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Abstract—Perception of the surrounding is a crucial task in
most of the autonomous driving scenarios. For this reason most
vehicles are equipped with a broad range of sensors like lidar,
radar, cameras and ultrasound to sense the space around the
car. On the other end, planning algorithms need a simple and
usable representation of the obstacle around. One of the biggest
drawbacks of such a wide range of sensors is the need to resolve
conflicting information and identify false positives. What we
propose in this paper is an effective framework for sensor fusion
and occupancy grid creation capable of retrieving a uniform
representation of the ambient around the vehicle and able to
handle conflictual information from different sensors.
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I. INTRODUCTION

Map building has been a research topic for many years

in the robotic field [1] [2] [3]. With the uprising interest on

autonomous driving most of the robotics approaches are being

transferred to the automotive field. However vehicles present

nevertheless some differences; they are generally bigger than

mobile robots, move faster, and can carry different type of

sensors to perceive the environment. In particular almost all

autonomous cars use lidar sensor as their main data source

[4], [5]; while also integrating cameras [6], sonars and radars

[7].

Different sources provide heterogeneous representation of

the surrounding, at different data rate and also with different

accuracy. Lidar point clouds have low frame rate but offer a

360 degrees information while solid state lasers offer only a

few points at high speed. Stereo cameras also provide a 3D

representation of their field of view, but they are generally less

accurate and error prone than laser and radar.

When multiple sensors are available informations need to

be fused into a uniform representation of the world around the

car before they can be feed to the planning algorithms. In par-

ticular it is important to properly weight different information

according to their reliability and resolve conflicting measures.

It is also mandatory to properly filter the street surface but

also include low height obstacles which needs to be avoided

by the car.

Fig. 1. Picture of the testing car. Perception sensors are visible on the roof
(Velodyne and cameras) and on the front bumper ( radars and laser).

The goal of this paper is to show an implementation of a

toolchain for an occupancy grid creation leveraging multiple

sensors. In particular, we describe how we managed to fuse

different sources like lidar, cameras and radar in a uniform grid

used by the planning system. The paper is structured as follow:

we first analyze the recent works in the field of sensor fusion

and grid mapping, next we proceed with a description of our

test setup and the proposed method for integrating data coming

from different sources. Last we will show some experimental

results achieved on our testing vehicle.

II. RELATED WORKS

As stated in the introduction the map creation problem has

its roots in the robotics field [1]; due to the robot size and

limited costs this process is generally performed using only a

few sensors [8], [10], [11].

Starting from the DARPA Grand Challenge in 2005 it has

become obvious that autonomous driving cars cannot rely

on such a simple configuration [12]. But with the increased

number of sensors we experienced also a growth in the

complexity of the task of map creation. From the results of the

first years of the century different approaches to the problem

have been proposed, in particular many researches are focused

on achieving the best possible results on a specific task like

parking [13], driving in off road scenarios [17], or using only978-8-8872-3743-6 ©2019 AEIT



Fig. 2. Schema showing the different areas covered by the sensors, only in
the forward direction for simplicity. In light green the velodyne, il light blue
the laser, in blue the stereocamera and in red the radar.

specific sensors like radar [14]. Nevertheless, during past years

some more complex and complete systems has been proposed,

[15], [16].

The general approach to the problem is to use occupancy

grid based map [18] where the space surrounding the vehicle

is divided in a grid and each box is labelled as empty or occu-

pied. More complex representations use a multiple layer map

[19] and consider also inflation area of the surrounding objects,

creating a danger zone around them. Recent approaches based

on Bayesian modelling [22] improve the current state of

occupancy grid computation, trying to guarantee an accurate

representation of obstacles, weighing in a more accurate way

the different sources and the car kinematics.

III. EXPERIMENTAL SETUP

Our experimental setup is built around a ZED One electric

car, shown in Figure 1. The vehicle is equipped with a

Velodyne VLP16 lidar mounted on the roof for 360 degrees

awareness. Other sensors are mounted around the car; we use

a symmetric configuration for front and rear detection, showed

in Figure 2. The sensors array consists of a Continental Radar,

a Leddartech M16 solid state laser and a Texas Instruments

AWR 1642 Radar. On top of the vehicle, facing forward, is

also mounted a Stereolabs ZED stereo camera.

A. Data types

All listed sensors provide information on the surrounding of

the car, but they differ in precision, field of view, and quality

of data. In particular, the lidar is the only sensor retrieving

information at 360 degrees, ranging from 3 meters to 100

meters with centimetre precision. The returned data from the

velodyne is a dense point cloud of the environment. Both radar
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Fig. 3. Detail of the sensors mounted on the front bumper, from the left
to the right, Continental radar, Leddartech M16 solid state laser and Texas
instrument radar

sensors also provide point cloud data, but in a smaller field

of view: while the AWR 1642 has a range of ±70 degrees

horizontally and ±40 degrees vertically, the Continental has

a smaller window, ranging from ±40 degrees horizontally

and ±10 degrees vertically. The advantages of those sensors,

thanks also to the mounting position, is the ability to retrieve

data at a minimum distance of 4 cm for the Texas Instruments

and 30 cm for the Continental. This, as shown in Figure 2

covers most of the blind spots of the Velodyne. The difference

between the two devices is the maximum range; the first one

can cover only 15 meters, while the second ranges up to 100

meters.

While radar and velodyne cover almost all the surrounding

of the car, the need for a faster and easily interpretable sensor

for low level safety is supplied by the Leddartech M 16

laser. This sensor returns only a sixteen points array spread

on a 100 degree horizontal field of view, with centimeter

precision. This device provides less information but can be

used as a validation system for the radar data, being more

precise and reliable. The data coming from the stereo camera,

retrieved using 3D reconstruction from two aligned images, are

the less accurate and error prone. This information provides

nevertheless a dense representation of the area in front of

the vehicle, and is the only devices with easily accessible

semantics information. For this reason data from the zed

camera are fused with the more precise coming from other

sources.

IV. PROPOSED METHOD

The process of occupancy grid creation uses data coming

from all the sensors previously listed. Before starting the

effective computation of the surrounding we need to compute

the relative position between all the sensors. To achieve this

task we use the lidar data as the reference sensor, thanks to

the 360 degrees field of view and the high precision, and align

the other pointclouds to this source. This process needs to be

performed only once, than the computed value could be hard



Fig. 4. Picture of the different layer used for the occupancy grid creation.
The first layer consists of the output layer created from all the below level.

coded in the occupancy grid algorithm which will shift each

sensor’s data accordingly.

The next phase, showed in Figure 4 consists in the creation

of one occupancy grid for each sensor. All those grids will be

translated and rotated using the previously computed transfor-

mation and finally combined in one main grid, which can be

easily used by the planning algorithms.

A. Point cloud alignment

To compute a coherent occupancy grid we need the re-

spective position of each sensor. To retrieve those values we

compute the relative position from the Velodyne sensor. This

process can be done for all sensor, in all position due to the

360 degree field of view of the lidar. The alignment process

consists, for all sensors, in a pointcloud alignment.

To compute the position of a sensor we recorded a set

of pointclouds from both the sensor and the Velodyne in

a controlled environment. In particular, we choose surfaces

which guarante the best reflection for sensors like radar and

lasers, while for stereo cameras we used a feature rich scene

where the 3D reconstruction algorithm could easily find trian-

gulation points. For each device we recorded approximately

50 pointcloud on different ambient configuration.

For each set of pointclouds we processed offline the data

computing the alignment between each pointcloud from the

lidar to the pointcloud of the sensor. From all those transfor-

mations we compute the mean root square error and remove

outliers. Finally, we used the mean of the remaining values as

the roto-traslation from one sensor to the velodyne.

The described process results extremely efficient for sensors

like cameras, where the pointcloud covers a wide field of

view and is extremely dense. Radar still provides a pointcloud

which can be aligned with the lidar data, but is more sparse

and sensible to the reflective surface. To increase the number

of points from radar we used high reflective surfaces and

we also feed the algorithm of pointcloud alignment with an

initialization value retrieved by manual measurement. In this

way the system only needed to do a minor adjustment, in

the order of 20 centimetres and a few decimals of a degree.

With this assumption the system is able to find a consistent

alignment in all the sets. We performed all the step previously

described removing outliers and using the mean value as the

position of the sensor.

LeddarTech data are more complex to handle, having only

sixteen points it’s not possible to use classical point cloud

alignment. First we converted the sixteen value in a set of

points in a 3D environment using Equation 1. The height is

estimated to be constant thanks to the horizontal mounting of

the system.

{

xi = sin(40 + rayi ∗ (100/16)) ∗ distance

yi = cos(40 + rayi ∗ (100/16)) ∗ distance
(1)

To align this sparse sets of points with the Velodyne we

moved the car in front of a flat surface at 10 meters. Next we

interpolated the LeddarTech points creating a surface which is

than aligned with the lidar pointcloud. Similarly to the radar

we feed the algorithm with initialization values, in this way

we only did some minor adjustment to calibrate the system.

B. Velodyne VLP 16 processing

Data coming from Velodyne need to be processed and

filtered to be used in computing the occupancy grid. This

process is divided in different steps.

First the pointcloud needs to be straightened; the sensor is

indeed mounted slightly oblique, facing forward. This choice

guarantees a better field of view in the moving direction,

covering a closer area also with the Velodyne rays. The first

operation is than a rotation to have the groud plane perfectly

horizontal.

The next step consists in ground plane filtering. To compute

an occupancy grid we have first to remove the ground lines

from the pointcloud; to perform this task we used an approach

similar to the one described in [21]. Due to the different

sensor, and the consequent smaller point cloud, we made some

changes to the proposed method, in particular we reduced

the number of segments used for the plane fitting process.

Lidar with high resolution, i.e. with more than 16 rays,

produce a more accurate plane on the street surface and the

original approach can easily fit planes on short distances,

while our model has considerably spaced lines and it is than

more difficult to identify a surface. Our approach is then

less reliable in a situation where the street surface presents

considerable high changes, but performs better in traditional

urban scenarios.

The ground points are then removed from the point cloud

and before projecting it to the ground plane we also filter all

the points above a certain height, in our case 3 meters, being



Algorithm 1 Costmap creation algorithm

1: procedure COSTMAP(pointcloud, normal, grid)

2: for point in pointcloud do

3: project (point, normal)

4: end for

5: for cell in grid do

6: points = num points in cell

7: if points > threshold then

8: cell = occupied

9: end if

10: end for

11: return grid

12: end procedure

relevant to the obstacle avoidance scenarios. The resulting

pointcloud is considerably smaller and less subject to noisy

data. It can be than feed to the system which computes the

occupancy grid around the car.

C. Occupancy grid computation

Having computed the joint position of all the sensor it’s

possible to create the occupancy grid. This process, unlike the

alignment, is done in real time while the car is moving. The

process of conversion from pointcloud to occupancy grid is

similar for each sensor mounted on the vehicle. The algorithms

differ only for the parameters used, calibrated in function of

the density of the input pointcloud.

Our algorithm, shown in Algorithm 1, starts converting the

3D pointcloud to a 2D object. This process is not done simply

setting all the z axis value to zero, it projects each point using

the normal to the ground plane preciously computed from the

lidar data. After this conversion we apply a 2D grid to the

flattened pointcloud and for each box we compute the number

of points lying inside it. After accurate analysis we decided to

use a rectangular grid with square boxes. The last phase of the

costmap creation cycles through each cell and set the box as

occupied by an obstacle if the number of points in that box is

bigger than a threshold. This process allows us to filter noise

from sensors which produces lots of 3D points but rich in false

positives, as for stereo cameras. Due to the high precision and

low number of data we do not filter the LeddarTech sensor.

After applying Algorithm 1 we have for each sensor a

different occupancy grid, as previously shown in Figure 4. The

next phase consists in the creation of a uniform representation

of all those information. As shown in Figure 2 most of the area

around the car is covered only by the Velodyne but there are

some areas where we have data coming from multiple sources.

In particular the most sensible zone, the space close in front

of the car (the blue section in Figure 2), is covered by four

different sources.

In order to create the final occupancy grid we cycle again

through all the cells of the costmap and check the occupancy

value for each sensor which can perceive data in that position.

We perform this check because some sensors can generate

noise in positions outside their effective field of view, and it

Algorithm 2 Costmap creation algorithm

procedure COSTMAP(costmap[6])

2: for cell in costmap[0] do

cellValue = 0

4: usedSensors = 0

for i=1 , i<=5 do

6: if cell has i-th sensor then

cellValue = cellValue+ cell[i]*weight[i]

8: usedSensors = usedSensors + 1

end if

10: end for

cellValue = cellValue / usedSensors

12: if cellValue > threshold then

costmap[0] = occupied

14: end if

end for

16: return costmap[0]

end procedure

is easier to filter this noise in this phase of the algorithm.

We than perform a weighted average on the values from each

sensor in the cell and compare it to a threshold; if the value

is greater than the threshold the cell on the final costmap is

labelled as occupied. A pseudo code of this procedure is shown

in Algorithm 2.

We decided to use a weighted average and a threshold

to filter false positive data. Some sensors are considerably

more reliable than other; the sixteen beam laser in particular

is extremely precise, while camera’s 3D reconstruction can

generate artefacts, in particular in low light condition. For this

reason we weight each sensor accordingly. Laser and lidar

have height weight, while camera’s pointcloud is smaller, in

this way a false positive will be filtered by the threshold but a

real measure, in particular in the area where the Velodyne data

are not available, will reinforce radar and laser estimation.

V. RESULTS

Our framework has been tested in real urban scenarios to

validate all of the step it performs, from sensors alignment to

filtering to occupancy grid creation. The system has proved to

be reliable in many scenarios, being able to properly identify

all obstacles surrounding the vehicle. The whole toolchain

resulted also extremely lightweight thanks to optimizations

applied on the pointcloud, like filtering and decimation and

was able to run on a laptop without excessive load to the cpu

at 20 Hz.

In Figure 5 we show the result of the pointcloud filtering

process in a real street scenario.

In particular we notice how the street lines on the left are

correctly removed from the original data. The top centre of

the figure shows how the system removes a large number of

points generated by threes which otherwise could introduce

noise in the resulting occupancy grid. The output of this first

analysis is a smaller and more accurate pointcloud which can

be easily handled by the costmap creation system.



Fig. 5. Image showing the filtered points from the Velodyne sensor in red,
and the points used for the occupancy grid creation in yellow. We notice the
removed street lines in the left part of the image and the high number of
points from the trees in the top which are also filtered. Obstacles like cars ,
pedestrians and walls are instead preserved.

In Figure 6 we show a demo setup in a small environment of

the multilayer occupancy grid creation. For this test we used

only the front sensors and the top lidar. We notice that most

of the lateral area of the car is scanned only by one sensor,

the 360 degree Velodyne. The front area, on the other hand, is

mostly analyzed by multiple sensors. In this way we guarantee

enough precision and redundancy on the most sensible area.

Fig. 6. Image showing the computed occupancy grid in a testing area. The
car position, which coincides with the Velodyne, is represented as a red dot
and is facing to the right. The black areas are obstacles retrieved only by one
sensor, in our case the lidar, while the green areas are obstacles retrieved by
multiple sensors. For this test only the forward direction sensors are used

VI. CONCLUSION

In this paper we showed a simple but efficient framework

for computing a uniform representation of the environment

surrounding an autonomous driving vehicle fusing data from

different sensors into an occupancy grid. The proposed method

is performed in real time on the car without a significant

load to the control computer unit. The system showed to be

considerably reliable in filtering noisy data and false positives,

while preserving real obstacles.

Further improvement of this framework will focus on the

usage of inertial units to predict the occupancy grid from one

frame to the next one, and also use this prediction to improve

the filtering mechanism by estimating motion vectors.
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