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ABSTRACT

To take full advantage of the application of neural networks to optical systems, we design an optical neural network based on the principle
of free-space optical convolution. In this article, considering the need for a high-power light source to excite the nonlinearity of an optical
material, we describe how to reduce the power consumption of the system by quantifying the output of each layer after the softmax operation
as an 8-bit value and loading these values into amplitude-only spatial light modulators (SLMs). In addition, we describe how to load the
matrix with positive and negative values in the amplitude-only SLM by utilizing Fourier properties of the odd-order square matrix. We apply
our six-layer optical network to the classification of Mixed National Institute of Standards and Technology database (MNIST) and Fashion-
MNIST and find that the accuracy reaches 92.51% and 80.67%, respectively. Finally, we consider the error analysis, power consumption, and
response time of our framework.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0055446

As electronic-driven microelectronics approach their physi-
cal limits, Moore’s law is gradually ceasing to apply. However, the
requirements for the speed of data transmission and processing con-
tinue to surge in the 5G era. Hence, people have been studying the
use of photons as information carriers that can take full advantage of
parallel processing and non-interference to solve the bottlenecks of
information technology. Optical neural networks (ONNs) are, there-
fore, emerging at the right moment, and many breakthroughs have
beenmade in recent years. Research onONNs hasmainly focused on
two aspects: (1) constructing an all-optical neural network (AONN)
based on the theories of interference and diffraction in free space
and (2) performing all-optical deep learning by integrating a pho-
tonic platform with a tensor processor.1–3 These two aspects have
their own characteristics and provide a strong impetus for realizing
large-scale photonic deep learning.

We know that neural networks involve linear multiplication
and nonlinear activation. ONNs use optical elements to realize lin-
ear summation, so it is necessary to find optically active materi-
als to stimulate the network and improve the generalization ability
of the model. Summation and activation can be realized by using
a photoelectric detector,4 electro-optic modulator,5 optical ampli-
fier, saturation absorber,6 or optically bistable device.7 Holography,8

Mach–Zender interferometers,9 and ring resonators10 can be used

for weighting procedures. We are particularly interested in realizing
a free-space ONN to make full use of the parallel processing capabil-
ities of light. Based on the theory of light interference and diffraction
in physical optics, the superposition of wavelets is used to simulate
the interconnection of neurons in a neural network. In this respect,
all-optical diffractive neural networks (AODNNs) are particularly
useful.11 Based on the vector diffraction of light,12 the phase of the
wavefront is modulated by the superposition of wavelets across each
diffractive layer. By training the network, the obtained phase param-
eters can be converted to the thickness of the layers that require
3D printing according to the formula ϕ ≙ knL. The AODNNs con-
structed by this method can realize the recognition of MNIST data
with accuracy rates as high as 93.39%. This method based on diffrac-
tion is a creative concept that has inspired considerable interest in
the realization of free-space ONNs. For instance, researchers have
used the matrix grating for phase modulation, converted the phase
coefficient obtained in the training process to the height of the
grating, and combined infrared light and a focal plane array detec-
tor with multilayer matrix gratings to realize a recognition rate of
85.7% on the MNIST data.13 In addition, Bueno et al. have pro-
posed a large-scale recurrent neural network based on diffractive
optical elements (DOEs), a spatial light modulator (SLM), and dig-
ital micro-mirror devices (DMDs).14 The structure is similar to the
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reservoir computing in which DOEs realize nonlinear modulation
and DMDs realize the readout of the weight matrix based on ridge
regression and a generalized inverse technique. As well as the above-
mentioned ONN based on diffraction, Zuo et al. used a lens and an
SLM to implement linear summation and realized all-optical activa-
tion with electromagnetic-induction-transparent materials. A low-
power laser can induce nonlinearity of materials, making AONNs
more characteristic of low power consumption.15

Inspired by relevant studies in free space, we use cascading
SLMs and a 4f system to construct a 6-layer ONN containing 1.57
× 106 neurons (512 ×512× 6) and load the weight of the final layer,
as trained by a graphic processing unit (GPU), onto an SLM after
applying a Fourier transform (FT). An important reason for using
an SLM is that it is programmable and we can further use it to mod-
ulate the optical field according to the information feedback from
a charge-coupled device (CCD). In addition, an SLM is responsive,
and this helps increase the processing rate of the system. Note that
there is an essential difference between the method proposed in this
article and the architecture proposed by Yan et al.16—they placed
the trained 3D printing diffractive layers in the Fourier space and
realized the recognition of static targets, whereas our framework is
based on the convolution theorem17 and does not utilize diffrac-
tion. Although the convolution theorem was proposed some time
ago and the concept of using phase-masks imprinted on an SLM is
well known, there has been less relevant research on ONNs based
on the convolution theorem and amplitude-only SLM. In addition,
our neglect of intrinsic diffraction affects the accuracy of our model
to some extent. The recognition accuracy of our ONN using the
MNIST and Fashion-MNIST datasets is up to 92.51% and 80.67%,
respectively.

Figure 1(a) shows a schematic diagram of our ONN with six
hidden layers. The wavelength of the laser is 632.8 nm, the resolution
of the SLM is 1920 × 1152, and both L1, L2 and L6, L7 are FT lenses.

Ten rectangular detection areas are arranged on the CCD to detect
the maximum light intensity. If the target category is consistent with
the position of the area with maximum intensity on the CCD, the
model is considered to have correctly identified the target to be mea-
sured. Figure 1(b) shows the principle of a single convolutional layer
trained on a computer.Weight is the frequency-domain form of the
weight after training. Optical convolution in Fourier space is real-
ized by using a 4f system, and the result is activated by the softmax
operation. For an input f (x, y) and a filter function h(x, y), the FTs
are F(x, y) and H(x, y), respectively. According to the convolution
theorem, the results of f (x, y)∗h(x, y) can be obtained by multiply-
ing F(x, y) and H(x, y) in the frequency domain and then inverting
the FT. The formula is as follows:

f (x, y)∗h(x, y) ≙ F (−1)(F( f (x, y)) ⋅F(h(x, y))). (1)

The core idea of our ONN is based on the convolution theorem.
According to this theorem, the attempt to construct a cascading lin-
ear system is essentially the process of continuous convolution in
the imaging space. We can see from Fig. 1(a) that incident beams
pass through the collimating lens and the beam expanding system,
shining on the first five SLMs, which then load the matrix activated
by the softmax operation and quantify the output as 8-bit grayscale.
The beams are then transformed by L6 and multiplied by the weight
H loaded onto SLM6. The result of convolution is obtained by the
inverse Fourier transform of lens L7. Note that the FT condition
is satisfied between h and H, and h in the final layer is shown in
Fig. 1(c). When the input image is in the seventh category, the light
intensity of the seventh detection area on the CCD is the great-
est, as shown in Fig. 1(d). The reason why we use lenses to realize
convolution is that they can realize fast two-dimensional FTs and
are passive devices, thus reducing the power consumption of the
whole system.We know that electronic devices cause serious heating

FIG. 1. (a) Schematic diagram of the 6-layer optical neural network. L3 and L4 can expand beams; L6 and L7 are optical lenses that form a 4f system; the laser λ is
632.8 nm. The SLMs can only modulate the amplitude of the wavefront. SLM1–SLM5 load the matrix obtained after softmax activation of each layer. SLM6 is placed on the
spectral surface of the 4f system on the final layer. CCD: 1280 × 1024, 80 fps. (b) A single optical convolution layer trained on a computer. (c) The amplitude diagram of
weight h (before FT) of the final layer obtained through training using MNIST data. (d) Ten rectangular detection areas on the CCD.
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issues as the processing speed increases, but optical passive devices
can ease this problem and enable parallel processing at the speed of
light.

The method whereby the matrix H of real numbers given by
the FT is loaded onto SLM6 is an important step and is also one of
the innovations of this study. In this process, we need to consider
the following two factors: (1) The trained h has both positive and
negative values. The input f is positive, so the result of convolution
( f ∗h) also contains negative values, that is, the results transmitted
to the CCD are positive and negative. Due to the characteristics of
the CCD itself, h needs to be processed further so that the coefficient
of h is non-negative. (2) The value after FT of hwill contain complex
numbers, whereas the SLM can only load a positive real matrix.

Considering the two factors mentioned above, the frequency
form H of the weight h is loaded onto SLM6 through the following
process: (1) The spatial form h(x, y) is expressed as

h(x, y) ≙ hp(x, y) − hn(x, y),

hp(x, y) ≙
⎧⎪⎪
⎨
⎪⎪⎩

h(x, y), h(x, y) ≥ 0

0, h(x, y) < 0,

hn(x, y) ≙
⎧⎪⎪
⎨
⎪⎪⎩

−h(x, y), h(x, y) < 0

0, h(x, y) ≥ 0.

(2)

hp, and hn are made symmetric in the form of hsymmetry ≙
⎡⎢⎢⎢⎢⎣

h 0
0 h

∗

⎤⎥⎥⎥⎥⎦
,

where h∗ is obtained by flipping h around the y axis by 180○ and then
rotating it about the x axis by 180○. FT of hsymmetry gives Hsymmetry,
and we take the top left 512 × 512 elements of this matrix. After two
operations,Hp andHn are obtained, and the position corresponding
to the original negative value of Hp can be replaced by Hn to obtain
H. (3) The matrix coefficients obtained by FT mostly contain com-
plex numbers. In discrete FT, when the input matrix is symmetric
and the coefficients are all real, the coefficients of the matrix after FT
can be changed into real values by the correction of the matrix. The
corrected matrix is

H(ζ,η) ≙
N−1

∑
ζ≙0

N−1

∑
η≙0

e
−i( N

2
−1) 2π

N
(ζ+η)

≙
N−1

∑
ζ≙0

N−1

∑
η≙0

e
−i 2π

N
(ζ+η)

e
i(ζ+η)π

≙

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N−1

∑
ζ≙0

N−1

∑
η≙0

e
−i 2π

N
(ζ+η)

i f (ζ + η) ≙ even

−
N−1

∑
ζ≙0

N−1

∑
η≙0

e
−i 2π

N
(ζ+η)

i f (ζ + η) ≙ odd.
(3)

Wemultiply h byH(ζ,η) to obtain a form ofH that does not include
complex numbers but may contain both positive and negative val-
ues. (4) Normalization. After steps (1)–(3), the maximum and min-
imum values are found: Hmax and Hmin. By taking H−Hmin

Hmax−Hmin
, only

positive values are obtained. The matrix loaded on the SLM can be
obtained bymultiplying the normalizedH by the coefficient 255, and
then, the result of convolution can be achieved by multiplying the

frequency-domain information of the input field on the spectrum
surface of the 4f system. For more details, see the supplementary
material.

Based on the above-mentioned principles, we built a
6-layer ONN using the TensorFlow software (see the supplementary
material for the specific structure and process of training). During
the training, the softmax activation function was used, as shown
in Fig. 2(a). Optical materials often require a high-power laser
to induce nonlinearity. To reduce the power consumption of the
network, we did not use the activation in Fig. 1(a). Instead, the
matrix after the softmax operation was quantized and loaded into
the five SLMs to replace the hidden layers in the neural network. As
no activation was used in the final layer of training, we cascaded a 4f
system to implement convolution.

To measure the performance of the model, we trained the
MNIST data over 50 epochs, whereby the recognition accuracy
reached 92.51%, higher than that of 5-layer AODNNs (91.75%)11

and better than the recognition of intelligent glass18 on the MNIST
data (79%). The loss and accuracy of the proposed network are
shown in Figs. 2(b) and 2(c), and the normalized confusion matrix is
shown in Fig. 2(d). To further verify the performance of the 6-layer
ONN, we conducted training and test procedures using the Fashion-
MNIST dataset. It can be seen from Fig. 3(a) that Fashion-MNIST
contains 10 classes and is more complex than MNIST. The weight
h of the final layer obtained after 50 epochs is shown in Fig. 3(b),
and the test accuracy of the model is 80.67%. The changes in the
loss and accuracy with respect to the epoch number are shown in
Figs. 3(c) and 3(d), and the normalized confusion matrix obtained
after the test procedure is shown in Fig. 3(e). The test results show
that our ONN achieves comparable accuracy to the 81.13% preci-
sion of the AODNN with only phase modulation. However, our
ONN achieves lower accuracy than the hybrid convolutional neu-
ral network that realizes follow-up training through connection to
a digital neural network.19 The high precision of this network may
come from the digitally connected architecture. Indeed, their single-
layer optical convolution cannot achieve the accuracy of our single-
layer process. The accuracy of our single-layer optical convolution
is 82.26%, and that of the 3-layer process is 88.56%. In fact, aberra-
tions andmisalignments will affect the accuracy of our system in this
process.

Indeed, the use of 4f systems for optical calculations is well
known. In the field of optical correlation recognition, Vander Lugt
modified the 4f system using a matching filter.20 Chang et al. used
optimized diffractive optical elements to simulate an optical corre-
lator and an optoelectronic two-layer CNN.21 Colburn et al. imple-
mented a complex Fourier filter using a metasurface.19 Their aim
was to make it easier to apply CNN to embedded systems. How-
ever, our ONN is not based on the CNN, and we used amplitude-
only SLMs to load the weight with negative and complex values. In
fact, the process of loading H onto an SLM in the Fourier domain
of a 4f system is equivalent to making an appropriate optical fil-
ter. Compared with the use of holograms, diffractive gratings, films,
and other methods, SLMs have certain advantages in terms of accu-
racy, design difficulty, and dynamic changes depending on applica-
tion requirements. Of course, the traditional way of designing an
optical filter does not need to consider whether the coefficient of a
filter placed in the frequency domain is real. The filter can be neg-
ative or complex, but the design and implementation are difficult.
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FIG. 2. Activation of the model and performance of MNIST data: (a) The curve of softmax. (b) Curves of training loss and accuracy with epoch. The training set contains
55 000 samples. (c) Curves validating the loss and accuracy with epoch. The validation set contains 5000 samples. (d) The normalized confusion matrix given by a test
dataset containing 10 000 samples.

FIG. 3. Training and predicted results using Fashion-MNIST. (a) Fashion-MNIST: T-shirt, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle
boots. (b) The amplitude diagram of weight (before FT) of the final layer. (c) Curves of training loss and accuracy for 50 epochs with a training set containing 55 000
samples. (d) Curves of validation loss and accuracy for 50 epochs with a validation set containing 5000 samples. (e) The normalized confusion matrix with a test dataset
containing 10 000 samples.
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In addition, the system shown in Fig. 1 is all-optical, regardless of
the power needed to keep the SLMs, laser, and detector working
properly.

To estimate the energy consumption of our ONN, we analyzed
the system inspired by Ref. 19. Assuming the power per pixel at the
detector side is about 1 μW, the incident power transmitted by each
optical element is a fraction of t, and the light source efficiency is

η, the total optical power required is P ≙ n2

η×tp , where n is the num-

ber of pixels per layer used in a 4f system and p is the number of
optical elements in the path. From the view of the whole system, the
energy required is acceptable. We also analyzed the time required
by the testing optical system. The latency includes the time to load
new input images, the response time of the liquid crystal, the time
to propagate through the 4f system, and the response time of the
CCD. A lens is a passive device whose Fourier transform can be per-
formed in 1 ps. SLMs with a high refresh rate (1 kHz) can generate
an image in 1ms. Hence, the response time of the CCD is the main
factor.

In summary, we have proposed an ONN based on the free-
space optical convolution theorem to realize optical interconnec-
tion. We illustrated the process of convolution and how the weight
matrix H is loaded onto the SLM. The testing results demonstrate
the strong performance of the proposed ONN on both MNIST and
Fashion-MNIST. However, the processing rate of the system can be
further improved. If needed, an ORCA-Flash 4.0 sCMOS camera
and 10 kHz DMDs can be used to reduce the latency. Future studies
can focus on the learnable optical activation function and deploy-
ing digital convolutional neural networks to the free-space optical
system.

See the supplementary material for the method of encoding
weights and for the structure and training process of our ONN. Our
codes can also be found on Github.
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