for the
datasets 1 and 5. Moreover, Figure 7a shows the size of the out-
put feature subset from each DML-FS layer. It can be observed
that the 17 features were filtered out for the dataset 4. Analysis
of the removed features revealed that there is a large amount of
sparse, irrelevant and redundant information in the dataset. In
contrast, for the datasets 1, 2, 3, and 8, their initial sets features
were already pre-processed by domain experts and thus they had

little sparsity or irrelevant or redundant information. Similarly,
Figure 8 presents the number of selected features and the predic-
tion accuracy after the introduction of domain expert knowledge
into each DML-FS layer. After the integration of experts′ experi-
ence the risk of important features being removed is mitigated
(the number of selected features by each layer is different from
DML-FS layers without experts′ input), and the prediction perfor-
mance is equal to or better than that of pure DML-FS layer. From
the results on consumed computational time for each DML-FS
layer, shown in Figure 9, we can observe that it mainly depends
on the size of the data set and none of the layers has a dominant
effect on the process performance.

5. Conclusion

A novel data-driven multi-layer feature selection mechanism in-
tegrating domain expert knowledge is proposed and tested. The
proposed method can eliminate sparse, irrelevant, and redun-
dant information from the original feature set using three lay-
ers of sparsity evaluation, correlation evaluation, and redundancy
evaluation. The whole process is automatic and does not require
the user to have professional knowledge about feature selection.
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Figure 9. Computation time for each DML-FS layer.

Figure 10. Results of sparsity evaluation on dataset 6. The X-coordinate
indicates the material feature, and the Y-coordinate indicates the sparsity
value of the feature.

Figure 11. Results of correlation evaluation on dataset 6. The X-coordinate
indicates the material feature, and the Y-coordinate indicates the correla-
tion between the features and the material properties.

Figure 12. Results of redundancy evaluation for the dataset 6, and the heat
map of Pearson correlation coefficient matrix among the remaining fea-
tures. The red and blue colors indicate positive and negative correlation,
respectively. The darker the color is, the stronger the correlation is.

Moreover, we present a method to quantify and integrate domain
expert knowledge into the feature selection process. First, the do-
main expert knowledge of features is quantified as the weights
(importance scores) of features and expert experience score of
each feature is evaluated by means of weighted average. Second,
the feature subset is optimized based on the collaborative strat-
egy between the expert experience score and the DML-FS lay-
ers, which reduces the risk of removing features that domain
experts consider important. The proposed method was tested
on ten groups of material properties datasets. The results show
that the mechanism can effectively select the optimal and inter-
pretable feature subset while ensuring the prediction accuracy
remains unchanged or even improves.
With the extensive use of DML-FSdek in the field of materi-

als science, additional expert knowledge, that is, the importance
score of different experts for features, will be stored and recorded
internally to further improve predictive performance of the mod-
els. Overall, the DML-FSdek implementation presented herein is
expected to enable the feature and correlation analysis of large-
scale material properties datasets which was unattainable so far.
Notably, as the data volume increases and the expert knowledge
obtained is more abundant, there may be uncertainty when the
model is used for future predictions, that is, the prediction results
may change accordingly. Additionally, when novices use our au-
tomatic modeling method, they may produce models that look
good with serious flaws and little utility. Therefore, we urgently
need to bring in the domain knowledge of experts to further reg-
ulate themodel so that themodel canmeet the needs ofmaterials
modeling in accuracy and reliability.
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