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Abstract. Identifying gearbox damage categories, especially for early faults and combined faults, 
is a challenging task in gearbox fault diagnosis. This paper presents multiple classifiers based on 
multi-layer neural networks (MLNN) to implement vibration signals for fault diagnosis in 
gearbox. A MLNN-based learning architecture using deep belief network (MLNNDBN) is proposed 
for gearbox fault diagnosis. Training process of the proposed learning architecture includes two 
stages: A deep belief network is constructed firstly, and then is trained; after a certain amount of 
epochs, the weights of deep belief network are used to initialize the weights of the constructed 
MLNN; at last, the trained MLNN is used as classifiers to classify gearbox faults. 
Multidimensional feature sets including time-domain, frequency-domain features are extracted to 
reveal gear health conditions. Experiments with different combined faults were conducted, and 
the vibration signals were captured under different loads and motor speeds. To confirm the 
superiority of MLNNDBN in fault classification, its performance is compared with other 
MLNN-based methods with different fine-tuning schemes and relevant vector machine. The 
achieved accuracy indicates that the proposed approach is highly reliable and applicable in fault 
diagnosis of industrial reciprocating machinery. 
Keywords: neural network, deep belief network, gearbox, vibratory signal. 

1. Introduction 

Gearboxes play crucial roles in the mechanical transmission systems, are used to transmit 
power between shafts and are expected to work 24 hours a day in the production system. Any 
failures with the gearboxes may introduce unwanted downtime, expensive repair and even human 
casualties. Therefore it is essential to detect and diagnose faults in the initial stage [1-4]. As an 
effective component for the condition-based maintenance, the fault diagnosis has gained much 
attention for the safe operations of the gearboxes. The gearbox conditions can be reflected by such 
measurements as vibratory, acoustic, thermal, electrical and oil-based signals [5-8]. Among above 
symptoms, the vibration analysis is the most commonly-used technique for the reason that every 
machine is considered to have a normal spectrum until there is a fault, where the spectrum changes 
[9, 10]. The vibration signals have been proven effective to reflect the healthy condition of the 
rotating machinery. 

Various studies exist, of vibrations-based algorithms for detection and diagnostics of faults in 
gearboxes, among these are support vector machines and artificial neural network. A support 
vector machines based envelope spectrum was proposed by Guo et al. [11] to classify three health 
conditions of the planetary gearboxes. An intelligent diagnosis model based on wavelet support 
vector machine (SVM) and immune genetic algorithm (IGA) was proposed for the gearbox fault 
diagnosis [12]. The IGA was developed to determine the optimal parameters for the wavelet SVM 
with the highest accuracy and generalization ability. Tayarani-Bathaie et al. [13] suggested a 
dynamic neural network to diagnose the gas turbine fault. The artificial neural network combining 
with empirical mode decomposition was applied for automatic bearing fault diagnosis based on 
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vibration signals [14]. Among all the typical classifiers, the support vector classification (SVC) 
family (i.e., the standard SVC and its variants) attracted much attention due to their extraordinary 
classification performance. According to the researches, the SVM family received good results in 
comparison with the peer classifiers. 

Multi-layer neural networks, typically used in supervised learning to make a prediction or 
classification. As Y. Bengio in the literature [15, 16] reported, the gradient-based training of 
supervised multi-layer neural networks (starting from random initialization) gets easily stuck in 
“apparent local minima or plateaus”. That is to restrict its application for gearbox fault diagnosis. 
Since 2006, deep networks have been applied with success in classification tasks and other fields 
such as in regression, dimensionality reduction, and modeling textures [17], but few were used for 
the fault diagnosis cases. Tran et al. [18] introduced the application of the deep belief networks to 
diagnose reciprocating compressor valves. Tamilselvan and Wang [19] employed the deep belief 
learning based health state classification for iris dataset, wine dataset, Wisconsin breast cancer 
diagnosis dataset, and Escherichia coli dataset. The limited reports show the deep learning 
structure for the fault diagnosis with commonly one modality feature. 

In this work, we combine deep learning strategies with multi-layer neural network for the 
identification and classification of gearbox faults, where complicated faults are considered that a 
fault signal usually includes one or several basic faults. The typical multi-layer neural network 
(MLNN) [20] is used firstly for the identification and classification of gearbox faults, where batch 
training strategy is used to train the neural network. Then several fine-tuning schemes for 
improving the typical multi-layer neural network by preventing co-adaptation of feature detectors 
are suggested for the gearbox faults identification and classification. At last, a MLNN-based deep 
learning technique is proposed, where the weights of neural network are initialized using deep 
belief network (DBN) [21]. 

To validate the robustness of the MLNN-based approaches, a fault condition pattern library is 
constructed, which has 58 kinds of combined fault patterns. 20 test cases are used and each test 
case has 12 kinds of condition pattern that are randomly selected from the pattern library. A large 
number of experiments show the multi-layer neural network with DBN (MLNNDBN) has most 
excellent performance and achieves to avoid falling into “apparent local minima or plateaus”. 

The rest of this paper is structured as follows. Section 2 introduces the used methodologies 
including multi-layer neural networks and proposed MLNN-based learning architecture using 
deep belief network; Section 3 introduces feature representations of vibratory signals. Section 4 
presents the implementation of the classifier based on multi-layer neural network; Section 5 
introduces experimental setup; results and discussion are presented in Section 6. Finally some 
conclusions are drawn. 

2. Methodologies 

In this section, multi-layer neural network is firstly introduced, and then several fine-tuning 
schemes are explained. At last, MLNN-based learning architecture using deep belief network 
(MLNNDBN) is proposed for gearbox fault diagnosis. 

2.1. Multi-layer neural network 

Multi-layer neural network is typically used in supervised learning to make a prediction or 
classification, through a series of layers, each of which combines an affine operation and a 
non-linearity. A typical set of equations for multi-layer neural network [17, 20] is the following. 
As illustrated in Fig. 1, layer  computes an output vector  using the output  of the 
previous layer, starting with the input = ℎ : = tanh( + ), (1)
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with parameters  (a vector of offsets) and  (a matrix of weights). The tanh(·) is can be 
replaced by sigm(u) = 1 (1 + )⁄ = (tanh( ) + 1)/2 or other saturating non-linearities [17]. 
The top layer output  is used for making a prediction and is combined with a supervised target 

 into a loss function ( , ), typically convex in + . The output layer might have a 
non-linearity different from the one used in other layers, e.g., the softmax: 

= ∑  , (2)

where  is the th row of ,  is positive and ∑ = 1. The softmax output  can be used 
as estimator of ( = | ) , with the interpretation that  is the class associated  
with input pattern . In this case one often uses the negative conditional log-likelihood  L( , y) = −log ( = | ) = −log  as a loss, whose expected value over ( , ) pair is to be 
minimized [17]. The training of a MLNN is usually accomplished by using back propagation (BP) 
algorithm that involves two phases [20]: 

– Forward phase: During this phase the free parameters of the network are fixed, and the input 
signal is propagated through the network of Fig. 1 layer by layer. The forward phase finishes with 
the computation of an error signal: =  − , (3)

where  is the desired response and  is the actual output produced by the network in response 
to the input . 

– Backward phase: During this second phase, the error signal  is propagated through the 
network of Fig. 1 in the backward direction. It is during this phase that adjustments are applied to 
the free parameters of the network so as to minimize the error  in a statistical sense. 

 
Fig. 1. Multi-layer neural network 

2.2. Existing fine-tuning schemes for typical MLNN 

As Y. Bengio in the literature [15, 16] reported, the gradient-based training of supervised 
multi-layer feed-forward neural network gets easily stuck in “apparent local minima or plateaus” 
(starting from random initialization). To improve the global exploration ability of MLNN, and 
avoid falling into the local minima, G. E. Hinton et al. proposed overfitting can be reduced to 
improve neural network by preventing co-adaptation of feature detectors [22]. The following 
several fine-tuning schemes try to improve the performance of the typical MLNN: 
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Scheme 1: During stochastic gradient descent procedure for training the networks on 
mini-batches of training cases, a penalty term is added that is normally used to prevent the weights 
from growing too large. The deltas of updating weights multiply by a penalty factor. Finally, the 
delta rule for updating a weight assigned to a given neuron is as follows: ∆ = (∆ + ), (4)

where  is a learning rate,  is the penalty factor. They are set to 2 and 1×10-4, respectively in this 
case. 

Scheme 2: On each presentation of each training case, each hidden unit is randomly omitted 
from the network with a probability of 0.5, which is called “dropout” by G. E. Hinton [22]. 

Scheme 3: Activation function of hidden layers uses sigmoid function. Learning rate note: 
typically needs to be lower when using “sigm” activation function and non-normalized inputs. So 
learning rate is set to 1 for this case. 

Scheme 4: output unit use “softmax” function. 
In this work, we also evaluate the above fine-tuning schemes for gearbox fault diagnosis. 

2.3. MLNN-based learning architecture using deep belief network (MLNNDBN) 

In this subsection, we propose a new fine-tuning strategy to improve the performance of typical 
MLNN. Training process of the proposed learning architecture includes two stages: A deep belief 
network is constructed firstly, and then is trained; after a certain amount of epochs, the weights of 
deep belief network are used to initialize the weights of the constructed MLNN; at last, the trained 
MLNN is used as classifiers to classify gearbox faults. The outline of MLNN-based learning 
architecture using deep belief network is as Fig. 2. 

Construct MLNN and Initialize  it use DBN`s weights

Classify and  identify faults pattern

Preprocess vibration signal    

Construct DBN and pre-train 
for MLNN

Train MLNN

Fig. 2. Outline of MLNN-based learning  
architecture using deep belief network 

 
Fig. 3. Deep belief network 

 

Deep belief networks (DBNs) [23] can be viewed as a composition of simple learning modules 
each of which is a restricted type of Boltzmann machine that contains a layer of visible units that 
represent the data and a layer of hidden units that learn to represent features that capture 
higher-order correlations in the data. It is a model in which the top two hidden layers form an 
undirected associative memory (see Fig. 3) and the remaining hidden layers form a directed 
acyclic graph that converts the representations in the associative memory into observable variables 
such as the pixels of an image. The two layers are connected by a matrix of symmetrically 
weighted connections, , and there are no connections within a layer. Given a vector of activities 

 for the visible units, the hidden units are all conditionally independent so it is easy to sample a 
vector, ℎ, from the factorial posterior distribution over hidden vectors, ( | , ). It is also easy 
to sample from ( | , ). By starting with an observed data vector on the visible units and 
alternating several times between sampling from ( | , ) and ( | , ), it is easy to get a 
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learning signal. This signal is simply the difference between the pairwise correlations of the visible 
and hidden units at the beginning and end of the sampling.  

The key idea of deep belief nets is that the weights, , learned by a restricted Boltzmann 
machine define both ( | , ), and the prior distribution over hidden vectors, ( , ), so the 
probability of generating a visible vector, , can be written as: ( ) = (ℎ| ) ( |ℎ, ). (5)

The training algorithm for DBNs proceeds as follows. Let  be a matrix of inputs, regarded as 
a set of feature vectors. 

1) Train a restricted Boltzmann machine (RBM, see its details in the literature [24]) on  to 
obtain its weight matrix, . Use this as the weight matrix for between the lower two layers of the 
network. 

2) Transform  by the RBM to produce new data ′. 
3) Repeat this procedure with ← ′ for the next pair of layers, until the top two layers of the 

network are reached. 

3. Feature representations of vibratory signals 

The gearbox condition can be reflected by the information included in different frequency and 
time domain. The features in frequency and time domain are obtained from the set of signals 
obtained from the measurements of the vibrations at different speeds and loads, which can be used 
as input parameters for the multi-layer neural network. 

3.1. Time-domain feature extraction 

The time-domain signal collected from a gearbox usually changes when damage occurs in a 
gear or bear. Both its amplitude and distribution may be different from those of the time-domain 
signal of a normal gear or bear. Root mean square reflects the vibration amplitude and energy in 
time domain. Standard deviation, skewness and kurtosis may be used to represent the time series 
distribution of the signal in the time domain.  

First, four time-domain features, namely, standard deviation, mean value, skewness and 
kurtosis are calculated. They are defined as follows. 

1) Mean value: 

̅ = 1 ( ). (6)

2) Standard deviation: 

= 1 ( ( ) − ̅) . (7)

3) Skewness: 

= ( − ̅) . (8)

4) Kurtosis: 
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= 1 ( ( ) − ̅) . (9)

3.2. Frequency-domain feature extraction 

The time domain signal was multiplied by a Hanning window to obtain the FFT spectrum. The 
spectrum was divided in multiple bands, and the root mean square value (RMS) was calculated 
for each. The RMS value of each band is used as feature representation in the spectrum domain. 
With the objective of reducing the amount of input data the spectrum was split in multiple bands, 
because with this number of bands the root mean square (RMS) values keep track of the energy 
in the spectrum peaks [25]. RMS value is evaluated with Ep. (10), where  is the number of 
samples of each frequency band: 

= ( ). (10)

Vectors of the features of the preprocessed signal are formed as follows:  RMS values, 
standard deviation, skewness, kurtosis, rotation frequency and applied load measurements, which 
are used as input parameters for neural networks. The outline of feature representation of vibratory 
signals is as Fig. 4. In this work, the frequency range is 0 to 22050 Hz and the size of the data 
vector in the frequency is 18000 samples. The spectrum is divided in  frequency bands, = 251. 

 
Fig. 4. Feature representation 

4. Implemented classifier based on multi-layer neural network 

4.1. Typical MLNN-based classifier 

To validate the performance of the proposed MLNNDBN-based classifier for gearbox fault 
diagnosis, we firstly implement the classifier based on typical MLNN. A batch training strategy 
is used to train the neural network, where the weights of nets are shared by a batch of training 
samples with mini batches of size. In other word, after training the neural network with a batch of 
samples, its errors, weights and biases are updated. 

After performing a series of parameter tunings, a net of typical MLNN with 3 layers is 
constructed as follows: 256 inputs, 12 outputs, 1 hidden layer of 80 neurons, 1 output layer of 12 
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neurons; all neurons use the tan-sigmoid as the transfer function. The learning rate and momentum 
of the network are set to 2, 0.5, respectively. Activation function of hidden layers is tanh function, 
and that of output unit is sigmoid function. The size of batch training is 100. The number of 
samples is 12000. The number of iteration of training is 85. The training of the network is 
accomplished by using back propagation (BP) algorithm. The pseudo-code of the MLNN-based 
classifier is as Fig. 5. 

 
Fig. 5. Pseudo-code of MLNN-based classifier 

4.2. MLNNDBN-based classifier 

As above described, DBN is employed to initialize the weight of MLNN. After pre-training to 
use DBN, the weights of MLNN are initialized to use the weights of DBN. The pseudo-code of 
the MLNNDBN-based classifier is indicated in Fig. 6. After performing a series of parameter 
tunings, the architecture of DBN is defined as follows: Input layer: 256 neurons; two hidden  
layers, each one has 30 neurons; the size of batch training and learning rate are set to 100 and 1, 
respectively. After a large number of trials, it is suitable that the number of iteration of  
pre-training is 1.  

The architecture of MLNN used here is defined as follows: input layer: 256 neurons; two 
hidden layers, each one has 30 neurons; 1 output layer of 12 neurons; all neurons of the neural 
network use the sigmoid as the transfer function; the learning rate, the size of batch training and 
the number of iteration of training are set to 1, 100, and 85, respectively. 

5. Experimental setup 

In this subsection, we firstly explain the gearbox fault diagnosis experimental platform. Fig. 7 
indicates the internal configuration of the gearbox and positions for accelerometers. There are 3 
shafts and 4 gears composing a two-stage transmission of the gearbox. An input gear ( = 27, 
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modulus = 2, Φ  of pressure = 20) was installed on the input shaft. Two intermediate gears  
( = = 53) were installed on an intermediate shaft for the transmission for the transmission 
between the input gear and the output gear ( = 80, installed on the output shaft). The faulty 
components used in the experiments included gears , , , , bearing , , ,  as 
labeled in Fig. 7(a). Test’s conditions are described in the Table 1. The vibration signal is obtained 
from the measurements of a vertically allocated accelerometer in the gearbox case.  

 
Fig. 6. Pseudo-code of MLNNDBN-based classifier 

 
a) 

 
b) 

Fig. 7. a) The internal configuration of the gearbox; b) positions for accelerometers 

Table 2 and 3 present the description of each fault condition of each component of the gearbox 
used in the experiment. We call them as basic condition pattern. In our experiment, a test case 
includes several basic condition patterns, which is a combination of multiple component faults. 
For example, the test case A shown in Table 4, includes following information of faults: 
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Gear : Gear with pitting on teeth; 
Gear : Gear with face wear 0.5 [mm]; 
Bear : Bearing with 4 pitting on outer ring; 
Bear : Bearing with 2 pitting on outer ring； 
Gear  and , Bear  and : Normal. 

Table 1. Test’s conditions 
Characteristic (C1) Value 

Sample frequency 44100 [Hz] (16 bits) 
Sampled time 10 [s] 
Power 1000 [W] 
Minimum speed 700 [RPM] 
Maximum speed 1600 [RPM] 
Minimum load 250 [W] 
Maximum load 750 [W] 
Speeds 1760, 2120, 2480, 2840, 3200 [mm/s] 
Loads 375, 500, 625, 750 [W] 
Number of loads per test 10 
Type of accelerometer Uni-axial 
Trademark ACS 
Model ACS 3411LN 
Sensibility 330 [mV/g] 

To evaluate the performance of the proposed method for gearbox fault diagnosis, first, we 
constructed 12 condition patterns as listed in Table 4. Each pattern with 4 different load conditions 
and 5 different input speeds were applied during the experiments. For each pattern, load and speed 
condition, we repeated the tests for 5 times. In each time of the test, the vibratory signals were 
collected with 24 durations each of which covered 0.4096 sec. 

Table 2. Nomenclature of gears fault 
Designator Description 

1 Normal 
2 Gear with face wear 0.4 [mm] 
3 Gear with face wear 0.5 [mm] 
4 Gear with chafing in tooth 50 % 
5 Gear with chafing on tooth 100 % 
6 Gear with pitting on tooth depth 0.05 [mm], width 0.5 [mm], large 0.05 [mm] 
7 Gear with pitting on teeth 
8 Gear with incipient fissure on 4 mm teeth to 25 % of profundity and angle of 45° 
9 Gear teeth breakage 20 % 
10 Gear teeth breakage 50 % 
11 Gear teeth breakage 100 % 

Table 3. Nomenclature of bears fault 
Designator Description 

1 Normal 
2 Bearing with 2 pitting on outer ring 
3 Bearing with 4 pitting on outer ring 
4 Bearing with 2 pitting on inner ring 
5 Bearing with 4 pitting on inner ring 
6 Bearing with race on inner ring 
7 Bearing with 2 pitting on ball 
8 Bearing with 2 pitting on ball 
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In addition, to further validate the performance of the proposed approaches, a fault condition 
pattern library was constructed, which has 58 kinds of condition pattern based on the basis patterns 
described in Table 2 and Table 3. Each condition pattern has more than one basic gearbox fault. 
20 test cases are used to test the robustness of the all MLNN-based methods; each test case has 12 
kinds of condition pattern that are randomly selected from the pattern library. 

Table 4. Condition patterns of the experiment 

No. patterns Gear faults Bear faults  
A 7 3 1 1 1 2 3 1 
B 7 3 6 8 1 1 1 1 
C 5 5 1 1 6 7 2 1 
D 7 1 1 1 6 7 2 1 
E 1 2 1 1 1 6 3 1 
F 1 3 1 1 1 5 3 1 
G 2 9 1 1 6 7 3 1 
H 5 5 1 1 6 3 2 4 
I 2 6 1 1 6 5 2 1 
J 1 11 1 1 1 3 4 1 
K 1 1 1 1 1 6 3 1 
L 1 1 1 1 1 1 3 1 

6. Results and discussion 

The training is done in first instance with the 12 patterns indicated in Table 4, using data with 
12000 sample signals, where sixty percent of the samples set are used for the training of all 
MLNN-based approaches, and forty percent are used for testing. Table 5 shows their classification 
accuracy of the test case, including SVM classifier. We can see six MLNN-based approaches are 
effective for this test case, and are far better than SVM. The proposed MLNNDBN has 98.1 % 
classification accuracy and is superior to other MLNN-based approaches. 

Table 5. Classification accuracy of test case indicated Table 4 
Classification 

accuracy 
MLNNDBN MLNN MLNNScheme1 MLNNScheme2 MLNNScheme3 MLNNScheme4 SVM 

98.1 % 97.8 % 96.3 % 97.6 % 98.0 % 97.2 % 96.5 % 

One test case cannot reflect the reliability and robustness of an algorithm. So to further validate 
the performance of the proposed approach, a fault condition pattern library was constructed. 20 
test cases are used to test the robustness of the all MLNN-based methods, where each test case has 
12 kinds of condition pattern that are randomly selected from the defined pattern library. 

The experiment results of 20 test cases using above described seven learning techniques 
respectively are shown in Table 6. Among 20 test cases, the MLNN (typical multi-layer neural 
networks) has 6 test cases with bad classification accuracy, although it is effective for other 14 
test cases whose classification accuracies are larger than 90 %. The classification accuracy of 
MLNN are even smaller than SVM for 4 test cases (#1, #4, #7 and #13). It is obviously that typical 
MLNN gets easily stuck in “apparent local minima or plateaus” in some cases and has not good 
robustness for gearbox faults diagnosis. 

Four fine-tuning schemes presented in subsection 2.2 (MLNNScheme1, MLNNScheme2, 
MLNNScheme3 and MLNNScheme4) improve obviously the performance of the typical MLNN. 
Compared with the typical MLNN, MLNNScheme1 has 13 test cases, MLNNScheme2 has 14 test cases, 
and MLNNScheme3 has 15 test cases to be superior to it. MLNNScheme4 only improves that of the 
typical MLNN in two test cases (#4 and #12). However, the classification rates of each fine-tuning 
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scheme are smaller than 80 % for 5 test cases (#1, #4, #7, #13 and #20). They cannot still avoid 
falling into “apparent local minima or plateaus”. 

Classification accuracies of MLNNDBN for 20 test cases are presented in Table 6. The smallest 
one is 94.8 %, which is very excellent performance for gearbox fault diagnosis. Especially for the 
#1, #4, #7, #13 and #20 test case, the suggested MLNNDBN has true positive classification rate 
larger than 96 %, in which other MLNN-based methods cannot all effectively classify them. The 
mean, standard deviation, least, and most value of classification rate for 20 test cases are also 
indicated in Table 6. Experiment results in Table 6 show MLNNDBN achieves to avoid falling into 
“apparent local minima or plateaus”. 

Table 6. Classification accuracy of 20 test cases from the pattern library 
No. 1 2 3 4 5 6 7 8 

MLNN 54.5 % 99.0 % 99.0 % 62.9 % 99.0 % 98.8 % 67.4 % 98.9 % 
MLNNScheme1 71.2 % 99.3 % 90.3 % 69.9 % 99.0 % 99.0 % 63.4 % 99.4 % 
MLNNScheme2 67.3 % 99.4 % 98.6 % 68.7 % 99.2 % 96.7 % 68.0 % 96.4 % 
MLNNScheme3 65.7 % 99.3 % 99.2 % 68.7 % 99.3 % 99.3 % 60.0 % 99.3 % 
MLNNScheme4 47.9 % 97.7 % 96.3 % 75.9 % 96.8 % 97.3 % 59.7 % 96.5 % 

SVM 73.5 % 96.1 % 96.8 % 95.5 % 98.0 % 73.2 % 96.1 % 96.8 % 
MLNNDBN 98.1 % 99.1 % 99.0 % 99.0 % 99.1 % 98.8 % 98.6 % 99.0 % 

No. 9 10 11 12 13 14 15 16 
MLNN 98.7 % 99.1 % 99.3 % 96.1 % 51.2 % 98.9 % 97.0 % 98.7 % 

MLNNScheme1 96.9 % 38.9 % 99.3 % 99.1 % 54.4 % 99.2 % 96.0 % 99.5 % 
MLNNScheme2 98.9 % 97.3 % 99.4 % 99.3 % 44.2 % 99.1 % 97.9 % 94.7 % 
MLNNScheme3 98.8 % 90.1 % 99.0 % 99.2 % 53.1 % 98.8 % 98.1 % 99.0 % 
MLNNScheme4 97.2 % 97.7 % 98.4 % 96.8 % 45.7 % 97.2 % 94.1 % 94.6 % 

SVM 96.1 % 96.0 % 97.3 % 96.4 % 94.9 % 96.7 % 96.5 % 97.0 % 
MLNNDBN 98.7 % 99.3 % 98.8 % 99.0 % 96.0 % 97.8 % 98.5 % 99.3 % 

No. 11 12 13 14 Mean Std. Least Most 
MLNN 98.1 % 89.1 % 93.6 % 71.8 % 88.6 % 16.7 % 51.2 % 99.3 % 

MLNNScheme1 99.5 % 97.1 % 95.3 % 76.3 % 87.1 % 18.2 % 38.9 % 99.5 % 
MLNNScheme2 99.2 % 91.5 % 95.6 % 72.4 % 89.2 % 15.9 % 44.2 % 99.4 % 
MLNNScheme3 89.3 % 92.6 % 95.3 % 75.6 % 89.0 % 15.3 % 53.1 % 99.3 % 
MLNNScheme4 96.3 % 89.1 % 89.9 % 71.2 % 86.8 % 15.2 % 45.7 % 98.4 % 

SVM 95.1 % 96.3 % 93.3 % 96.4 % 94.9 % 6.09 % 73.2 % 98.0 % 
MLNNDBN 98.3 % 94.8 % 95.6 % 98.7 % 98.3 % 1.3 % 94.8 % 98.7 % 

In addition, the MLNNDBN method was compared with “shallow” learning algorithms SVM. 
As for the SVM, one of the most important representatives in the “shallow” learning community, 
good classification results can be found for the gearbox fault diagnosis, which is similar with some 
existing researches [26]. The algorithm SVM is applied using the LibSVM [27]. The parameters 
for SVM are chosen as = 1  and core (kernel) given by a radial basis  ( , ) = exp (− | − | ) function where = 0.5. These parameters were found through a 
search, aiming at the best model for the SVM. Compared with other MLNN-based methods and 
SVM, we can see MLNNDBN has most excellent performance and is highly reliable.  

Fig. 8 shows the convergence process of error rate on the test case indicated in Table 4 for 
different MLNN-based classifiers. After about 20 epochs of training, the error rate of each method 
is less than 0.1. However, it is obviously to exist “overfitting” while undergo more than 20 epochs 
of training except for MLNNDBN. Especially MLNNscheme2 has serious “overfitting” after 60 epochs 
of training. From Fig. 8, we can see that MLNNDBN is also robustness for gearbox fault diagnosis 
and overcome the problem of “overfitting”. 

Confusion matrix is an effective and visualization tool of the performance of a classification 
algorithm. Each column of the confusion matrix represents the instances in a predicted class 
(output class), while each row represents the instances in an actual class (target class). Fig. 9 
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presents the confusion matrix using MLNNDBN for 12 patterns indicated in Table 4. As shown in 
Fig. 9, it can be observed that the global percentage of true positive classification of the 12 
condition patterns of faults is 98.1 % and the total error is 1.9 %. The smallest percentage of true 
positive classifications is obtained for type 3; this is because this kind of condition patterns with 
6 basic faults. This is evident by observing the confusion matrix in which 34 times of type 4 are 
classified as type 3, noticing that mostly there is confusion between type 4 and type 3, in which 
they have 4 same basic faults. The percentage of true positive classification of Type 6, 7 and 12 
are all 100 %. Confusion matrix in Fig. 9 shows the proposed MLNNDBN has very high percentage 
of true positive classification for the test case. 

 
Fig. 8. The error rate on the test case indicated in Table 5 for different MLNN-based classifiers 

 
Fig. 9. Confusion matrix using MLNNDBN 

All above experiments indicate MLNN-based learning technologies are efficient and effective 
for gearbox faults diagnosis. Among them, MLNNDBN has most effective performance and best 
robustness, which is highly reliable and applicable in fault diagnosis of industrial reciprocating 
machinery. 

7. Conclusions 

In this paper, multiple classifiers based on multi-layer neural network for the vibration 
measurements have been presented to diagnose the fault patterns of the gearbox. A MLNN-based 
learning architecture using deep belief network was proposed for gearbox fault diagnosis, which 
achieves to avoid falling into “apparent local minima or plateaus” and is highly reliable and 
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applicable in fault diagnosis of gearbox. Other MLNN-based learning technologies are efficient 
and effective for gearbox faults diagnosis, however they may be fall into “apparent local minima 
or plateaus” in some cases. This type of classifiers could make a contribution to maintenance 
routines for industrial systems, towards lowering costs and guarantying a continuous production 
system, and with the appropriate equipment, online diagnostics could be performed. With these 
methods, complex fault combination with different component fault can be classified. These ways 
the implemented classifier could be utilized with ease in other kinds of rotating machinery in 
general for the classification and diagnostics of mechanical faults from their initial stages and in 
an extended range of cases, using the vibration signals, allowing this way to have the most efficient 
control and planning of maintenance of rotating machines. For evaluating the proposed 
MLNN-based methods, the gearbox fault diagnosis experiments were also carried out using SVM 
technique. The results show that the proposed MLNNDBN-based methods are superior to SVM 
technique. 
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