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Abstract

Recent advances in intrusion detection systems based on machine learning have indeed outperformed other

techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that

works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack

individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the

results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The

intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we

divide the multi-class problem into multiple binary classifications. We test our method on the UNSW and KDDcup99

datasets. The results clearly show that our proposed method is able to outperform all the other methods, with a high

margin. Our system is able to achieve 98.24% and 99.76% accuracy for multi-class classification on the UNSW and

KDDcup99 datasets, respectively. Additionally, we use the weighted extreme learning machine to alleviate the

problem of imbalance in classification of attacks, which further boosts performance. Lastly, we implement the

ensemble of ELMs in parallel using GPUs to perform intrusion detection in real time.

Keywords: Intrusion detection system, Machine learning, Artificial intelligence, Extreme learning machine, Ensemble

methods, Feature selection, ExtraTrees, Softmax aggregation

1 Introduction
With the advancement of Internet technologies, the day-

to-day life has become much easier and simpler. The

emerging need of Internet has not only led to the rapid

growth of web applications, data transfer devices, proto-

cols, computer networks, and cloud computing but has

also given rise to complex security threat environments,

whether it be data security, identity theft, or social and

engineering attacks. The complex nature and exponential

growth of cyberattacks and their ability to deal with the

current network security system highlight the necessity of

more accurate and efficient security systems.

Network intrusion detection systems (abbreviated as

IDS) have been developed over time to detect any unau-

thorized or suspicious action which can lead to data theft,
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breach in discretion, availability, and integrity of informa-

tion resources. While IDS are good at monitoring traffic

for malicious activities, they are prone to false positives,

can lead to chasing ghosts because the attackers can fake

the IP address, and encrypted packets which go unpro-

cessed by IDS and could release malicious content when

activated later. It results in high involvement and depen-

dency on human analysts. Hence, the efficiency and accu-

racy of IDS have been a major concern in both research

and industry.

The complexity in modern day attacks, and their highly

intelligent and adaptive nature, has raised questions on

the present adopted traditional network security mea-

sures. Signature-based IDS have attack signature database

of known attacks. They can only detect attacks which

matches with the stored signature and are unable to detect

any other novel attack. Anomaly-based IDS create amodel

of the normal traffic by monitoring it and classify any
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other activity as abnormal or anomaly. Anomaly-based

IDS can more effectively detect an unknown type of

attack. One issue with anomaly detection is how to clas-

sify normal traffic from anomalies in efficient way. Several

researches have been made, and various approaches have

been proposed for the development of accurate and real-

time IDS which can outperform the current intrusion

detection system.

Machine learning has caught the attention of a lot of

researchers to provide solutions for especially wide rang-

ing big data problems. It can handle multi-dimensional

data in dynamic environments giving real-time predic-

tions. Presently, the advances in machine learning has

extended its application for implementation of effective

IDS. Learning-based approaches like neural networks

have been outperforming traditional approaches in var-

ious applications. Machine learning-based IDS can keep

up with varying types of attacks due to their learning and

adaptive nature.

Intrusion detection can fall under various application-

based categories using neural networks and statistical

methods. In [1], probability features and fast parallel pro-

cessing with Hadoop, consisting of a cluster of 19 nodes,

were used to detect the authenticity of images. Also, in [2],

false data injection attacks were detected in power sys-

tem state estimation using the non-linear autoregressive

exogenous (NARX) configuration of the neural network.

In this paper, we propose a novel approach based on

neural networks for the problem of general purpose net-

work intrusion detection. All previous approaches for

intrusion detection either distinguish between normal

traffic and attacks or can only detect one type of attack at

a time. We propose to use an ensemble of ELMs [3] for

detecting all types of attacks simultaneously. Each ELM

is trained for a specific type of attack, and each ELM is

fed a different feature set consisting of features selected by

an ExtraTree classifier [4] for that specific attack. Train-

ing these ELMs on each and every type of attack takes

less than 18 s. Our system is tested on the UNSW [5]

and NSL-KDD [6] datasets and is able to outperform

all previous machine learning-based intrusion detection

systems.

To the best of our knowledge, the following novel tech-

niques have never been applied to the intrusion detection

problem:

1 This paper proposes to use attack-based feature

selection. This decreases the number of features

significantly.

2 Also, in this paper, an ensemble of extreme learning

machine (ELM) is used for multi-class classification.

3 Each ELM distinguishes between one type of attack

and all the rest of the categories. This is similar to

one vs all SVM, but this is the first time it has been

applied to a neural network-based ensemble for

intrusion detection.

4 For such a unique kind of ensemble technique,

voting-based aggregation cannot be applied. So we

use softmax aggregation.

5 We report new state-of-the-art accuracy for

multi-class intrusion detection on two of the

benchmark datasets: UNSW and NSL-KDD.

6 Even better performance is achieved by replacing

ELM with WELM at the cost of negligible

computational overhead.

7 We implement the ensemble of ELMs in parallel

using GPUs and map-reduce type of implementation

to perform real-time intrusion detection.

The rest of the paper is laid out in the following man-

ner: Section 2 enlists and briefly explains some key papers

on intrusion detection systems that have used machine

learning, Section 3 and its subsections give a detailed

explanation of our proposed system, Section 4 shows our

findings and results of experiments on the two datasets,

and finally, the paper is concluded in Section 5.

2 Related work
There have been some innovative techniques proposed in

the past and key research ideas implemented for intru-

sion detection using machine learning models that have

transcended previous networking-based techniques and

opened new avenues for future researchers to build their

work on. Some of these ideas have been briefly described

here.

In [7], the main contribution is to propose a traffic

monitoring functionality for network intrusion detection

and process monitoring functionality to detect modern

malware attacks. The main novelty lies in the improve-

ment over existing results benchmarked in [5]. In this

paper, random forest (abbreviated as RF) is used to detect

network attacks at cloud networking server (CNS) and vir-

tual machine monitor (VMM) of cloud compute server

(CCoS). Then, logistic regression (abbreviated as LR) is

used as meta-classifier to reduce its overfitting problem.

The dataset used is UNSW-NB and CAIDA for intrusion

detection. The accuracy on UNSW-NB dataset is 94.54%,

and false-positive rate is 2.81% and 98.90% on CAIDA

dataset for DoS attack detection only. In contrast, our

proposed method is able to deal with 10 types of attacks

including DoS attacks. Also, the random forest requires

hundreds of decision trees and is not as powerful as neu-

ral networks. That is why we use the ExtraTrees classifier

(an updated version of random forest) for feature selection

purposes only and leave the classification task to ELMs.

The paper [8] has proposed a new fitness function

for genetic algorithm which uses three parameters: true-

positive rate, false-positive rate, and number of selected
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features to evaluate each subset of features. This is used

for feature selection. Then, combination of genetic algo-

rithm and SVM is used to detect intrusion. The method

has been applied to classify each type of attack separately

on KDD CUP 99 and UNSW-NB15 datasets with mostly

achieving accuracy of above 90%. However, our method

is able to classify each type of attack separately, as well as

together in a multi-class fashion with a higher accuracy.

Also, the ExtraTrees classifier used for feature selection in

our model is able to prune more features than the method

proposed in [8]. Performance numbers of these systems

are shown in Table 1.

Developing a single neural network to discover DoS traffic

in various network protocols is proposed by [9]. Feature

selection is done by correlation-based feature selection.

The accuracy of the network on UNSW-NB dataset is

97.1% with a false-positive rate of 0.06% and 99.2% on

NSL-KDD with false-positive rate of 0.02%. Again, our

proposed method detects many other types of attacks

other than DoS. Also, correlation-based feature selection

works only to reduce redundancy and is not data efficient

as correlation between large feature matrices needs to be

calculated. On the other hand, the decision tree-based

ExtraTrees classifier, that we use for feature selection, is

faster andmuchmore data efficient andmore importantly

calculates feature importance score rather than evaluat-

ing features for redundancy. Our proposed model deploys

feature selection in a novel way by selecting important

features for detecting each type of attack separately.

This paper [10] proposes an intrusion detection model

which is based on two stages and on a reduced error prun-

ing tree algorithm for classification and identification of

intrusion. In the first stage, the traffic is classified on the

basis of its protocol. Then, a binary classification is done

to define the traffic as normal or as an attack. In the sec-

ond stage, a pre-trained multi-class classifier is launched

which classifies the type of attack whenever an attack is

identified. Even though our method has three stages, they

are still less complex than the two stage method in [10].

Firstly, reduced error pruning tree adds more overhead to

a decision tree by repeatedly building the tree and pruning

it. The model is divided into two stages: attack detection

and type of attack classification, while we do it in a sin-

gle stage. Also, their method achieves 81.28% and 83.59%

accuracy on UNSW-NB15 and NSL-KDD, respectively,

which is much lower compared to the accuracies achieved

by our proposed system.

The paper [11] proposes a hybrid model by combin-

ing SVM and simulated annealing for intrusion detec-

tion. Random unique combinations of three features

were created by simulated annealing at a time, and

SVM was applied on those feature combination. This is

repeated until low false-positive and false-negative rates

and highest detection accuracy are achieved by the model.

Accuracy achieved by the model is 98.76% for binary

classification. The random selection of three features

and repeating the process until highest performance is

achieved takes a lot of computational power and time.

The authors in [12] performed random forest binary

classification on various stages to classify eight kinds of

attacks. They compared logistic regression and random

forest for anomaly detection and showed that RF outper-

formed LR. They proposed that by reducing the number

of features using best first feature selection technique on

the criterion of minimizing the testing error resulted in

reduced model complexity and enhanced the accuracy.

The results showed that overall accuracy achieved was

99% for anomaly detection (binary classification) but cat-

egorization accuracy is 93.35% which is comparatively

lower than our method. Also, best first feature selection

is a naive feature selection technique and takes a lot of

time to select the relevant features. On the other hand, we

employ the ExtraTrees classifier as a feature selection algo-

rithm which is more sophisticated and applied in a novel

individual attack detection way.

In [13], a standard neural network (abbreviated as NN)

has been used to classify attacks and genetic algorithm

for feature selection. The similar features are classified

into feature sets, and accuracy of each set is measured

by multi-modal neural network (abbreviated as MNN).

The genetic algorithm is applied to each feature set in

ascending order of accuracy, eliminating the irrelevant

features from overall feature set and evaluating remaining

features with MNN. The accuracy achieved by the ANN

on UNSW-NB15 and NSL-KDD is 91.98% and 95.46%,

respectively, for binary classification between normal and

attack traffic. We use ExtraTrees classifier for feature

selection which is much faster and less complex than

genetic algorithms (slow execution is the main problem of

GA). Also, we perform ensemble ELM and softmax aggre-

gation learning for the multi-class problem to detect all

types of attacks.

In [14], a multi-scale Hebbian NN for threat detection

is introduced. The learning algorithm follows Hebbian

rule in which weights are updated as a function of nearby

neuronal activity. The paper uses four features for detec-

tion and has shown improved true negative rate as 95%

and true positive rate as 73%. Improvement is shown in

comparison between multi-scale Hebbian-based NN and

gradient descent-based NN. The mean accuracy of the

proposed method is 93.56% for detecting attacks (binary

classification). The Hebbian rule makes the learningmuch

slower for neural networks, and introducing multi-scale

approach makes it even slower. On the other hand, we

deploy parallel ELMs which are many times faster than

backpropagation.

The paper [15] employs a multi-agent-based cognitive

approach to detect network intrusion and feature detection
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Table 1 Previous state-of-the-art ML based intrusion detection systems and the proposed method

Models UNSW (in %) KDD (in %) Binary
classification

Detecting
single type
of attack

Multi-class
classification

NvCloudIDS [7] 94.54 - � - -

ADDM [9] 97.1 99.2 � - -

GF+SVM [8] Normal 97.45

Generic 91.51 Normal 99.05

Exploits 79.19 DoS 99.95

DoS 91.24 Probe 99.06 - � -

Fuzzers 96.39 R2L 98.25

Reconnaissance 91.51 U2R 100

Shellcode 99.45

RepTree [10] 88.95(Binary) 89.85(Binary) � - �

81.28(Multi-class) 83.59(Multi-class)

Simulated annealing+SVM
[11]

98.76 - � - -

Step-wise RF [12] Normal 99.50

Exploits 99.50

DoS 20.00

Analysis 2.00 - � -

Backdoor 5.00

Reconnaissance 86.00

Shellcode 80.00

Worm 70.00

ANN+GF [13] 91.98 95.46 � - -

Multi-scale Hebbian [14] 93.56 � - -

Unsupervised
FE+classification [15]

89.00 - � - -

Semi-supervised ML [16] 93.74 98.23 � - -

MLP [17] 93.29 - � - -

ICVAE-DNN [18] 89.08 85.97 - - �

BMM+outlier detection
[19]

Normal 93.40

Generic 80.50

Exploits 79.40

DoS 89.60

Analysis 83.40

Backdoor 63.80 - - � �

Reconnaissance 55.60

Shellcode 48.70

Worm 47.80

Overall 92.70

GRU-RNN [20] - 89.00 - - �

Proposedmethod:
ExtraTrees+ELM
ensemble+softmax

98.24 99.76 - � �

Proposedmethod:
ExtraTrees+WELM
ensemble+softmax

98.69 99.83 - � �
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through unsupervised learning. The authors modified the

UNSW-NB15 dataset for the unsupervised problem. The

paper proposed to divide datasets into time steps and

then finding features from their statistical analysis result-

ing in a reduced dataset, hence reducing computation

time for learning and then deploying agents with each

host to compute and analyze the traffic flow. This tech-

nique yields accuracy of 89%. The accuracy with basic

unsupervised k-means is 29% on AWIDR dataset, and

with this approach, it is increased by 60%. Even though

computation time for learning by the multi-agent system

is reduced, the total time is increase due to the statis-

tical analysis of the dataset since the dataset is quite

large.

In this paper [16], the authors have proposed a semi-

supervised learning approach to detect DDoS attack. The

unsupervised part reduces the irrelevant and noisy data

through entropy estimation, co-clustering, and informa-

tion gain ratio, resulting in reduced false-positive rate.

The supervised part uses ExtraTrees ensemble classifiers

to classify the traffic. The best accuracy achieved on

NSL-KDD, UNB ISCX 12, and UNSW-NB15 datasets are

98.23%, 99.88%, and 93.74%, respectively, for binary clas-

sification. Again, the unsupervised overhead of the system

is too complex and requires lots of data and time. Our

method is much less complex and can detect intrusions in

real time.

Amulti-layer perceptron-based feedforward neural net-

work for detecting intrusion with sigmoid activation func-

tion and backpropagation learning algorithm has been

proposed in [17]. The approach has achieved on the

93.29% UNSW-NB15 dataset. The approach is compared

to J48 decision tree, and it turned out that J48 has compar-

atively lower accuracy of 88.53% for binary classification.

The approach is too simple, and the backpropagation

algorithm takes a lot of training time. Also, the accu-

racy reported on the UNSW-NB15 dataset for binary

classification is on the lower side.

One of the most recently proposed methods to improve

multi-class classification performance of intrusion detec-

tion [18] proposed to use a combination of improved

conditional variational autoencoder with a deep neural

network. Their approach is abbreviated as ICVAE-DNN.

The autoencoder is used as a generative model to provide

more attack samples according to the specified categories

in the datasets, to the DNN classifier. This innovative

approach was able to achieve 89.08% and 85.97% accuracy

on the UNSW and NSL-KDD datasets, respectively. How-

ever, the model complexity is quite high since it uses two

deep neural networks trained by backpropagation.

Another recent intrusion detection method that used

machine learning and statistical techniques such as beta

mixture models (BMM) and outlier detection was pro-

posed in [19]. The method was tested on the UNSW

dataset achieving an overall score of 92.7%. Individual

attack detection accuracies were also reported.

In [20], a recurrent neural network (RNN) with gated

recurrent unit (GRU) was proposed for intrusion detec-

tion. The model was specifically built for SDN networks

(software-defined networking). The most striking feature

of the model is that it uses only six features to achieve 89%

classification accuracy on the NSL-KDD dataset.

In our approach, we use the extreme learning machine

(ELM) [3, 21] for intrusion detection. The ELM algorithm

has been used in a diverse set of applications includ-

ing water quality forecasting [22], optimization of indus-

trial chemical productions [23], big data processing [24],

speech enhancement [25], heart disease diagnosis [26],

medical image segmentation [27], and fault detection [28,

29].

The ELM has also been used before in IDS [30–33].

In [30], ELM is tested on the KDcup99 dataset [6] in a

big data environment using a MapReduce-based variant

(MR-ELM). This is completely different from our work,

because [30] use MR-ELM specifically for big data envi-

ronments and achieve maximum accuracy around 97% on

the KDDcup99 dataset [6] whereas our proposed model

achieves 99.6% accuracy on the same dataset with some

modifications and fine-tuning.

Another paper that used ELM for intrusion detection

is [31]. In this paper, a simple implementation of ELM

and Kernel ELM is used to detect four types of attacks

on a relatively simpler dataset, DARPA 1998. The Kernel

ELM model is compared with SVM for intrusion detec-

tion and achieves nearly 98% accuracy for multiple attack

detection.

A variant of ELM called the online sequential ELM (OS-

ELM), which is used for online learning, is employed in

[32] for intrusion detection. It is tested on the KDDcup99

dataset. Although it is not able to achieve very high accu-

racy, 90%, it is amore realistic approach towards intrusion

detection, because learning online, especially in the field

of computer networks and communication, is extremely

important since the byte patterns can change over time.

A sample selected, lightweight, ELM intrusion detection

system for fog computing and mobile edge computing is

proposed in [33]. The main contributions of the paper lie

in the fast training and accurate detection (99%) of attacks

on the KDDcup99 dataset. Our model is entirely different

from the abovementioned techniques, as explained in the

next section.

The difference between our ELM-based IDS and the

previous ELM-based IDS is that our approach is a gen-

eral purpose intrusion detection system that consists of

an ensemble of ELMs, where each ELM is dedicated to

detect a single type of attack. Also, we introduce a novel

type of aggregating ensemble results by using a softmax

layer which proves to improve accuracy of the system.
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Furthermore, the ExtraTrees classifier is used to select

relevant features for each type of attack separately to

improve data efficiency and speed of the system. Over-

all, this general purpose IDS can be implemented in a

parallel processing or distributed manner due to its multi-

threaded structure as shown in Fig. 1, where each thread

is independent of the other.

All the abovementioned papers and more have greatly

improved intrusion detection systems in the past. How-

ever, almost all of them have their own shortcomings

which we try to overcome in this paper. Some of the draw-

backs that we try to solve are as follows: computation and

training time, efficiency, accuracy, feature selection, clas-

sification between all types of attacks (not just binary or

detecting a specific type of attack only), etc. Most of the

previous state-of-the-art methods deal with binary clas-

sification, i.e., distinguishing between normal traffic and

attacks.

Table 1 displays the results of the previous state-of-the-

art methods on the NSL-KDD and UNSW benchmark

datasets. The table also shows the type of classification

performed. We propose a system that can achieve the

highest accuracy for the multi-class problem of detecting

all types of attacks on which the system is trained on. We

explain our IDS and the intuition behind it in the next

section.

3 Themulti-layer intrusion detection system
The main contributions of this paper lie in the follow-

ing: using ELM [3, 21] for classification of attacks, even

though ELM has been used for intrusion detection sys-

tems before [30–33], but not quite in this manner and not

on the UNSW dataset which is the most realistic and dif-

ficult dataset for intrusion detection; using the ExtraTrees

classifier [4] to calculate feature importance and select rel-

evant features for detecting each specific type of attack;

and using an ensemble of ELMs (one for each type of

attack) and combining their results using a softmax layer

to fabricate an interpretable probabilistic output of very

high accuracy. The flowchart of our deep multi-layered

model is shown in Fig. 1.

We breakdown the problem of multi-class classification

into a set of binary classifications. This is done in order to

decrease the load on the classifiers in the ensemble. Since,

Fig. 1Multi-layer intrusion detection system flowchart
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multi-class classification is more complex than binary

classification. This is because binary classification consists

of two decision variables, i.e., the two classes, whereas

the multi-class problem can consist of n decision vari-

ables representing the n classes. So, it is easier to learn

a function that can map the set of input features to two

decision variables rather than n decision variables. Also,

the complexity of the function would be less for binary

classification compared tomulti-class classification, as the

complexity of a function is directly proportional to the

number of decision variables.

Each thread shown in Fig. 1 runs in parallel using

GPUs and map-reduce type of implementation which

enables real-time intrusion detection. New attacks can be

detected by the system, since one ELM in the ensem-

ble distinguishes normal network traffic from potential

attacks. However, the type of the new attack cannot be

determined if it does not fall under any of the attack

categories on which the system is trained.

3.1 Layer 1: Feature selection with ExtraTrees classifier

The extremely randomized trees, abbreviated as Extra-

Trees [4] are a variant of the random forests with

more randomization at each step for picking an opti-

mal cut/split or decision boundary. Unlike random forests

where features are split based on a score (like entropy) and

instances of the training set are bootstrapped, the split cri-

teria of the ExtraTrees are random and the entire training

set is considered. The resulting trees have more leaf nodes

and are more computationally efficient. It also alleviates

the problem of high variance in random forests due to its

randomization and hence provides a better bias-variance

trade-off.

Also, one of the advantages of using tree-based clas-

sifiers is their ability to perform feature selection. The

advantage of using tree-based classifiers as a feature selec-

tion mechanism is that they require much less memory

(as tree structures are more memory efficient), they are

faster, and they give the most important features at the

beginning itself starting from the root node and the first

split. At each split, the most important feature is selected

at that stage. As the tree grows and reaches the leaf nodes

that give the end result, the path from the root node

to the leaf node gives the most important features. An

additional characteristic of tree-basedmethods is that fea-

tures are given a score during each split which enables

them to perform feature ranking. This characteristic is

used in our model for feature selection. Features are

ranked according to split score by the ExtraTrees classi-

fier. The split score for sample S, split s, and class c is

given by [4]:

Scorec(s, S) =
2Isc(S)

Hs(S) + Hc(S)
(1)

where, Hc(S) is the (log) entropy of the class c in sam-

ple S, Hs(S) is the split entropy, and Ics (S) is the mutual

information of the split outcome and the class c. We select

all the features above a threshold score. This is done for

distinguishing each attack versus the rest. So, we get a dif-

ferent optimal feature subset for detecting each type of

attack. Feature selection reduces redundancy, and empha-

sis is given to important features which leads to higher

accuracy and faster training.

Most of the previous research applies feature selection

for detecting all attacks. We use the ExtraTrees classifier

for feature selection to detect each type of attack sepa-

rately (as shown in Fig. 1) because a particular feature

could be important for detecting a specific type of attack

and it could be considered redundant for another type of

attack. Each feature used for intrusion detection receives

a score. We use a threshold score to discard irrelevant or

redundant features that do not contribute enough to the

benefit the performance of the intrusion detection system.

This approach of individual class feature selection works

better as shown in the Section 4.

The main motivation behind using a feature selection

technique is to reduce the dimensionality of the problem

in order to improve execution time, memory usage, and

data efficiency, especially when redundant features are

removed which helps to deal with overfitting and improve

performance. Feature selection with decision tree-based

methods is much simpler and faster compared to other

techniques such as Fisher’s score and F-score. The major

disadvantage of using Fisher’s score and F-score is that

they calculate feature scores independently of other fea-

tures, i.e., they do not include mutual information. On

the other hand, ExtraTrees classifier uses all features

together to categorize data. Some feature combinations

might be better than high scoring independent features,

which is why we employ ExtraTrees classifier as the feature

selector.

3.2 Layer 2: Extreme learning machine ensemble

The extreme learning machine is a supervised learning

algorithm originally for a single hidden layer feedforward

neural network [3, 21]. But after extensive research in the

past few years, it has been modified and updated to work

for deep neural networks as well, details can be found here

[34–37]. We use the original form of the ELM, to keep

things simple and fast.

The inputs to the ELM, in this case, are the features

selected by the ExtraTrees classifier [4]. Let it be repre-

sented as xi, ti , where xi is the input feature instance

and ti is the corresponding label. The input features are

fed to the hidden layer neurons by randomly weighted

connections w. The sum of the product of the inputs

and their corresponding weights act as inputs to the hid-

den layer activation function. The hidden layer activation
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function is a non-linear non-constant bounded continu-

ous infinitely differentiable function that maps the input

data to the feature space. There is a catalog of activa-

tion functions from which we can choose according to

the problem at hand. We ran experiments for all activa-

tion functions, and the best performance was achieved

with the smooth approximation of the ReLU function [38],

which is called the SoftPlus function [39]:

ReLU:

f (x) = max(0, x) (2)

SoftPlus:

f (x) = log(1 + ex) (3)

The hidden layer and the output layer are connected by

weights β , which are to be analytically determined. The

mapping from the feature space to the output space is lin-

ear. Now, with the inputs, hidden neurons, their activation

functions, the weights connecting the inputs to the hid-

den layer, and the output weights produce the final output

function:

L
∑

i=1

βig(wi.xj + bi) = oj (4)

The output in matrix form is:

Hβ = T (5)

The error function used in extreme learning machine is

the mean squared error function, written as:

E =
1

2

N
∑

j=1

(

L
∑

i=1

βig(wi.xj + bi) − tj

)2

(6)

The MSE with L2 regularization and C as regularization

parameter is:

E =
1

2

N
∑

j=1

(

L
∑

i=1

βig(wi.xj + bi) − tj

)2

+ C
1

2
||β||2 (7)

To minimize the error, we need to get the least-squares

solution of the above linear system:

‖Hβ∗ − T‖ = minβ‖Hβ − T‖ (8)

The minimum norm least-squares solution to the above

linear system is given by:

β̂ = H†T (9)

where, H† is the Moore-Penrose pseudo inverse of H,

which is given by [40, 41]:

H† =

(

I

C
+ HTH

)−1

HT (10)

However, the product of HTH may not always be a non-

singular matrix or it may tend to be singular under cer-

tain conditions, and thus, this method of computing the

pseudo inverse may not work for all cases. The singular

value decomposition (SVD) can be used to calculate the

Moore–Penrose pseudo inverse of H in all cases.

Properties of the above solution are as follows:

1 Minimum training error: The following equation
provides the least-squares solution, which means the

solution for ‖Hβ − T‖, i.e., the error is minimum:

‖Hβ∗ − T‖ = minβ‖Hβ − T‖.

2 Smallest norm of weights: The minimum norm of

least-squares solution is given by the Moore-Penrose

pseudo inverse of the hidden layer output matrix, H :

β̂ = H†T .

3 Unique solution: The minimum norm least-squares

solution of Hβ = T is unique, which is β̂ = H†T .

Detailed mathematical proofs of these properties and the

ELM algorithm can be found in [3]. We use an ensemble

ofN +1 ELMs, whereN is the number of types of attacks.

One additional ELM, apart from N ELMs, is for detect-

ing normal traffic. Each ELM is trained with an X vs all

strategy, where X is the type of attack/normal traffic. Each

ELM outputs a “1” when it detects a type of attack for

which it is trained, or “0” otherwise. This approach breaks

down the multi-class problem to a two-class problem with

several ELM classifiers, each having to detect only one

type of attack instead of several.

Even though this ensembling approach requires many

ELMs, it gives a much better performance in terms of

accuracy and training time and is much less computation-

ally complex compared to single deep and wide neural

networks that have a much more demanding multi-class

problem at hand. This is because as the number of deci-

sion variables increases (number of classes), the network

size has to be increased as well. Additionally, deep neu-

ral networks require backpropagation for training which

is more computationally complex than ELM. Since each

ELM in the ensemble has to detect one type of attack, they

have a perspective of the data unique to that particular

type of attack which makes them more efficient, accurate,

and faster. This unique perspective of data with selected

features is provided by the ExtraTrees classifier.

Also, convergence is guaranteed by the solution to the

Moore-Penrose pseudo inverse of H, as long as sufficient

number of hidden neurons are provided. We use 512

neurons for guaranteed convergence.

3.3 Layer 3: The softmax layer

The output of an ensemble of classifiers can be combined

in several ways like averaging, voting, and max opera-

tion. But that is when all the classifiers have the same

goal and the same perspective of the problem. Such tech-

niques cannot work when the global view of the problem

is multi-class and the local view of the classifiers is binary

class.



Sharma et al. EURASIP Journal on Information Security         (2019) 2019:15 Page 9 of 16

The ELMs in the ensemble return a single output which

is either “0” or “1.” To amalgamate these outputs to

get the final actual output becomes a challenge because

the abovementioned techniques for combining ensemble

results do not work here. If only one of the ELMs output

is “1,” then there is no problem. But let us assume that we

get a difficult input stream to classify. For instance, let us

consider that two ELMs output a “1,” in this case which

one should we consider? We cannot apply averaging or

voting or max operation here for obvious reasons. To alle-

viate this ambiguity, we use a softmax layer at the end to

integrate the outputs of the ELM ensemble and produce a

probability vector which displays the probabilities of each

type of attack.

The softmax layer employs the softmax function [42]

which is a generalized form of the logistic function:

f (y)j =
eyj

∑N
k=1 e

yk
(11)

In order to further increase performance and accuracy

of the system, the softmax layer is fine-tuned using the

Adam optimizer [43]. The true classes encoded as one-

hot vectors are fed as labels, and the input is the output

of the ELM ensemble. This behaves as a single layer soft-

max classifier. The categorical cross-entropy loss works

best with softmax layer which is used here as well [44]:

H(t, y) = −
∑

i

ti log yi (12)

The fine-tuning is run for 10 epochs only which is enough

since a large portion of the classification task is done

in the ELM ensemble stage. The softmax layer acts as a

module that dispenses ambiguity and makes the output

interpretable. Also, it adds an additional layer of abstrac-

tion to the model. The output of the final stage is a refined

probability vector that displays the probabilities of each

type of attack and normal traffic associated with each

input instance stream.

4 Experimental setup and results
We test our proposed intrusion detection model on the

well-known benchmark datasets: UNSW-NB15 dataset

[5] and KDDcup99 dataset [6]. A comparison of ourmeth-

ods with previous state-of-the-art machine learning tech-

niques for intrusion detection can be seen in Table 1. The

system is implemented to perform in real time. Hence, we

implement the ensemble of ELMs in parallel. Each ELM

is provided with a set of all features. The training and

testing of the ELMs are performed in parallel using a map-

reduce type of implementation [45]. Finally, the results are

aggregated by a softmax layer.

Table 1 shows the results and type of classification for

the recently proposed state-of-the-art machine learning-

based intrusion detection systems on the UNSW and

NSL-KDD datasets. Most of these methods perform

binary classification, i.e., either distinguishing between

normal traffic and malicious traffic or distinguishing

between a single type of attack and normal traffic. Some

other methods like [8, 12] classify between attacks indi-

vidually, which is a similar strategy that we use, but are not

able to classify all attacks simultaneously as proved in [12].

Our proposed method outperforms the rest as explained

empirically in the next few subsections. All the results dis-

played in Table 1 are the results as stated in the respective

papers of the state-of-the-art methods for the benchmark

datasets of UNSW and NSL-KDD, hence making for an

unbiased and credible comparison.

We use the basic extreme learning machine for all our

experiments. This is because, with the basic ELM, we

achieve state-of-the-art performance as well as real-time

intrusion detection. There are many other variants of the

ELM, but all of them are more complex versions of the

basic ELM. We stick to the basic version due to the fol-

lowing reasons: to avoid unnecessary overhead of other

versions, to keep the system simple and fast, and lastly,

since the performance of our system is able to outper-

form previous intrusion detection systems and achieve

very high accuracies (98.24% and 99.76% on the UNSW

and NSL-KDD, respectively), we believe that using a more

complex version of the ELM would have a negligible

increase in performance while increasing the complexity

of the system.

However, for some types of attacks, both UNSW and

NSL-KDD datasets are highly imbalanced. This means

that using the extreme learning machine version for

imbalanced classification, called the weighted extreme

learning machine (WELM) [46], could prove to be advan-

tageous. Thus, we test our method by using an ensemble

of WELM, replacing the basic ELM.

4.1 UNSW dataset

The UNSW dataset [5] consists of 49 features and 10

classes (9 attacks and 1 normal traffic). The UNSW

dataset is by far the most realistic and difficult dataset for

the problem of intrusion detection. It is one of the more

difficult datasets for intrusion detection as it consists of

10 classes of attacks and the accuracies reported on this

dataset are generally lower than on other datasets. It is the

most widely used dataset by researchers, and we use it to

empirically prove the capabilities of our system.

The individual attack detection accuracies are obtained

from each ELM specifically trained to detect that partic-

ular type of attack by a one vs all strategy (one ELM for

each class). All ELMs consist of a single hidden layer of 512

neurons with the ReLU activation function [38]. We also

tried several other activations such as multi-quadratics,

soft limit, hard limit, hyperbolic tangent, sigmoid, and

linear, but we achieved best performance with ReLU.
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Only one iteration of training is required to train the

ELM since it is a one-shot learning algorithm. The train-

ing time for ELMs on the UNSW dataset was 18 s on

each type of attack. After training the ELMs, the results

are combined using the softmax layer which is trained for

10 epochs using the ADAM optimizer [43] with default

settings. The softmax layer is as wide as the number of

classes.

Training is performed on 175,342 instances, and the

model is tested on 82,332 instances. To avoid overfit-

ting, a small portion of the training set (20%) is used for

validation.

Table 2 shows the results achieved by our model. The

reason behind using the softmax layer is quite clear from

Table 2 and Fig. 2 which shows the difference between

the average accuracy and accuracy with the softmax layer.

Figure 2 displays a bar graph representation of the results,

highlighting the difference between average accuracy and

softmax accuracy.

4.2 KDDcup99 dataset

The KDDcup99 dataset [6] presents with 41 features and

4 broad categories into which the attacks can be classified

and 1 normal traffic category. It is one of the oldest bench-

mark datasets available for intrusion detection and has

been widely used for the past decade. We test our system

on this dataset to show that our model is generalizable to

different datasets and does not overfit on a single dataset.

We train and test on the KDDcup99 dataset to show that

our model is a general purpose intrusion detection system

that has not been tailored for a single dataset. It works on

the general problem of intrusion detection and not on a

single dataset.

The system configuration used for KDDcup99 dataset is

the same as the UNSW dataset (single hidden layer, 512

Table 2 Proposed system performance on the UNSW dataset

Attacks Accuracy (in %) No. of features

Normal 91.26 13

Generic 98.16 14

Exploits 89.13 25

Fuzzers 91.30 24

DoS 94.75 25

Reconnaissance 94.60 17

Analysis 98.96 16

Backdoor 99.11 18

Shellcode 99.40 12

Worms 99.92 15

Average 95.66 18

Softmax 98.24 -

No feature selection 92.95 49

ReLU neurons, ensemble ELM with 1 ELM for each class,

1 training iteration, softmax layer as wide as the number of

classes, trained for 10 epochs with ADAM optimizer with

default settings).

Training was performed on 296,412 instances, and the

model was tested on 197,608 instances. To avoid overfit-

ting, a small portion of the training set (20%) is used for

validation. Table 3 tabulates the results on this dataset,

showing individual accuracies for each class of attack and

the average accuracy. The softmax layer increases the

accuracy slightly. The difference can be seen clearly in the

bar graph in Fig. 3.

4.3 Feature selection

We perform feature selection using the ExtraTrees classi-

fier [4] on all features for each type of attack separately.

Each feature is given a score and ranked on the basis

of this score. An example of feature importance ranking

is given in Fig. 4 (y-axis is the feature score and x-axis

is the features), which displays the scores of all features

in the UNSW dataset according to their importance in

detecting the DoS attack (the features with blue bars are

discarded and red ones are selected). The most important

feature at the top has the highest score, and the score and

importance decrease as wemove down. To select the most

relevant feature, instead of selecting a predefined number

of features, we set a threshold on the importance score to

0.02. All features having scored below this are discarded as

irrelevant for detecting a particular type of attack. So, we

get different number of features for classifying different

types of attacks.

From Tables 2 and 3, we can see that feature selection

boosts performance of the system by ∼ 4 − 6%. When

using all 49 features in UNSW and 41 features in NSL-

KDD datasets, the accuracy is reduced. This means that

there are some redundant features present in both the

datasets, which the ExtraTrees classifier is able to remove.

Table 4 tabulates the feature scores generated by the

ExtraTrees classifier for the DoS type of attack in the

UNSW dataset, in ascending order. The most important

characteristic of using an ensemble-based approach to

feature selection is that the most important features for

each attack are considered separately. This is an indis-

pensable property because for detecting a particular type

of attack, some features might be considered irrelevant

and, as a result, will be discarded. But, for another type

of attack, some of those discarded features might be con-

sidered important. So, it is highly desirable to have an

ensemble approach to feature selection as well, so that fea-

tures can be selected for the detection of different kinds of

attacks separately.

Tables 2 and 3 have a column for the number of fea-

tures selected for each type of attack. The number of

features is decreased significantly, and at the same time,
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Fig. 2 Results on the UNSW dataset

detection problem for each attack gets its own feature set.

The threshold limit which selects the number of features

versus overall accuracy of the system is shown in Fig. 5.

It is basically comparing the performance of the model

with respect to the number of features, since increasing

the threshold score means considering less features and

vice versa.

As we can see from Fig. 5, the optimal feature selection

threshold is 0.02, at which the accuracy reaches its maxi-

mum, but after which the accuracy starts to decrease. The

feature selection threshold is a hyperparameter whose

optimal was found by running experiments with different

thresholds.

4.4 Weighted extreme learningmachine

We apply the WELM algorithm in place of the ELM in

our multi-layer intrusion detection system. The intuition

behind using WELM is that UNSW and NSL-KDD have

imbalanced class instances for some of the attack classes.

Adding the class weights on top of ELM is a small over-

head. The only change made to the ELM to get WELM is

that Eq. 9 is changed to:

H† =

(

I

C
+ HTWH

)−1

HT (13)

And the MSE loss is calculated as:

E =
1

2

N
∑

j=1

(

L
∑

i=1

βig(wi.xj + bi) − tj

)2

+ CW
1

2
||β||2 (14)

where W is a n × n diagonal matrix, where each diag-

onal element is associated with the corresponding train-

ing sample. Each training instance is assigned a weight

according to the class it belongs to and the number of

instances belonging to that class. We use the weighting

scheme W2 as used in [46]. We show the results of using

WELM on the UNSW and NSL-KDD datasets and com-

pare the results with ELM in Tables 5 and 6, respectively.

As shown in the tables, we get a very small performance

boost by using WELM in place of ELM. Also, WELM

plays its critical role in the imbalance classification prob-

lem by increasing the detection accuracy of attacks with

comparatively fewer number of instances. But, there is

no increase in performance for detecting backdoor, shell-

code, and worms in Table 5. This might be because their

Table 3 Proposed system performance on the KDDcup99

dataset

Attacks Accuracy (in %) No. of features

Normal 100 13

DoS 100 14

Probe 99.25 15

R2L 98.50 14

U2R 100 14

Average 99.55 14

Softmax 99.76 -

No feature selection 95.43 41
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Fig. 3 Results on the KDDcup99 dataset

detection accuracy is already close to 100%, and since the

dataset is quite large, some instances are bound to be mis-

classified. Also, note that the rest of system remains the

same. So, the number of features selected by the Extra-

Trees classifier is the same for both the systems (with ELM

or WELM).

Overall, there is a small noticeable boost in performance

of the multi-layer intrusion detection systemwithWELM.

Furthermore, the increase in overhead is negligible since

the class instance weight matrixW is easy to calculate and

can be determined before training begins.

5 Discussion
The proposed method performs very well on the stan-

dard benchmark intrusion detection datasets. One advan-

tage of the method lies in reducing the number of

Fig. 4 Feature scores by ExtraTrees for DoS attack in the UNSW dataset
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Table 4 Feature scores by ExtraTrees classifier for DoS attack in

the UNSW dataset

Features Scores

is_ftp_login 0.000429706

ct_ftp_cmd 0.000555861

trans_depth 0.003995418

is_sm_ips_sport 0.004405755

ct_flw_fttp_mthd 0.004472606

swin 0.005013446

state 0.007730736

ct_state_ttl 0.009660607

response_body_len 0.011350468

sloss 0.012895271

dloss 0.013546359

dpkts 0.014662184

dtcpb 0.014982101

synack 0.016172927

dinpkt 0.016299402

spkts 0.016379687

tcprtt 0.016397195

djit 0.016837784

sjit 0.017782288

ct_src_dport_ltm 0.020360274

stcpb 0.021925168

sttl 0.021994751

ackdat 0.02219905

ct_src_ltm 0.023103935

dmean 0.0231134

ct_dst_ltm 0.02347893

sinpkt 0.02396061

dbytes 0.024039132

service 0.024705258

dur 0.02809861

dload 0.029781236

rate 0.030608379

dwin 0.031516652

sttl 0.034695868

sload 0.040628565

ct_dst_sport_ltm 0.043927692

ct_dst_src_ltm 0.049993128

ct_srv_dst 0.055067287

ct_svr_src 0.055864165

sbytes 0.073172393

smean 0.094195716

features required to train a model by using a suit-

able feature selection technique such as the ExtraTrees

classifier. To train a DL model, a lot of features are

required since the number of parameters to be trained

is more. However, in the case of ELM, a single hid-

den layer has fewer parameters which requires less

features. Hence, feature selection can be beneficial in

this case.

Also, DL methods require large amounts of data for

training. But, our model is more data and memory effi-

cient and makes use of less training data due to parallel

processing and using single layer feedforward neural net-

works. However, if given enough data to train, some DL

methods could give better performance.

Furthermore, DL methods are not able to generalize

well to change in datasets. They need to be modified and

trained differently if another dataset does not belong to

the same distribution as the dataset it has been trained on.

On the other hand, our model can be applied to another

dataset without any modifications as shown above.

Overall, the proposed model uses considerably less

number of features, with real-time detection due to

parallel implementation, and gives state-of-the-art per-

formance for intrusion detection on the UNSW and

NSL-KDD benchmark datasets with an ensemble of

ELM/WELM aggregated by a softmax layer.

6 Conclusion
Our proposed intrusion detection system is able to

outperform all recent machine learning-based intrusion

detection systems in terms of detection accuracy. We

tested our model exhaustively on two of the most widely

used datasets, UNSW and KDDcup99. We also compare

our method with machine learning-based intrusion detec-

tion systems. The comparisons are fair and unbiased since

all models have been compared on the same benchmark

datasets. The three stage pipeline of the model can be

summarized as follows: ExtraTrees classifier for feature

selection (for feature scores and ranking) for each type of

attack separately, ensemble of ELMs (for fast and accu-

rate training) where each ELM detects one type of attack

with its own feature set, and finally, the softmax layer

for combining and fine tuning the results (for dispens-

ing with ambiguity and increasing precision) for achieving

greater accuracy and generating a interpretable proba-

bilistic output. Our system attains accuracies of 98.24%

and 99.76% on the UNSW and KDDcup99 datasets,

respectively. Performance is increased even further by

using WELM in place of ELM for imbalance classifica-

tion, by incurring a small overhead. Also, the ELM that

distinguishes between normal traffic and potential attacks

enables the system to detect new attacks, but the sys-

tem cannot determine the new type of attack if it is not

trained on it.
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Fig. 5 Performance based on feature score threshold selection

Table 5 Proposed system based on WELM performance on the

UNSW dataset

Attacks Accuracy with ELM Accuracy with WELM

Normal 91.26 93.54

Generic 98.16 98.23

Exploits 89.13 90.12

Fuzzers 91.30 91.47

DoS 94.75 94.90

Reconnaissance 94.60 95.33

Analysis 98.96 99.26

Backdoor 99.11 99.11

Shellcode 99.40 99.40

Worms 99.92 99.92

Average 95.66 96.12

Softmax 98.24 98.69

Table 6 Proposed system based on WELM performance on the

KDDcup99 dataset

Attacks Accuracy with ELM Accuracy with WELM

Normal 100 100

DoS 100 100

Probe 99.25 99.25

R2L 98.50 99.33

U2R 100 100

Average 99.55 99.71

Softmax 99.76 99.83
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