Multi-Layer Parallel Decoding Algorithm and VLSI
Architecture for Quasi-Cyclic LDPC Codes

Yang Sun, Guohui Wang, and Joseph R. Cavallaro
Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
Email: {ysun, gw2, cavallar} @rice.edu

Abstract—We propose a multi-layer parallel decoding algorithm and
VLSI architecture for decoding of structured quasi-cyclic low-density
parity-check codes. In the conventional layered decoding algorithm, the
block-rows of the parity check matrix are processed sequentially, or layer
after layer. The maximum number of rows that can be simultaneously
processed by the conventional layered decoder is limited to the sub-matrix
size. To remove this limitation and support layer-level parallelism, we
extend the conventional layered decoding algorithm and architecture to
enable simultaneously processing of multiple (/) layers of a parity check
matrix, which will lead to a roughly K-fold throughput increase. As a
case study, we have designed a double-layer parallel LDPC decoder for
the IEEE 802.11n standard. The decoder was synthesized for a TSMC
45-nm CMOS technology. With a synthesis area of 0.81 mm? and a
maximum clock frequency of 815 MHz, the decoder achieves a maximum
throughput of 3.0 Gbps at 15 iterations.

I. INTRODUCTION

Quasi-Cyclic LDPC (QC-LDPC) codes have been widely used in
many practical systems, such as IEEE 802.11n WLAN and IEEE
802.16e WiMAX, due to their efficient hardware implementation
and good error correcting performance. The parity check matrix of
these QC-LDPC codes can be partitioned into block-rows or layers
for efficient implementation by using the so-called layered decoding
algorithm [1], [2]. The layered decoding algorithm has a much higher
convergence speed (up to two times faster), and requires less memory
compared to the standard two-phase flooding decoding algorithm.
Thus, partial-parallel layered decoder architectures are often used to
decode the QC-LDPC codes [3], [4], [5], [6], [7], [8], [9], [10].

The conventional layered decoder architecture [1], [2] is initially
developed to process the parity check matrix layer by layer, where
each layer corresponds to a block-row of the parity check matrix.
Since the column-weight of each layer is typically 1 in many
applications, such as IEEE 802.11n and IEEE 802.16e, this greatly
simplifies the decoder design. To further improve the throughput, the
two consecutive layers’ data processing can be partially overlapped
through a pipelined schedule [5], [3], where the data conflicts between
two layers can be resolved by stalling the pipeline. The maximum row
parallelism for the conventional layered algorithm is equal to the sub-
matrix size Z, i.e. we can employ Z parallel check node processors
to process Z rows in parallel. With this amount of parallelism, the
conventional layered decoder can typically offer 100-1000 Mbps
throughput [3], [4], [5], [6].

To go beyond 1-Gbps throughput, the layered architecture needs
to be extended to provide higher parallelism. One natural extension
of the conventional layered architecture is to design a multi-layer
parallel architecture where multiple (K) layers of a parity check
matrix are processed in parallel. Now the maximum row parallelism
is increased to K 7, i.e. we can employ K Z check node processors to
process K Z rows in parallel. It should be noted that the multi-layer
parallel decoding algorithm would still require less memory than the
two-phase flooding algorithm because there is still no need to store
the variable node messages in the multi-layered algorithm.

In this paper, we propose a multi-layer parallel decoding algorithm
and VLSI architecture for high throughput LDPC decoding. The data
conflicts between layers are resolved by modifying the LLR update
rules. As a case study, we describe a double-layer parallel decoder
architecture for IEEE 802.11n LDPC codes.

II. MULTI-LAYER PARALLEL DECODING ALGORITHM
A. Introduction of The QC-LDPC Codes

Generally, a binary LDPC code is a linear block code specified by a
sparse binary parity check matrix: H-x™ = 0, where x is a codeword
and H can be viewed as a bipartite graph where each column and
row in H represent a variable node and check node, respectively. QC-
LDPC codes are a very important class of LDPC codes. The parity
check matrix for a QC-LDPC code can be represented as an array of
square sub-matrices, where each sub-matrix is either a Z X Z zero
matrix or a Z X Z circulant matrix. As an example, Fig. 1 shows
the parity check matrix for the block length 1944 bits, code rate 1/2,
sub-matrix size Z = 81, IEEE 802.11n LDPC code. In this matrix
representation, each square box with a label I, represents an 81 x 81
cyclicly-shifted identity matrix with a shifted value of z, and each
empty box represents an 81 x 81 zero matrix.

Is7 Iso| L] sl 7| |4i|do

L |hs| Lo Iss| 17 Ly [1o

L0 14|37 Lol 14 Iy[1o

6|53 s JAIY Iy Iy

L4 120|166 Ino|lrs lo| Io

Io Is| || |50 Is Io| Io

LsolL79ll79 Isg| |5 1 Ly Iy

Iss L) 15 In| |y JEN

4| 14|52 L9 1 Iy[1o

Lys| |I70] Lo I79) Iy L] Iy

D|lse| |s7)l3s /12 JAE

Lo |le1] |leo Iy 15 16| 1y Iy
Fig. 1. Parity check matrix for block length 1944 bits, code rate 1/2, sub-

matrix size Z = 81, IEEE 802.11n LDPC code.

B. Review of The Layered Decoding Algorithm

A brief review of the conventional layered decoding algorithm
[1] is provided to facilitate the discussion. We define the following
notation. The a posteriori probability (APP) log-likelihood ratio
(LLR) of each bit n is defined as: L, = log i:g::?;, where L,
is initialized to be the channel input LLR. The check node message
from check node m to variable node n is denoted as R, . The
variable message from variable node n to check node m is denoted as
@m,n. The conventional layered algorithm, or single-layer algorithm,
assumes that the rows are grouped into layers where the parity
check matrix for this layer has at most a column-weight of one.
The single-layer algorithm only handles one layer at a time, i.e. the
maximum row parallelism is limited to the sub-matrix size Z. Each

layer is processed as a unit, one layer after another. For each non-zero
column 7 inside the current layer, variable node messages @, that
correspond to a row m are formed by subtracting the check node
message R, from the APP LLR message Ly:

Qm,n =Lp— Rm,n~ (1)

For each row m, the new check node messages Ry, ,,, corresponding
to all variable nodes j that participate in this parity-check equation,
are computed using the belief propagation algorithm. In this work,
we use the scaled min-sum approximation algorithm (with scaling
factor of S) to compute the R value:

Run~S- [sign(@Qm,)-
JENm\n

S, |G, ()
where N, is the set of variable nodes that are connected to check
node m, and N, \n is the set N, with variable node n excluded.
It should be noted that the equation above can be easily modified
for offset min-sum algorithm. After the check nodes messages are
computed, the new APP LLR messages L, are updated as:

Then repeat equations (1)-(3) for each layer.

C. Proposed Multi-Layer Parallel Decoding Algorithm

To support layer-level parallelism, we propose a multi-layer (kK-
layer) parallel decoding algorithm, where the maximum row par-
allelism 1is increased to KZ. When using the conventional layered
algorithm to process multiple layers at the same time, data conflicts
may occur when updating the LLRs because there can be more
than one check node connected to a variable node. Fig. 2 shows
an example of the data conflicts when updating LLRs for two
consecutive layers, where check node (or row) mg and check node
m are both connected to variable node (or column) n. To resolve the
data conflicts, we use the following LLR update rule for a K-layer
parallel decoding algorithm. For a variable node n, let my, represents
the k-th check node that is connected to variable node n. Then the
LLR value for variable node n is updated as:

K—-1

Ly =Ln+ Y (Ruyn— Rmgn). “

k=0

Compared to the original LLR update rule (3), the new LLR update
rule combines all the check node messages and adds them to the old
LLR value. We can define a macro-layer as a group of K layers of
the parity check matrix. The multi-layer parallel decoding algorithm
is summarized as follows. For each layer k in each macro-layer [, do
the following:

ka,n = Ln - Rmk,n (5)

R:nk,n = S H Sign(kaJ) : ,GJI\Iflin\n |ka7j| (0)
jGNm,k \n ! "k
K—-1
Ly, = Lo+ Y (Rugn— Rmgn) (7
k=0

In the above calculation, the LLR values L,, are updated macro-layer
after macro-layer. Within each macro-layer, all the check rows can
be processed in parallel, which therefore leads to a K times larger
parallelism than the conventional layered algorithm. For example, we
can use K Z number of check node processors to process K Z rows
in parallel.

oo |

X
\\ml

Fig. 2. Example of the data conflicts when updating LLRs for two layers.

[II. DECODING PERFORMANCE EVALUATION

In the multi-layer parallel decoding algorithm, the layer-parallelism
K will have some negative impact on the decoding convergence
speed because the LLR updates occur less frequently than in the
single-layer algorithm. To compare the performance of the multi-
layer parallel decoding algorithm against the conventional layered
decoding algorithm, we perform floating-point simulations for block
length 1944 bits, code rate 1/2 IEEE 802.11n LDPC code. BPSK
modulation is used for an AWGN channel. In the simulation, we
collect at least 100 frame errors and the maximum iteration number is
set to 15 for all the experiments. Fig. 3 compares the frame error rate
(FER) performance of K-layer parallel decoders for K = 1,2, 3,4, 6.
We also plot the FER curve for the two-phase flooding algorithm for
comparison. As can be seen from the figure, the double-layer parallel
decoder has shown a negligible performance loss, and the triple-layer
parallel decoder has shown a small performance loss (< 0.1 dB).
As K increases, the FER performance slowly degrades as expected.
Note that the performance loss can be compensated by slightly
increasing the iteration number. Nevertheless, the K-layer parallel
decoder will have a roughly K-fold throughput increase compared to
the conventional single-layer decoder if the same parallelism is used
for processing each check row. Thus, a trade-off can be made between
the layer-parallelism K, the error performance, and the throughput.
The fixed-point performance will be discussed in Section V. For high
rate codes, the performance degradation caused by the multi-layer
algorithm is slightly worse because there are more overlapping non-
zero blocks between layers.

Block lengh 1944 bits, Code rate 1/2, IEEE 802.11n LDPC code

T T T T
—O— Two—phase decoding with 15 max. iter.
—sk— Six-layer decoding with 15 max. iter.
—&— Quad—layer decoding with 15 max. iter.
—+— Triple—layer decoding with 15 max. iter.
—— Double—layer decoding with 15 max. iter.
& | —¢ Single—layer decoding with 15 max. iter.

Frame Error Rate (FER)

S
T

1.6 1.8 2 22
Eb/NO (dB)

Fig. 3. Simulation results for multi-layer parallel decoding algorithm.

IV. DOUBLE-LAYER PARALLEL DECODER ARCHITECTURE FOR
IEEE 802.11N LDPC CODES

As a case study, we have designed a double-layer parallel decoder
for IEEE 802.11n LDPC codes. We propose a macroblock-serial
(MB-serial) decoding algorithm. In this algorithm, a Z X Z sub-
matrix is considered as a block and a macroblock (MB) contains
N1 x N3 blocks, where N1 and N» are arbitrary integer numbers.
Fig. 4(a) shows an example of an MB which contains 2 x 2 blocks:
A, B, C, and D. Fig. 4(b) shows the MB view of the first two layers
of the parity check matrix in Fig. 1. Because the rate 1/2 matrix is
sparser than the high rate matrix, some blocks in an MB can be zero
blocks. However, for a denser matrix, e.g. rate 5/6 matrix, all the four
blocks in an MB are often non-zero blocks as shown in Fig. 4(c).

MB MBO MBI MB2 MB3 MB4
A | B 15 Iso| 111] 150 Lo 11| I
D [3]28 [0]55 17 IO]0
(@) (b)

MBO MBI MB2 MB3 MB4 MBS MB6 MB7 MBS MB9
113 Lug | Iso| Loo| Is| Fra| 17 | Tao | 6| Is2| J57 | oo Lo | I 31 | 17| I73] I3 Ll
1{’9 [63 174 [56 [64]77 [57 [(\5]6]lﬁ [51 164 [()X 1‘) [48 [(72]54 [Z7 [l) [0

(©)

MB10 MBI11

Fig. 4. (a) One MB with a dimension of 2Z x 2Z. (b) The MB view of the
first two layers of the rate 1/2 matrix in Fig. 1. (c) The MB view of the first
two layers of the matrix for rate 5/6, block length 1944 bits, 802.11n code.

We propose a partial parallel decoder architecture, where each MB
is processed as a unit. Inside each macro-layer, MB is processed in
serial, from left to right. Thus, we refer to this architecture as an
MB-serial architecture. Fig. 5 shows the top level block diagram for
the proposed MB-serial decoder architecture. In this architecture, the
LLR memory is used for storing the initial and updated LLR values
for each bit in a codeword. For LDPC codes with M x N sub-
matrices each of which being a Z x Z shifted identity matrix, the
LLR memory is organized such that Z LLR values are stored in
the same memory word and there are N words in the memory. The
LLR memory has two read-ports and two write-ports so that 27 LLR
values can be accessed at the same clock cycle. The decoding is a
two-stage procedure. During the first stage, 27 LLR values are read
from the LLR memory at each clock cycle and are passed to four
permuters A, B, C, and D, which correspond to four blocks in an
MB (cf. 4(a)). Note that for zero blocks in an MB, the corresponding
permuters and other related logic will be disabled.

The 2Z permuted LLR values L, , and L, , are fed to the even-
layer’s MB processing unit, and the other 22 permuted LLR values
Ly, and L, are fed to the odd-layer’s MB processing unit. Each
MB processing unit consists of Z = 81 min-sum units (MSUs)
based on the maximum sub-matrix size defined in the IEEE 802.11n
standard. Fig. 6 shows the block diagram for one MSU. Each MSU
can process two LLR values at each clock cycle so that altogether
Z MSUs can process 2Z LLR values at each clock cycle. During
the first stage, () values are computed by subtracting the R values
from the LLR values based on (5). The R values are stored in a
compressed way. The R-Regfile is used to store the information for
restoring the R,, , values. Fig. 7 shows the organization of the R-
Regfile. For each row m, only the first minimum (min0), the second
minimum (minl), the position of the first minimum (pos), and the
sign bits for all Qy,,n; related to row m are stored in the R-Regfile.
A R value generator (R-Gen) is used to restore the R values from

—>| LLR Memory |<—
L”o 1‘"1
hd] °
v
I Permuter A I I Permuter B I I Permuter C I I Permuter D I
¢LI’1A ¢Ln3 ¢an ¢LHD

Even Layer

MB Processing Unit MB Processing Unit
(Contains Z MSUs) (Contains Z MSUs)
¢Dm,n_4 ¢Dm,n5 ¢Dm,n(~ ¢Dm,nD

I Permuter A' I I Permuter B' I I Permuter C' I I Permuter D' I

0Odd Layer

ny "’1
Fig. 5. MB-serial LDPC decoder architecture for the double-layer example.

L, L,

N4 | np |
Rm,m N
(+
Ryn. | -
g
Q”’»”4 v Qm,nB
| R-Gen | | Min Finder
1 xvy txy
Ping-Pong
R-Regfile Register
| R-Gen | R'-Gen

¥ Do, ¥ Dy

Fig. 6. Block diagram for the pipelined Min-sum unit (MSU).

the R-Regfile as:

Ry = {

where X, and Y,, denote the first minimum value and the second
minimum value for row m, respectively, and P,, denotes the position
of the first minimum value for row m. The sign bits of the Ry, n;
value are generated using the sign array. As the scaled min-sum
algorithm is used, the R value is scaled by a factor of 0.75. A min
finder unit (MFU) is used to compare the Qm,n, and Qm,n, values
against X and Y read from the Ping-Pong register, where X and Y
are the first minimum and the second minimum temporary variables
and are initialized to be the maximum possible positive values. The
two new minimum values X’ and Y’ are stored in the Ping-Pong
register. The index of the minimum @ value and sign bits for all
@ values are also updated in the Ping-Pong register. The Ping-Pong
register consists of two registers (ping and pong registers), where each
register has the same organization as one word of the R-Regfile. Two
registers are required because we want to support pipelined decoding
by overlapping two macro-layers’ data processing. During the second
stage, the R’-Gen unit gets values from the Ping-Pong register and
restores the most recently updated R’ values. Another R-Gen unit
gets values from R-Regfile and restores the old R values. Then a

0.75Yn, if n; = P

0.75X,,, otherwise, ®

Index = Super-layer number

0 | Min0 | Minl Pos Sign Array

1 Min0 | Minl Pos Sign Array

M/2-1| Min0 | Minl Pos Sign Array
Fig. 7. R-Regfile organization.

Delta-R value, denoted as D value, is formed by:
Dm,nj - R'/m,n]- - R’m,nj . (9)

The R-Regfile has two read-ports so that it can be accessed simul-
taneously by two consecutive macro-layers. After the second stage,
the contents of the Ping-Pong register is written to the R-Regfile
overwriting the values for the current macro-layer, and the Ping and
Pong registers switch role.

Now turning back to the top level decoder in Fig. 5, after the 27
D values are produced by each MB processing unit, the D values
are de-permuted and added to the LLR values from the FIFO to form
the updated 27 LLR values as:

L:lo = Lny + Dmyng + Dmoino (10)
L, = Ln +Dmpgny + Dmp oy (11)
The new updated LLR values are then written back to the LLR

memory.

To further increase the throughput, we can overlap the decoding
process of two macro-layers. The pipelined data flow is illustrated in
Fig. 8. The data dependencies between two macro-layers are avoided
by using a scoreboard to keep track of the read and write sequences
of the LLR values.

| Stage 1 | Stage 2 | Macro-layer 0
| Stage 1 | Stage 2 | Macro-layer 1
| Stage 1 | Stage 2 | Macro-layer M/2-1
time
Fig. 8. Pipelined decoding data flow for the double-layer example.

It should be noted that the described double-layer parallel ar-
chitecture shown in Fig. 5 and the pipelined data flow shown in
Fig. 8 can be generalized for a K-layer parallel architecture by
employing multiple MB processing units. The overall complexity and
the throughput increase about linearly with the size of the macro-
block.

V. VLSI IMPLEMENTATION AND COMPARISON

A flexible double-layer parallel decoder which fully supports IEEE
802.11n LDPC codes was designed in Verilog HDL. The fixed-
point design parameters are as follows. The channel input LLR is
represented with 6-bit signed numbers with 2 fractional bits. The
word lengths of the extrinsic R values and the APP LLR values are
6 bits and 7 bits, respectively. According to the computer simulation,
this fixed-point implementation introduces a performance loss of 0.05
dB compared to the floating-point implementation at 10~* FER for
rate 1/2 code.

We have synthesized the decoder for a TSMC 45nm CMOS
technology. The maximum clock frequency is 815 MHz and the area
is 0.81 mm? based on the Synopsys Design Compiler synthesis result.
Table I summarizes the throughput performance of this double-layer

parallel decoder for the decoding of IEEE 802.11n LDPC codes
at 15 iterations, where the throughput is calculated by counting
the number of the clock cycles for each iteration. The throughput
increases with the block size and the code rate. Table II compares
the implementation result of our decoder with existing 802.11n LDPC
decoders from [3], [4], [6]. The solutions from [3], [4], [6] are all
based on the conventional single-layer decoding architecture. As a
fair comparison, the areas of those designs are all normalized to
45nm technology. Compared to those decoders, our pipelined double-
layer parallel decoder achieves a much higher throughput at low
complexity.

TABLE I
THROUGHPUT PERFORMANCE OF THE PROPOSED DECODER

[Block Iength [[Rate 12 [Rate 23 [Rate 3/4 | Rate 5/6

648 bits 380 Mbps | 520 Mbps | 760 Mbps | 1.0 Gbps
1296 bits 750 Mbps 1.1 Gbps 1.3 Gbps 2.0 Gbps
1944 bits 1.1 Gbps 1.7 Gbps 2.2 Gbps 3.0 Gbps
TABLE 11
COMPARISON OF LDPC DECODERS FOR IEEE 802.11N
This work [3] [4] [6]
Technology 45 nm 65 nm 130 nm 180 nm
Area 0.81 mm? | 0.74 mm? | 1.85 mm? | 3.39 mm?
Norm. area 0.81 mm? | 0.39 mm? | 0.22 mm? | 0.21 mm?
Clock freq. 815 MHz 240 MHz 500 MHz 208 MHz
Num. of iter. 15 14 5 5
Max. throughput 3.0 Gbps 410 Mbps 1.6 Gbps 780 Mbps

VI. CONCLUSION

We have presented a high-throughput multi-layer parallel decoding
algorithm and architecture for QC-LDPC codes. The conventional
single-layer algorithm is extended to support multi-layer parallel
decoding, which leads to a significant throughput improvement. A
pipelined macroblock-serial decoder is described for double-layer

parallel decoding of IEEE 802.11n codes. This decoder supports a

maximum throughput of 3 Gbps with an area of 0.81 mm?.

REFERENCES

[1] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in IEEE SiPS, 2004, pp. 107-112.

[2] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC de-
coders,” IEEE Tran. VLSI, vol. 11, pp. 976-996, Dec. 2003.

[3] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A Scalable Decoder
Architecture for IEEE 802.11n LDPC Codes,” in IEEE Global Telecom-
munications Conference, 2007, pp. 3270-3274.

[4] K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI
Architectures for Layered Decoding for Irregular LDPC Codes of
WiMax,” in IEEE Int. Conf. on Commun., June 2007, pp. 4542-4547.

[5] Y. Sun, M. Karkooti, and J. R. Cavallaro, “VLSI Decoder Architecture
for High Throughput, Variable Block-size and Multi-rate LDPC Codes,”
in IEEE Int. Symp. on Circuits and Syst., May 2007, pp. 2104-2107.

[6] C. Studer, N. Preyss, C. Roth, and A. Burg, “Configurable high-

throughput decoder architecture for quasi-cyclic LDPC codes,” in /IEEE

Asilomar, Oct 2008, pp. 1137-1142.

K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder

implementation for quasi-cyclic LDPC codes,” IEEE Journal on Selected

Areas in Communications, vol. 27, no. 6, pp. 985-994, Aug. 2009.

[8] W. Jun and Y. Shu-hui, “A Parallel Layered Decoding Algorithm for

LDPC Codes in WiMax System,” in /EEE WiCom, Sept. 2009, pp. 1-4.

Z. Cui, Z. Wang, and Y. Liu, “High-Throughput Layered LDPC Decod-

ing Architecture,” in /IEEE Tran. VLSI, Apr. 2009, pp. 582-587.

[10] B. Xiang and X. Zeng, “A 4.84 mm? 847C955 Mb/s 397 mW dual-path

fully-overlapped QC-LDPC decoder for the WiMAX system in 0.13 um
CMOS,” in IEEE Symposium on VLSI Circuits, June 2010, pp. 211-212.

[7

—

[9

—

