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Abstract

The discontinuous Galerkin (DG) method is widely used in numerical solution of 

partial differential equations, especially for hyperbolic equations. However, for prob-

lems containing strong shocks, the DG method often needs to be supplemented by 

a limiter to control spurious oscillations and to ensure nonlinear stability. The total 

variation bounded (TVB) limiter is a popular choice and can maintain the origi-

nal high order accuracy of the DG scheme in smooth regions and keep a sharp and 

non-oscillatory discontinuity transition, when a certain TVB constant M is chosen 

adequately. For scalar conservation laws, suitable choice of this constant M can be 

based on solid mathematical analysis. However, for nonlinear hyperbolic systems, 

there is no rigorous mathematical guiding principle for the determination of this 

constant, and numerical experiments often use ad hoc choices based on experience 

and through trial and error. In this paper, we develop a TVB constant artificial neu-

ral network (ANN) based estimator by constructing a multi-layer perceptron (MLP) 

model. We generate the training data set by constructing piecewise smooth functions 

containing local maxima, local minima, and discontinuities. By using the supervised 

learning strategy, the MLP model is trained offline. The proposed method gives 

the TVB constant M with robust performance to capture sharp and non-oscillatory 

shock transitions while maintaining the original high order accuracy in smooth 

regions. Numerical results using this new estimator in the TVB limiter for DG meth-

ods in one and two dimensions are given, and its performance is compared with the 

classical ad hoc choices of this TVB constant.
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1 Introduction

The discontinuous Galerkin (DG) method was firstly proposed by Reed and Hill 

[31] to solve the neutron transport problem, which is a linear hyperbolic equa-

tion. It was later coupled with the total variation bounded (TVB) limiter [34] 

and the nonlinearly stable Runge-Kutta time discretization [35] to solve nonlin-

ear hyperbolic conservation laws by Cockburn et al. [4–7], and has been widely 

used in computational fluid dynamics (CFD) applications, due to its high order 

accuracy and easy and efficient parallel implementation in complicated geometry. 

As is well known, the solution of nonlinear conservation laws often generates 

discontinuities, even with smooth initial and boundary conditions. Although the 

DG method can be proved to be L2 and entropy stable for nonlinear hyperbolic 

scalar equations and systems [2, 3, 15, 16], this does not prevent the numerical 

solution from generating spurious oscillations near discontinuities. These oscilla-

tions are unpleasant in visualization, and, more seriously, they may lead to non-

linear instability for hyperbolic systems since hyperbolicity may be lost when 

such oscillations bring the numerical solution outside of the physical constraints 

(e.g. the appearance of negative density or pressure for compressible gas dynam-

ics). To control these oscillations, nonlinear limiters are often used. They might 

be applied in specific cells using shock detectors (also called troubled cell indica-

tors), such as the KXRCF shock detector developed by Krivodonova et al. [20], 

the troubled cell indicator of Fu and Shu [10], and the artificial neural network 

(ANN) based troubled cell indicator [29]. They may also be applied everywhere, 

with a careful design attempting to retain the original high order accuracy in 

smooth regions. Examples include the minmod-based total variation diminishing 

(TVD) limiters [14, 25], the minmod-based total variation bounded (TVB) limiter 

[34], the moment limiter [1], the monotonicity-preserving limiter [38], and the 

weighted essentially non-oscillatory (WENO) limiter [28]. A summary and com-

parison of limiters can found in [44].

One drawback of many of the limiters, including the popular minmod-based 

TVD limiters [14, 25], is that they may degenerate to first order accuracy near 

smooth extrema, even though they could retain the original high order accu-

racy in smooth and monotone regions [26]. To overcome this difficulty, Shu [34] 

designed a minmod-based TVB limiter, which can retain the original high order 

accuracy in smooth regions, including regions near smooth extrema. The adapta-

tion and application of this TVB limiter to DG methods for solving scalar one-

dimensional hyperbolic conservation laws were carried out in [6], and this limiter 

was further extended to DG methods solving one-dimensional systems and multi-

dimensional cases in [4, 5, 7]. Comparing with the minmod-based TVD limiters, 

this TVB limiter significantly improves accuracy in smooth regions near solu-

tion extrema. However, it involves a TVB parameter M, which must be deter-

mined in a problem-dependent fashion. In the two extremes, M = 0 returns to 

the TVD limiter, and M = +∞ returns to the original scheme without any lim-

iter. If M is chosen too small, accuracy near smooth extrema might be affected; 

while if M is chosen too large, noticeable spurious oscillations may reappear 
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near discontinuities. For scalar nonlinear conservation laws, there exists rigorous 

mathematical guidance on the choice of M to guarantee that accuracy is main-

tained in smooth regions [6, 34]. However, for nonlinear systems, no such math-

ematical guidance exists, and hence in practice, M is usually chosen in an ad hoc 

fashion based on experience and through trial and error. With proper choices of 

the TVB constant M, DG schemes with the TVB limiter can give excellent reso-

lution in CFD simulations. Besides the examples for compressible gas dynamics 

in [5, 7], we could also mention the application in [22], combined with a wet-dry 

moving boundary treatment, for solving shallow water equations. Also for solving 

shallow water equations, it works well on unstructured triangular meshes [42]. 

The TVB limiter is used to indicate the troubled cells in the application of spe-

cial relativistic hydrodynamics [43]. Effort has also been made to provide guid-

ance for an automated choice of the TVB constant M. A unified approach for the 

determination of this constant in mixed type meshes was studied and applied by 

Kontzialis et al. [19] and by Panourgias et al. [27], where M was chosen accord-

ing to the variation of the derivatives of the numerical solution. In [39], Vuik and 

Ryan proposed an automatic parameter selection strategy for this TVB constant 

M based on Tukey’s boxplot method of outlier-detection, and its application with 

compact-WENO finite element method is shown in [11].

In this paper, we aim to introduce an artificial neural network (ANN) based 

estimator for this TVB constant M by constructing a multi-layer perceptron 

(MLP) model. ANNs have the ability to approximate mappings with high-level 

complexity and nonlinearity, and thus they have undergone rapid developments 

and applications in numerical computation in recent years. For example, the 

ANNs are studied to solve ordinary and partial differential equations [12, 21, 33]. 

The multi-layer perceptron (MLP) is one of the most widely-used ANN mod-

els. It consists of an input layer, an output layer, and functional hidden layers. In 

[29, 30], Ray and Hesthaven constructed a troubled-cell indicator based on the 

MLP model, and Wen et al. applied it in finite difference WENO methods [40]. 

A well trained MLP model is free of problem-dependent parameter and hence 

suitable to be used as a unified approach for determining the TVB constant M in 

the TVB limiter applied to DG methods solving general conservation laws. We 

will construct function values containing information of discontinuities and local 

smooth extrema, and give the corresponding values of M in the training data set. 

The training process is performed offline, and the trained model should be able 

to return suitable TVB constant M to keep high order accuracy in smooth regions 

and eliminate spurious oscillations near discontinuities. The model will be added 

online into the DG framework with minimal modification on the standard TVB 

DG code to solve general conservation laws.

The outline of this paper is as follows. In Sect.  2, the background knowledge 

of the discontinuous Galerkin method and the minmod-based TVB limiter will be 

given. We will present the details for the construction of the training data set and the 

MLP model, as well as its implementation in the DG method, in Sect. 3. Numerical 

examples in 1D and 2D will be provided in Sect. 4, to demonstrate the good perfor-

mance of the MLP-based TVB limiter in comparison with the ad hoc choice of the 

TVB constant M. Concluding remarks are given in Sect. 4.
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2  Problem Setup and Preliminaries

2.1  Introduction of the DG Method

We consider the following conservation law:

where F is a linear or nonlinear flux function and Ω is a bounded domain in ℝd . In 

the one dimensional case, the conservation law is

where Ω = [a, b] . We discretize the domain by the partition a = x
1∕2

< x
3∕2

< ⋯ <

x
N+1∕2

= b . The cell I
i
 is denoted as I

i
= {x ∶ x

i−1∕2
< x < x

i+1∕2
} , for 1 ≤ i ≤ N , 

and the mesh sizes are h
i
= x

i+1∕2
− x

i−1∕2
 . In this paper we will use uniform meshes 

h
i
= h for simplicity, unless specifically explained. We define a piecewise continu-

ous polynomial space Vk
h
= {p ∈ L

2
(Ω) ∶ p|Ii

∈ Pk(Ii)} , where Pk(I
i
) is the space of 

polynomials of degree ≤ k in I
i
 . Then the one-dimensional DG method is stated as 

follows: Find u
h
(⋅, t) ∈ V

k

h
 , such that for all v

h
∈ V

k

h
 , u

h
 satisfies:

where f̂
i+

1

2

= f̂ (uh(x
−

i+
1

2

, t), uh(x
+

i+
1

2

, t)) is a monotone numerical flux in the scalar 

case and an exact or approximate Riemann-solver based numerical flux in the sys-

tem case, see [5, 6].

To implement the DG method, one can use a local basis over I
i
 : v

i
= (v0

i
,… , v

k

i
)T , 

and the numerical solution is expressed as

The time dependent coefficients u
i
(t) = (u0

i
(t),… , u

k

i
(t))T are the computational var-

iables to be evolved in time. If we take the test functions as v
h
= v

l

i
, l = 0,… , k , the 

scheme can be written as

The integrals in (2.5) can be computed either exactly or via suitable quadratures. 

The coefficients u
i
 can be obtained by using a proper time discretization to solve 

the ordinary differential equation (ODE) (2.5). In this paper, we will use the 

(2.1)

{

u
t
+ ∇ ⋅ F(u) = 0, on Ω ⊂ ℝ

d, d = 1, 2,

u(⋅, 0) = u0(⋅),

(2.2)

{

ut + f (u)x = 0, on Ω ⊂ ℝ,

u(x, 0) = u0(x),

(2.3)

d

dt ∫Ii

uh(x, t)vh(x, t) dx − ∫Ii

f (uh(x, t))(vh(x, t))x dx + f̂
i+

1

2

vh(x
−

i+
1

2

, t) − f̂
i−

1

2

vh(x
+

i−
1

2

, t) = 0,

(2.4)u
h
(x, t) =

k
∑

�=0

u
�

i
(t)v�

i
(x), for x ∈ I

i
.

(2.5)

k
∑

�=0

du�

i

dt ∫Ii

vl
i
v�

i
dx = ∫Ii

f

(

k
∑

�=0

u�

i
v�

i

)

(vl
i
)x dx − f̂

i+
1

2

vl
i
(x

i+
1

2

) + f̂
i−

1

2

vl
i
(x

i−
1

2

), l = 0,… , k.
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third order TVD Runge–Kutta scheme (RK3) [35] in the computation. Denote 

U(t) = (u1(t),… , u
N
(t))T , the equation (2.5) can be written as

where L is the spatial discretization operator. With Un
= U(t

n
) , where t

n
 is n-th time 

step, the third order Runge–Kutta scheme is stated as follows:

In the two dimensional case, the conservation law becomes

We consider the simple box geometry, and let Ω = [ax, bx] × [ay, by] . Likewise, for 

simplicity of presentation, we use a rectangular mesh to cover the domain, consist-

ing of the cells Iij = [x
i−

1

2

, x
i+

1

2

] × [y
j−

1

2

, y
j+

1

2

] for 1 ≤ i ≤ N
x
 and 1 ≤ j ≤ Ny . Similar 

to the 1D case, we define Vk
h
= {p ∈ L

2
(Ω) ∶ p|Iij

∈ Pk(Iij)} where Pk(Iij) is the set of 

polynomials of degree ≤ k over the cell Iij . Recall the notation in (2.1) that 

F(u) = (f (u), g(u)) . The 2D DG method is stated as follows: Find u
h
(⋅, t) ∈ V

k

h
 , such 

that for all v
h
∈ V

k

h
 , u

h
 satisfies:

where f̂
i+

1

2
,j
= f̂ (uh(x

−

i+
1

2

, y, t), uh(x
+

i+
1

2

, y, t)) is a one-dimensional numerical flux as 

defined before, likewise for ĝ
i,j+

1

2

 . Consider a proper local basis over Iij : 

vij = (v0

ij
,… , vK

ij
) where K = (k + 1)(k + 2)∕2 , then the numerical solution is 

expressed as

Define the coefficients as uij = (u0

ij
,… , uK

ij
) , and take the test functions as 

v
h
= v

l

i
, l = 0,… , K , then the scheme can be written as

d

dt
U(t) = L(U(t)),

(2.6)

U
(1) = U

n + ΔtL(Un),

U
(2) =

3

4
U

n +
1

4
(U(1) + ΔtL(U(1))),

U
n+1 =

2

3
U

n +
1

3
(U(2) + ΔtL(U(2))).

(2.7)ut + f (u)x + g(u)y = 0, on Ω ⊂ ℝ
2
.

(2.8)

d

dt ∫Iij

uh(x, y, t)vh(x, y)dxdy − ∫Iij

F(uh(x, y, t)) ⋅ ∇vh(x, y)dxdy

+ ∫
x

i+
1

2

x
i−

1

2

ĝ
i,j+

1

2

vh(x, y−
j+

1

2

)dx − ∫
x

i+
1

2

x
i−

1

2

ĝ
i,j−

1

2

vh(x, y+
j−

1

2

)dx

+ ∫
y

j+
1

2

y
j−

1

2

f̂
i+

1

2
,j

vh(x
−

i+
1

2

, y)dy − ∫
y

j+
1

2

y
j−

1

2

f̂
i−

1

2
,j

vh(x
+

i−
1

2

, y)dy = 0,

(2.9)uh(x, y, t) =

K
∑

�=0

u�

ij
(t)v�

ij
(x, y), for (x, y) ∈ Iij.
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Again, the coefficients uij(t) can be obtained by solving the ODE (2.10) by the third 

order Runge–Kutta time discretization (2.6).

2.2  The Minmod‑Based TVB Limiter

As mentioned in the introduction, the DG scheme provides high order accurate 

simulation of smooth solutions, and maintains L
2 and entropy stability for dis-

continuous solutions. However, this does not prevent the DG solution from show-

ing spurious Gibbs oscillations near discontinuities, which may lead to nonlinear 

instability for solving nonlinear hyperbolic systems. Various nonlinear limiters 

are designed in the literature to control those spurious oscillations, while attempt-

ing to retain the original high order accuracy in smooth regions. In this section 

we describe the minmod-based TVB limiter [6, 34], which is the focus of our 

study in this paper.

In the one dimensional case, we denote the cell average of u
h
 in each cell I

i
 as:

We further denote by ũ
i
 and ̃̃u

i
 the differences between the point values of the numer-

ical solution at the cell boundaries and the cell average, and by Δ+
ū

i
 and Δ−

ū
i
 the 

differences between the cell average of I
i
 and that of its neighboring cells:

A nonlinear limiter changes the polynomial solution u
h
 in the cell I

i
 , while keeping 

the cell average ū
i
 unchanged to maintain conservation. The purpose of the non-

linear limiter is to control spurious oscillations near discontinuities, while attempt-

ing to retain the original high order accuracy in smooth regions. The minmod-based 

TVD limiter [14, 25] modifies ũ
i
 and ̃̃u

i
 by a limiter function:

Once the modified values ũ
(mod)

i
 and ̃̃u

(mod)

i
 are obtained, we can obtain the modified 

point values of the numerical solution at the cell boundaries:

(2.10)

k
∑

�=0

du�

ij

dt ∫Iij

vl
ij
v�

ij
dx =∫Iij

F(

K
∑

�=0

u�

ij
(t)v�

ij
(x, y)) ⋅ ∇vl

ij
dxdy

− ∫
x

i+
1

2

x
i−

1

2

ĝ
i,j+

1

2

vl
ij
(x, y−

j+
1

2

)dx + ∫
x

i+
1

2

x
i−

1

2

ĝ
i,j−

1

2

vl
ij
(x, y+

j−
1

2

)dx

− ∫
y

j+
1

2

y
j−

1

2

f̂
i+

1

2
,j
vl

ij
(x−

i+
1

2

, y)dy + ∫
y

j+
1

2

y
j−

1

2

f̂
i−

1

2
,j
vl

ij
(x+

i−
1

2

, y)dy.

ū
i
=

1

h
i
∫

I
i

u
h
(x)dx.

(2.11)

ũ
i
= u

h
(x−

i+
1

2

) − ū
i
, ̃̃u

i
= ū

i
− u

h
(x+

i−
1

2

), Δ+
ū

i
= ū

i+1 − ū
i
, Δ−

ū
i
= ū

i
− ū

i−1.

(2.12)ũ
mod

i
= m(ũ

i
,Δ+

ū
i
,Δ−

ū
i
), ̃̃u

mod

i
= m( ̃̃u

i
,Δ+

ū
i
,Δ−

ū
i
).
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With the two modified point values u
(mod)

h
(x−

i+
1

2

) , u
(mod)

h
(x+

i−
1

2

) and the original cell 

average ū
i
 , we can recover a unique pk polynomial with k ≤ 2 as the limited solution 

u
(mod)

h
 . For k > 2 , we still recover a quadratic polynomial if the limiter is enacted 

(that is, if the limiter function m in (2.12) returns other than the first argument), 

since accuracy is not expected to be maintained in this case.

We now turn to the specific choices of the limiter function m in (2.12).

For the minmod-based TVD limiter [14, 25], m is defined as the minmod 

function

In words, the minmod function m returns the smallest argument (in magnitude), if 

all arguments have the same sign; otherwise it returns zero.

It can be proved [6] that, when the minmod limiter (2.13) is used and if the 

time discretization is via a TVD Runge–Kutta method such as (2.6), then the lim-

ited DG solution is total variation diminishing in the means (TVDM). This is a 

rather strong nonlinear stability property and prevents completely any spurious 

oscillations in the means near discontinuities. However, the drawback is that, as 

any TVD schemes, the method will suffer from accuracy degeneracy to first order 

near smooth extrema [26], hence the global accuracy in L1 is at most second order 

for generic smooth solutions with finitely many smooth extrema.

For the minmod-based TVB limiter [34], m is defined as

where h is a local mesh size, M ≥ 0 is a TVB constant, and m is the minmod func-

tion defined in (2.13). It can be shown [6] that, when the TVB limiter (2.14) is used 

and if the time discretization is via a TVD Runge–Kutta method such as (2.6), then 

the limited DG solution is total variation bounded in the means (TVBM). This is 

again a rather strong nonlinear stability property.

It is expected that the performance of the TVB limiter depends strongly on the 

choice of the TVB constant M. If M is chosen too large, noticeable spurious oscil-

lations may reappear near discontinuities. After all, for M = +∞ , the limiter mtvb 

in (2.14) will always return the first argument, namely we will obtain the unlimited 

solution. On the other hand, if M is chosen too small, the scheme may lose the origi-

nal high-order accuracy near smooth extrema, just like the TVD minmod limiter. 

After all, for M = 0 , we recover the TVD minmod limiter defined in (2.13). On the 

approximation level, given a smooth function u, the following result is proved in [6].

u
(mod)

h
(x−

i+
1

2

) = ū
i
+ ũ

(mod)

i
, u

(mod)

h
(x+

i−
1

2

) = ū
i
− ̃̃u

(mod)

i
.

(2.13)

m(a1, a2, a3) =

{
s min (|a1|, |a2|, |a3|), if s = sign (a1) = sign (a2) = sign (a3),

0, otherwise .

(2.14)m
tvb(a1, a2, a3, h, M) =

{
a1, if |a1| ≤ Mh2,

m(a1, a2, a3), otherwise ,



 La Matematica (2022) 1:53–84

1 3

 60

Lemma 2.1 If u is a smooth function, and M
2
= max

x
|u

xx
| . Then, if M is taken as

the limiter (2.14) will not affect accuracy. That is, it will always return the first argument.

In fact, M
2
 can be taken as a upper bound for the magnitude of the second derivative 

near the smooth extrema, rather than over the whole range of x.

The approximation result in the lemma above is also valid for linear or nonlinear 

scalar conservation laws. For one dimensional scalar conservation laws (2.2), we have 

the following lemma.

Lemma 2.2 If u is the solution of the one dimensional scalar conservation law (2.2), 

the initial condition u
0
(x) is smooth near x = x

0
 , and u�

0
(x

0
) = 0 , then along the for-

ward characteristic line

we have

That is, along a smooth local extremum, the second derivative u
xx

 is invariant (con-

stant in time).

Lemma 2.2 can be easily proved by solving the ODEs involving the evolution of u, 

u
x
 and u

xx
 along the forward characteristic line. Based on Lemmas 2.1 and 2.2 , we con-

clude that the choice of M by (2.15), where M
2
= max

x
|u��

0
(x)| , ensures that the limiter 

(2.14) will not affect accuracy. That is, it will always return the first argument. Thus, 

the choice of M to ensure high order accuracy in smooth regions for scalar conserva-

tion laws can be given with solid mathematical justification. In practice, because of the 

numerical errors near smooth extrema, we often take a slightly larger value of M than 

that given by (2.15), e.g. by M = cM
2
 with c >

2

3
.

However, for nonlinear hyperbolic systems, there is no such mathematical guidance 

for the choice of the TVB constant M. This is because the value of u
xx

 at a smooth 

extremum is no longer invariant in time, hence cannot be determined based solely on 

the initial condition. The choice of M in such cases is then often given in an ad hoc 

fashion, based on experience and through trial and error. In this paper, we would like to 

develop a constant estimator for M, based on an artificial neural network (ANN) based 

model, so that the TVB constant M can be chosen automatically .

3  The Multi-layer Perceptron (MLP) Limiter

Our work on the construction of an ANN-based constant estimator is enlightened 

by the MLP troubled cell indicator developed by Hesthaven and Ray [29], which 

detects the location of discontinuities according to the function values at the cell 

(2.15)M ≥
2

3
M2,

x(t) = x0 + f �(u0(x0))t,

u(x, t) = u(x0), u
x
(x, t) = 0, u

xx
(x, t) = u

��

0
(x0).
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boundaries and the local cell averages. Inspired by [29], we aim at constructing a 

constant estimator using the ANN model, which is able to (1) distinguish the cells 

near local extrema, discontinuities and in smooth monotone regions by the point 

values at the cell interface and the cell averages; (2) directly return the TVB lim-

iter constant M accordingly, that maintains high order accuracy in smooth regions 

and non-oscillatory transaction at discontinuities. The multi-layer perceptron (MLP) 

model is one of the most commonly used artificial neural network model. The idea 

of developing a hypothetical nervous system (called a perceptron) and imitating 

learning curves from neurological variables is introduced by Rosenblatt in 1958 

[32]. In [24], Novikoff proved the perceptron convergence theorem, i.e., if the train-

ing data set is linearly separable, the convergence of the perceptron is guaranteed. 

The capability of approximating continuous functions of MLP is studied in [9, 13]. 

The MLP model is well-known for its ability to estimate the relationship with high 

degree of complexity and nonlinearity. The other advantage of the model is that, the 

main computational cost of the model comes from the offline training procedure, 

and the online computational procedure involves simple matrix multiplications with 

negligible extra cost over the original DG scheme. As shown in Fig.  1, the MLP 

model consists of an input layer, an output layer, and several hidden layers, includ-

ing a normalization layer and fully connected layers.

This model can be viewed as an approximation map from the input layer to the 

output layer,

where the weights w , the bias b and the activation function contained in the hid-

den layer determine the value of the predicted outputs. The cost function is then 

applied to measure the error between the network predicted output and the true out-

put value given in the training data set. During the training process, proper training 

strategy, like the supervised learning [18] we use in this paper, is utilized to mini-

mize the error by adjusting the weight and the bias. A well-trained model is capable 

(3.1)F ∶ ℝ
N1 ↦ ℝ

No , y = f (x|(w, b)),

Fig. 1  An MLP model with an input layer, a normalization layer, hidden layers, and an output layer
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of precisely predicting the outputs according to the input data, even when the input 

is not included in the training set.

3.1  Construction of the Training Data

Now we will introduce the design of the MLP-based estimator. In our case, the 

input data are function values in and near the cell I
i
 , i.e 

v = (ū
i−1, ū

i
, ū

i+1, u
h
(x−

i+1∕2
), u

h
(x+

i−1∕2
))T ∈ ℝ

5 . The output would be the corre-

sponding TVB limiter constant M
i
 for the cell I

i
 . The input and output training 

data sets are denoted as �
x
 and �

y
 respectively, which are generated via the fol-

lowing two ways. Firstly, due to the fact that the DG solutions are piecewise poly-

nomial functions approximating the real PDE solution, the type I data are func-

tion values from the L2 projection of designed functions into suitable piecewise 

polynomial spaces. Secondly, inspired by the work of Sun et al. [37], we consider 

the effect of the numerical method on the solution’s structure, such as the Gibbs 

oscillations near discontinuities or the smearing caused by the numerical dissipa-

tion. To enable the model to learn the feature of the numerical solutions, the data 

from numerical solutions of the DG method solving the advection equation 

u
t
+ au

x
= 0 with discontinuous initial conditions are added. The detailed proce-

dure is listed below.

Type I. Data from piecewise polynomial functions. 

1. In the interval [a, b], choose piecewise smooth functions u(x) containing one or 

more features listed below:

• Containing smooth monotone regions;

• Containing discontinuity points;

• Containing local smooth maxima and/or local smooth minima.

2. Pick a point x and a mesh size h randomly, such that a < x −
3

2
h < x +

3

2
h < b , 

and construct a three-cell stencil containing I
i−1 = (x −

3

2
h, x −

1

2
h) , 

I
i
= (x −

1

2
h, x +

1

2
h) , and I

i+1 = (x +
1

2
h, x +

3

2
h).

3. Use the standard L2 projection to project u(x) onto the piecewise polynomial 

space with different degrees of freedom within each cell, and denote the obtained 

polynomials in each cell of the three-cell stencil as u
i−1

(x) , u
i
(x) , and u

i+1
(x).

4. Collect the input data, i.e, v = (ū
i−1, ū

i
, ū

i+1, u
i
(x +

1

2
h), u

i
(x −

1

2
h))T.

5. Determine corresponding output value y = M ∈ �y by the following strategy:

• If the interval I = (x −
3

2
h, x +

3

2
h) contains a discontinuity point, the stand-

ard minmod limiter should be applied to control spurious oscillations, i.e. 

y = M = 0;

• If the interval I contains a local maximum or a local minimum, we define 

M =
2

3
c max

x∈I
|u

��

(x)| . Here c is a constant greater than 1, to make M a safer 

upper bound according to Lemmas 2.1 and 2.2 for maintaining the original 

high order accuracy. In our numerical computation, we have taken the value 

c = 5.
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• If u(x) in the interval I is smooth and monotone, we choose M big enough so 

that the minmod limiter is not enacted (i.e. it returns the first argument). In 

our numerical computation, we have taken the value M = 1000 in this case.

Type II. Data from the numerical solution. 

1. We generate the piecewise smooth initial condition u
0
 by the following procedure:

• Select the number of discontinuities contained in the initial condition: 

1 ≤ N
d
≤ 6;

• Randomly select N
d
 locations for the discontinuities in the domain [−1, 1] , 

and divide the domain into N
d
+ 1 subdomains;

• Within each subdomain, create random Fourier series 

a
0
+
∑Nf

n=1
(an cos(nx) + bn sin(nx)) with different 1 ≤ Nf ≤ 6 , and i.i.d random 

variables a
0
 , a

n
 , and b

n
.

2. Use different mesh sizes h =
1

30
,

1

60
,

1

90
,

1

180
 to generate uniform meshes with N

x
 

cells.

3. With a random advection coefficient a ∈ [−1, 1] , apply the Runge–Kutta DG 

(RKDG) scheme with the degree of freedom k to compute the solution for N
t
 time 

steps, where N
t
= 1, 2, 3 and k = 1, 2, 3, 4 . The time step size is chosen as 

Δt = C
h

a
 , where the CFL constant is chosen as C <

1

2k+1
 . The obtained numer-

ical solution in cell I
i
 is denoted as u

i
.

4. Collect the data from the numerical solution, i.e, v = (ū
i−1, ū

hi
, ū

i+1,

u
i
(x−

i+1∕2
), u

i
(x+

i−1∕2
))T.

5. The cell is considered to contain a discontinuity or a local smooth extremum if the 

exact solution u(x, t) = u0(x − aN
t
Δt) has discontinuity or a local extremum within 

the cell or its left or right neighbor cell, and y = M ∈ �y is determined using the same 

strategy of step 5 in Type I. In general there could exist differences in the locations 

of discontinuities between the exact and the numerical solutions. In our case, only a 

few time steps are computed, therefore the difference can be neglected. It enables us 

to use the location of discontinuities in the exact solution to determine M.

Based on the above guideline, the training data set is constructed, and the details of 

this data set can be viewed in Table 1. For the Type I data, the mesh size h and the 

degrees of freedom of the projected polynomial space k ∈ {1, 2, 3, 4} are varied.

3.2  The MLP Model

We now briefly introduce the MLP training model. The input is a 5-dimensional 

vector v . Before feeding the data into the hidden layers, we firstly add a normali-

zation layer to normalize the data as follows. Denote the l-th element of the input 

vector v as vl , l = 1… 5 . The normalized function value would be ṽ , with the l-th 

element ṽl given by
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where � and � are the mean and the standard deviation of the elements of all v in �
x
.

We apply five hidden layers containing 128, 64, 32, and 16 neurons respectively. 

Within each hidden layer, the weights and bias are randomly initialized using a nor-

mal distribution, and Leaky rectified linear unit (Leaky ReLU) is chosen as the acti-

vation [23]. The output layer has one neuron, as the output is the value of the limiter 

TVB constant M. The cost function is given by the mean squared error (MSE) func-

tion. The data set is split into two subsets, with 80% data used for training and the 

remaining 20% data for validation. The model is trained using the Adam optimiza-

tion [17] with the batch size S
b
= 500 , and with 2000 iterations. Keras API is used 

for the model training (https:// keras. io/).

3.3  Implementation of the Estimator

After obtaining the well-trained model, it is simple to implement the estimator. The 

algorithm in the one-dimensional scalar case is described as follows: 

1. Apply the DG method for the spatial discretization, and proceed with one Euler 

forward step in the third order Runge–Kutta time discretization.

2. Generate v
i
= (ū

i−1, ū
i
, ū

i+1, u
h
(x−

i+1∕2
), u

h
(x+

i−1∕2
))T within each cell I

i
.

3. Feed the data into the estimator, and obtain the corresponding M
i
 for each cell.

4. Apply M
i
 in the minmod-based TVB limiter, and obtain the limited solution.

5. Repeat Steps 1-4 twice for the next two Runge–Kutta inner stages, and finish the 

computation of the current time step.

(3.2)ṽ
l
=

vl
− �

�
,

Table 1  Rows 2–6 are the functions used to generate the Type I data

The last three columns are the numbers of cells containing discontinuities, local extrema, and total 

cell numbers. The second last row is the number of different types of cells in the data generated by the 

numerical solution of the DG scheme. The last row is the total data number in the data set, which is 

obtained by adding the data above within each column

u(x) Domain Varied parameters Discontinuities Local extrema Total

a|x| [− 0.5,0.5] a ∈ [1, 10] 1000 0 1000

u
l
I
x<a

+ u
r
I
x>a

[− 1,1] (u
l
, u

r
) ∈ [−4, 4]2 

a ∈ [−0.56, 0.56]

3200 0 3200

sin(k�x) [0,
k

4
] k = 1,…,25 0 720 6480

sin(2�x) cos(3�x) sin(4�x) [0,1] 0 504 1400

sin
4(�x) [0,1] 0 144 1400

Type II data 950 1695 8451

Total 5150 3063 21931

https://keras.io/
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There is no need to change the structure of the original DG code to implement the 

estimator. Since v
i
 in Step 2 is also needed in the minmod-based TVB limiter, the 

only extra work is adding Step 3 to predict the value of M, and in practice it is an 

one-line addition in the code.

In the two dimensional scalar case, we need to generate in the x direction and in 

the y direction:

we feed them into the estimator to obtain the predicted limiter TVB constants Mx
ij
 

and M
y

ij
 respectively, and apply them in the limiter. It is clear that there is a low cod-

ing cost for the implementation of the estimator in the 2D case as well.

For hyperbolic systems, the estimator and the limiter could be applied component 

by component, but they are more effective if they are applied in local characteristic 

fields, which is the procedure that we adopt in our numerical tests. We refer to [5, 7] 

for more details.

4  Numerical Tests

In this section, we will perform several standard numerical tests in one- and two-

dimensions. For the scalar case, we will solve the linear advection equation and the 

nonlinear Burgers equation, and in the case of systems, the Euler equation of com-

pressible gas dynamics will be approximated. Within each subsection, accuracy tests 

will be given for the DG scheme with the MLP limiter for the degrees of freedom 

k = 1, 2, 3 , when the exact solution is smooth. The results will be compared against 

DG schemes without the limiter. In the case that exact solutions are discontinuous, 

the performance of the MLP limiter will be presented and compared to that of the 

TVB limiter with the TVB constant M chosen in an ad hoc fashion through trial 

and error as given in the literature. In general, the MLP limiter has outstanding 

performance when applied to the DG method of different degrees of freedom. In 

all accuracy tests, periodic boundary condition is applied, and the simulations run 

until t = 0.3 . The CFL conditions are set to be CFL = 0.3 for k = 1 , CFL = 0.18 for 

k = 2 , and CFL = 0.1 for k = 3 , according to the linear stability analysis [8].

4.1  Linear Advection Equation

We firstly consider the one-dimensional linear advection equation with sine wave 

initial condition:

(3.3)

v
x
ij
= (ūi−1,j, ūi,j, ūi+1,j, uh(x

−

i+
1

2

, yj), uh(x
+

i−
1

2

, yj))
T ,

v
y

ij
= (ūi,j−1, ūi,j, ūi,j+1, uh(xi, y−

j+
1

2

), uh(xi, y+
j−

1

2

))T ,

(4.1)

{

u
t
+ u

x
= 0,

u(x, 0) = sin(x), x ∈ [0, 2�].
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Table 2 demonstrates the error and order of accuracy for the DG scheme with and 

without the MLP limiter. The MLP limiter method obtains the desired second, third 

and fourth order accuracy respectively, when applied to the DG scheme with degrees 

of freedom k = 1, 2, 3 . The error and order are very close to that of the DG method 

without the limiter, indicating that the MLP limiter has the correct estimate for the 

TVB constant M and can maintain the original high order of accuracy.

To check the behavior of the limiter under discontinuous situation, we consider 

the multi-wave problem, with the initial condition given by

(4.2)u0(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

10(x − 0.2), 0.2 < x < 0.3,

10(0.4 − x), 0.3 < x < 0.4,

1, 0.6 < x < 0.8,

100(x − 1)(1.2 − x), 1.0 < x < 1.2,

0, otherwise .

Table 2  Accuracy test for 1D linear advection equation

k = 1 DG MLP-limiter k = 1 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 4.83 E−03 3.10 E−03 4.39 E−03 2.27 E−03

32 1.29 E−03 1.90 6.51 E−03 2.25 1.22 E−03 1.84 6.25 E−03 1.86

64 3.15 E−04 2.03 1.60 E−03 2.02 3.41 E−04 1.95 1.60 E−03 1.96

128 7.86 E−05 2.00 4.01 E−04 2.00 7.86 E−05 2.00 4.01 E−04 2.00

256 1.96 E−05 2.00 1.00 E−04 2.00 1.96 E−05 2.00 1.09 E−04 2.00

k = 2 DG MLP-limiter k = 2 DG no limiter

# cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 1.67 E−04 7.68 E−04 1.78 E−04 7.69 E−04

32 2.18 E−05 2.94 1.35 E−04 2.50 2.28 E−05 2.96 1.46 E−04 2.39

64 2.47 E−06 3.13 1.55 E−05 3.11 2.46 E−06 3.21 1.51 E−05 3.27

128 3.12 E−07 2.98 1.97 E−06 2.94 3.12 E−07 2.98 1.97 E−06 2.94

256 3.90 E−08 2.97 2.46 E−07 3.00 3.89 E−08 2.97 2.46 E−07 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

# cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 4.02 E−06 2.07 E−05 4.02 E−06 2.07 E−05

32 2.67 E−07 3.91 1.69 E−06 3.62 2.67 E−07 3.91 1.69 E−06 3.62

64 1.34 E−08 4.31 1.09 E−07 3.95 1.34 E−08 4.31 1.09 E−07 3.95

128 8.75 E−10 3.94 6.51 E−09 4.07 8.75 E−10 3.94 6.51 E−09 4.07

256 5.67 E−11 3.95 4.09 E−10 3.99 5.67 E−11 3.95 4.09 E−10 3.99
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The domain is [0, 1.4], and periodic boundary condition is applied. The solution is 

evaluated at t = 1.4 using N = 100 cells. In this case, we use the randomly perturbed 

meshes, which is constructed based on a uniform mesh:

where we choose � = 0.15 . For all simulations as shown in Fig. 2, the performance 

of the TVB limiter with different TVB constants M = 0, 10, 100, 1000 and the 

MLP limiter are compared. The choices of M = 0, 10 smear significantly at the two 

local maxima, and M = 100, 1000 fail to control oscillations near the discontinui-

ties. However, the MLP limiter can precisely catch the local extrema without caus-

ing oscillation near the discontinuities. Figure  3 depicts the temporal history of the 

TVB constant M chosen by the MLP model. The MLP model precisely captures the 

discontinuous points and local extrema, and returns the corresponding M.

In the two-dimensional linear case

the error and orders of the DG method with the MLP limiter and without the limiter 

are listed in Table 3. The MLP limiter again preserves high order accuracy in this 

2D example.

4.2  Burgers Equation

We consider the nonlinear Burgers equation in 1D:

x
i+

1

2

→ x
i+

1

2

+ �h
i+

1

2

�
i+

1

2

, �
i+

1

2

∈ �([−0.5, 0.5]) i = 1,… , N − 1,

(4.3)

{

ut + ux + uy = 0,

u(x, y, 0) = sin(x + y), (x, y) ∈ [0, 2�] × [0, 2�],

(4.4)

{

u
t
+

(

u
2

2

)

x

= 0,

u(x, 0) =
1

4
+ sin(x), x ∈ [0, 2�].

Fig. 2  Solution for the multi-wave problem using the fourth order DG method, at the final time t = 1.4 . 

The right figure is zoomed near x = 0.7
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Fig. 3  Temporal history of the TVB constant M chosen by the MLP model of the multiwave problem, 

k = 2

Table 3  Accuracy test for 2D linear advection equation

k = 1 DG MLP-limiter k = 1 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.03 E−02 9.54 E−02 1.03 E−02 9.54 E−02

32 × 32 2.60 E−03 1.98 2.52 E−03 1.91 2.60 E−03 1.98 2.52 E−03 1.91

64 × 64 6.52 E−04 2.00 6.40 E−03 1.98 6.52 E−04 2.00 6.40 E−03 1.98

128 × 128 1.62 E−04 2.00 1.60 E−03 2.00 1.62 E−04 2.00 1.60 E−03 2.00

256 × 256 4.06 E−05 2.00 4.01 E−04 2.00 4.06 E−05 2.00 4.01 E−04 2.00

k = 2 DG MLP-limiter k = 2 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 9.48 E−04 5.84 E−03 9.48 E−04 5.84 E−03

32 × 32 9.89 E−05 3.26 1.21 E−03 2.26 9.89 E−05 3.26 1.21 E−03 2.26

64 × 64 1.14 E−05 3.11 1.46 E−04 3.05 1.14 E−05 3.11 1.46 E−04 3.05

128 × 128 1.42 E−06 3.00 1.87 E−05 2.97 1.42 E−06 3.00 1.87 E−05 2.97

256 × 256 1.78 E−07 3.00 2.34 E−06 3.00 1.78 E−07 3.00 2.34 E−06 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 5.11 E−05 9.79 E−04 5.11 E−05 9.79 E−04

32 × 32 3.20 E−06 3.99 6.09 E−05 4.00 3.20 E−06 3.99 6.09 E−05 4.00

64 × 64 2.01 E−07 3.99 3.74 E−06 4.02 2.01 E−07 3.99 3.74 E−06 4.02

128 × 128 1.27 E−08 3.98 2.05 E−07 4.05 1.27 E−08 3.98 2.05 E−07 4.05

256 × 256 8.24 E−10 3.95 1.27 E−08 4.13 8.24 E−10 3.95 1.27 E−08 4.13
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Before t = 1 , the solution is smooth, and we can compare the accuracy of the DG 

scheme with and without the MLP limiter. From Table 4, we observe that applying 

the limiter does not affect accuracy also in this nonlinear case.

Next we test the compound wave problem, with a discontinuous initial condition:

The domain is [−4, 4] with a randomly perturbed mesh, and the periodic boundary 

condition is applied. We can see the numerical result at t = 0.4 in Fig. 4. The MLP 

(4.5)u0(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

l sin(�x), �x� ≥ 1,

3, −1 < x ≤ −0.5,

1, −0.5 < x ≤ 0,

3, 0 < x ≤ 0.5,

2, 0.5 < x ≤ 1,

Table 4  Accuracy test for 1D Burgers equation

k = 1 DG MLP-limiter k = 1 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 4.53 E−03 2.67 E−02 4.53 E−03 2.67 E−02

32 1.05 E−03 2.10 6.41 E−03 2.05 1.05 E−03 2.10 6.41 E−03 2.05

64 2.62 E−04 2.00 1.63 E−03 1.97 2.62 E−04 2.00 1.63 E−03 1.97

128 6.56 E−05 2.00 4.11 E−04 1.99 6.56 E−05 2.00 4.11 E−04 1.99

256 1.63 E−05 2.00 1.03 E−04 1.99 1.63 E−05 2.00 1.03 E−04 1.99

k = 2 DG MLP-limiter k = 2 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 1.17 E−04 4.96 E−04 1.17 E−04 4.96 E−04

32 1.45 E−05 3.00 6.28 E−05 2.98 1.45 E−05 3.00 6.28 E−05 2.98

64 1.82 E−06 3.00 7.87 E−06 3.00 1.82 E−06 3.00 7.87 E−06 3.00

128 2.28 E−07 3.00 9.85 E−07 3.00 2.28 E−07 3.00 9.85 E−07 3.00

256 2.84 E−08 3.00 1.23 E−07 3.00 2.84 E−08 3.00 1.23 E−07 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error order L

∞ error order

16 9.88 E−06 1.51 E−04 9.88 E−06 1.51 E−04

32 5.84 E−07 4.08 1.07 E−05 3.81 5.84 E−07 4.08 1.07 E−05 3.81

64 3.63 E−08 4.00 7.05 E−07 3.92 3.63 E−08 4.00 7.05 E−07 3.92

128 2.26 E−09 4.00 4.46 E−08 3.94 2.26 E−09 4.00 4.46 E−08 3.94

256 1.41 E−10 4.00 2.95 E−09 3.97 1.41 E−10 4.00 2.95 E−09 3.97
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limiter gives good performance on capturing the discontinuities without spurious 

oscillations.

The two dimensional Burgers equation is stated as:

The error and order of accuracy of the solution at t = 0.1 are in Table  5. Similar 

to the one-dimensional case, the MLP-limiter does not affect the accuracy. When 

the time reaches t = 1.2 , there is a shock in the exact solution, and as we can see in 

Fig. 5, compared to the DG scheme without limiter, the MLP-limiter effectively con-

trols the oscillation near the shock.

4.3  Euler Equation

In this subsection we apply the MLP limiter to solve nonlinear systems. We firstly 

consider the compressible Euler equation in one dimension:

where � , � , and p denote the density, velocity and pressure of the fluids, respectively. 

The total energy E =
p

�−1
+

1

2
��

2 , with � = 1.4 for air. For the system case, we 

choose to use the limiter in the local characteristic fields. That is, we firstly project 

the conserved variable U = (�, ��, E)T into the local characteristic fields, and then 

apply the TVB or the MLP limiter in each characteristic field. Finally we project the 

(4.6)

⎧
⎪⎨⎪⎩

ut +

�
u2

2

�
x

+

�
u2

2

�
y

= 0,

u(x, y, 0) =
1

4
+ sin(x + y), (x, y) ∈ [0, 2�] × [0, 2�].

(4.7)
�

�t

⎛
⎜
⎜
⎝

�

��

E

⎞
⎟
⎟
⎠
+

�

�x

⎛
⎜
⎜
⎝

��

��2 + p

�(E + p)

⎞
⎟
⎟
⎠
= 0, 0 < x < 2�,

Fig. 4  Comparison of solutions on a randomly perturbed mesh for the compound wave problem using 

the fourth order DG method with the TVB limiter with M = 0, 10, 100, 1000 and the MLP limiter. Here 

T = 0.4 and cell of number N = 200
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Table 5  Accuracy test for 2D Burgers equation

k = 1 DG MLP-limiter k = 1 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.32 E−02 8.80 E−02 1.32 E−02 8.80 E−02

32 × 32 3.40 E−03 1.95 2.26 E−02 1.96 3.40 E−03 1.95 2.26 E−02 1.96

64 × 64 8.67 E−04 1.97 5.73 E−03 1.98 8.67 E−04 1.97 5.73 E−03 1.98

128 × 128 2.18 E−04 1.99 1.43 E−03 1.99 2.18 E−04 1.99 1.43 E−03 1.99

256 × 256 5.47 E−05 2.00 3.60 E−04 1.99 5.47 E−05 2.00 3.60 E−04 1.99

k = 2 DG MLP-limiter k = 2 DG no limiter

# cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.27 E−03 1.43 E−02 1.27 E−03 1.43 E−02

32 × 32 1.61 E−04 2.98 1.72 E−03 3.06 1.61 E−04 2.98 1.72 E−03 3.06

64 × 64 4.48 E−05 1.84 6.24 E−04 1.85 2.04 E−05 3.00 2.17 E−04 3.01

128 × 128 2.48 E−06 4.17 2.92 E−05 7.73 2.48 E−06 3.00 2.92 E−05 3.01

256 × 256 3.11 E−07 3.00 3.69 E−06 2.98 3.11 E−07 3.00 3.96 E−06 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 9.53 E−05 1.06 E−04 9.53 E−05 1.06 E−04

32 × 32 5.93 E−06 4.00 6.74 E−05 3.99 5.93 E−06 4.00 6.74 E−05 3.99

64 × 64 3.67 E−07 4.01 4.88 E−06 3.79 3.67 E−07 4.01 4.88 E−06 3.79

128 × 128 2.26 E−08 4.02 3.09 E−07 3.99 2.26 E−08 4.02 3.09 E−07 3.99

256 × 256 1.47 E−09 3.95 1.43 E−08 3.97 1.47 E−09 3.95 1.43 E−08 3.97

Fig. 5  Comparison of solutions of the 2D Burgers equation with the initial condition 

u0(x, y) =
1

4
+ sin(x + y) using the fourth order DG method without limiter, with the TVB limiter 

with M = 1 , and with the MLP limiter. Final time is t = 1.2 and the number of cells corresponds to 

Nx = Ny = 40
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limited numerical solution back to the conserved variable space. More details can be 

found in [5]. We will compare the performance of the MLP-limiter with the TVB-

limiter with ad hoc choices of the TVB constant M through trial and error as adopted 

in the literature. In all the test cases, we present the results for the density � as 

representations.

Example 4.3.1: Artificial accuracy test.

We firstly consider the accuracy test in [10]. We set the initial condition as:

The computational domain is set to be [0, 2�] , and periodic boundary condition is 

imposed. We take � = 3 , which allows us to verify that 2
√

3�(x, t) is the exact solu-

tion of the Burgers equation:

and

At t = 0.3 , the solution is smooth, and the error and order of accuracy of density are 

listed in Table 6. It is clear that the MLP limiter does not affect the accuracy in this 

1D nonlinear system example.

Example 4.3.2: The Sod problem.

This problem is a classic Riemann problem test, whose initial condition is

The domain is x ∈ [−5, 5] , and the simulation runs until t = 2.0 with the mesh size 

N = 100 . We test the DG scheme with different orders of accuracy. If the TVB con-

stant M = 33 or larger, the TVB limiter simulation fails with fourth or higher order 

DG schemes, due to the appearance of negative density. With M = 33 , the TVB lim-

iter gives good performance for the DG scheme with second and third order. On the 

other hand, while the solutions of TVB limiter with M = 15 smear a lot at discon-

tinuities in lower order cases, it gives satisfying non-oscillatory result with fourth 

and fifth order DG schemes. Meanwhile, the MLP limiter gives good simulation 

in all cases, with results comparable to the M = 33 case in second and third order 

schemes, and to the M = 15 case in fourth and fifth order schemes. The details are 

shown in Fig. 6.

Example 4.3.3: The Lax problem.

Another famous Riemann problem test is the Lax problem, with the initial 

condition

(4.8)�(x, 0) =
1 + 0.2 sin(x)

2
√

3

, �(x, 0) =
√

��(x, 0), p(x, 0) = �(x, 0)� .

(4.9)u
t
+

(

u
2

2

)

x

= 0, u(x, 0) = 1 + 0.2 sin(x),

(4.10)�(x, t) =
√

��(x, t), p(x, t) = �(x, t)� .

(4.11)(�,�, p) =

{

(1, 0, 1), x ≤ 0,

(0.125, 0, 0.1), x > 0.
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The domain is x ∈ [−5, 5] and the number of cells is N = 100 . We compute the 

solution until t = 1.3 . In this case, we use M = 33 [5] which gives the best (sharp-

est) performance at discontinuities (especially at the contact discontinuity) for the 

third order DG scheme. Meanwhile, although the solution of the TVB limiter with 

M = 70 has huge oscillations at the discontinuity in lower order cases, it gives the 

best performance for the fifth order DG scheme. On the other hand, the MLP limiter 

works well for DG schemes with different orders of accuracy. The performance of 

the MLP limiter is as good as that of the M = 33 TVB limiter for the third order 

scheme, and of the M = 70 TVB limiter for the fifth order scheme.  For the second 

order scheme, the MLP limiter describes the edge of the discontinuity better than 

that of the TVB limiters (Fig. 7).

Example 4.3.4: The blast wave problem.

We now consider the interaction of two blast waves, with the initial condition:

(4.12)(�,�, p) =

{

(0.445, 0.698, 0, 3.528), x ≤ 0,

(0.5, 0, 0, 0.571), x > 0.

Table 6  Accuracy test for 1D Euler equation

k = 1 DG MLP-limiter k = 1 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 4.96 E−03 8.86 E−03 4.96 E−03 8.86 E−03

32 1.10 E−03 2.16 1.31 E−03 2.75 1.10 E−03 2.16 1.31 E−03 2.75

64 2.76 E−04 2.00 3.28 E−04 1.97 2.76 E−04 2.00 3.28 E−04 1.97

128 6.90 E−05 2.00 8.22 E−05 1.99 6.90 E−05 2.00 8.22 E−05 1.99

256 1.72 E−05 2.00 2.06 E−05 1.99 1.72 E−05 2.00 2.06 E−05 1.99

k = 2 DG MLP-limiter k = 2 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 1.93 E−04 3.76 E−04 1.93 E−04 3.76 E−04

32 2.49 E−05 2.96 6.13 E−05 2.61 2.49 E−05 2.96 6.13 E−05 2.61

64 3.07 E−06 3.02 7.99 E−06 2.94 3.07 E−06 3.02 7.99 E−06 2.94

128 3.28 E−07 3.00 1.02 E−06 2.97 3.28 E−07 3.00 1.02 E−06 2.97

256 4.77 E−08 3.00 1.27 E−07 3.00 4.77 E−08 3.00 1.27 E−07 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 7.27 E−06 1.21 E−05 7.27 E−06 1.21 E−05

32 4.91 E−07 3.88 5.00 E−07 4.49 4.91 E−07 3.88 5.00 E−07 4.49

64 3.04 E−08 4.01 3.12 E−08 4.00 3.04 E−08 4.01 3.12 E−08 4.00

128 1.88 E−09 4.00 2.10 E−09 3.88 1.88 E−09 4.00 2.10 E−09 3.88

256 1.18 E−10 3.99 1.30 E−10 4.01 1.18 E−10 3.99 1.30 E−10 4.01
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(a) second order TVB (b) second order MLP

(c) third order TVB (d) third order MLP

(e) fourth order TVB (f) fourth order MLP

(g) fifth order TVB (h) fifth order MLP

Fig. 6  Comparison of solutions for the Sod problem using the DG method of degree of freedom 

k = 1, 2, 3, 4 with the TVB limiter (left) and the MLP limiter (right). Final time t = 2.0 and the number 

of cells N = 100
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The domain is x ∈ [0, 1] and reflective boundary condition is applied. We present the 

numerical density of the TVB limiter DG method with the TVB constant M = 33 

[5] and the MLP limiter DG method at the time t = 0.038 in Fig. 8. The solutions of 

the two methods are comparable.

Example 4.3.5: The Shu-Osher problem.

This example is introduced in [36], as a simple model for shock-turbulence inter-

actions. Its initial condition is given by:

The domain is x ∈ [−5, 5] . We present the numerical density of the TVB and the 

MLP limiter DG methods at the time t = 0.038 in Fig. 9. To achieve the best perfor-

mance, the TVB constant is chosen as M = 300 [5] for k = 1, 2, 3 and M = 550 for 

k = 4 . The overall performance are increased when higher order method are applied. 

The MLP model shows the performance similar to the TVB model at the (physi-

cally) high frequency wave area.

Now we consider the two-dimensional Euler equation:

where � is the density, � and � are the velocities in the x and y directions, respec-

tively, and p is the fluid pressure. The total energy E =
p

�−1
+

1

2
�(�2 + �

2) , with 

� = 1.4 for air.

Example 4.3.6: Artificial accuracy test for the 2D Euler equation.

We conduct an accuracy test for the 2D Euler equation. The initial condition is:

The computational domain is [0, 4�] × [0, 4�] . We set � = 3 , and it could be easily 

verified that 
√

6�(x, y, t) is the exact solution of the Burgers equation:

and � , � and p satisfy:

(4.13)(�,�, p) =

⎧
⎪
⎨
⎪
⎩

(1, 0, 1000), 0 < x < 0.1,

(1, 0, 0.01), 0.1 < x < 0.9,

(1, 0, 100), 0.9 < x < 1.

(4.14)(�,�, p) =

{

(3.857143, 2.629369, 10.33333), − 5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 1), − 4 ≤ x ≤ 5,

(4.15)
�

�t

⎛
⎜
⎜
⎜
⎝

�

��

��

E

⎞
⎟
⎟
⎟
⎠

+
�

�x

⎛
⎜
⎜
⎜
⎝

��

��2 + p

���

�(E + p)

⎞
⎟
⎟
⎟
⎠

+
�

�y

⎛
⎜
⎜
⎜
⎝

��

���

��2 + p

�(E + p)

⎞
⎟
⎟
⎟
⎠

= 0,

(4.16)

�(x, y, 0) =
1 + 0.2 sin(

x+y

2
)

√

6

, �(x, y, 0) = �(x, y, 0) =

�

�

2
�(x, y, 0), p(x, y, 0) = �(x, y, 0)� .

(4.17)ut +

(

u2

2

)

x

+

(

u2

2

)

y

= 0, u(x, y, 0) = 1 + 0.2 sin(
x + y

2
),
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(a) second order TVB (b) second order MLP

(c) third order TVB (d) third order MLP

(e) fourth order TVB (f) fourth order MLP

(g) fifth order TVB (h) fifth order MLP

Fig. 7  Comparison of solutions for the Lax problem using the DG method of degree of freedom 

k = 1, 2, 3, 4 with the TVB limiter (left) and the MLP limiter (right). Final time t = 1.3 and the number of 

cells N = 100
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At t = 0.3 , the solution is smooth. The error and order of accuracy of density are 

shown in Table 7. It can be observed that the MLP limiter does not affect the high 

order accuracy of the scheme for this 2D nonlinear system test case. In Table 8, the 

cpu time of the simulations on an 100 × 100 mesh is analyzed and reported. The 

simulations have been run on Jupyter Notebook using a 2 GHz Quad-Core Intel 

Core i5 processor. The execution time of a single timestep (Tsp) increases when a 

higher order scheme is used. It can be observed that the gap between the cost of the 

TVB and the MLP limiter narrows when k increases. When k = 3, 4 the additional 

cost of applying the MLP model in the TVB DG scheme is negligible.

Example 4.3.7: The double Mach reflection problem.

This problem was introduced by Woodward and Colella [41]. We use the same 

setup as in [41], which describes a Mach 10 shock moving right into the undisturbed 

air, making a 60
◦ angle with a reflecting wall. The density and pressure of the undis-

turbed air are 1.4 and 1 respectively. The computational domain is [0, 4] × [0, 1] . 

We use the exact flow values of the Mach 10 shock at each time step as the top 

boundary condition. For the bottom boundary, we apply the post-shock condition 

(4.18)�(x, y, t) = �(x, y, t) =

√

�

2
�(x, y, t), p(x, y, t) = �(x, y, t)� .

(a) third order TVB (b) third order MLP

(c) fifth order TVB (d) fifth order MLP

Fig. 8  Solution of the blast wave problem using the third order and fifth order DG schemes with the 

M = 33 TVB limiter (left), and the MLP limiter (right). Final time T = 0.038 and the number of cells 

N = 400
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(a) Second order MLP and TVB (b) Second order zoom

(c) Third order TVB and MLP (d) Third order zoom

(e) Forth order (f) Fourth order zoom

(g) Fifth order (h) Fifth order zoom

Fig. 9  Numerical solution of the Shu–Osher problem (left). Zoomed region close to the high frequency 

fluctuation area (right). Final time T = 1.8 and the number of cells N = 200
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for x ∈ [0,
1

6
] , and reflecting wall condition for x ∈ [

1

6
, 4] . The numerical simulation 

is generated up to t = 0.2 . The simulations on uniformed meshes with 480 × 120 

and 960 × 240 cells are shown in Figs. 10 and 12 , with the zoomed version near 

the Mach stem shown in Figs. 11 and 13 . For the TVB limiter, the TVB constant is 

chosen as M = 50 for the second and third order DG schemes [7]. Compared to the 

traditional TVB limiter with empirically chosen M through trial and error, the MLP 

limiter provides equally satisfying results.

Table 7  2D Euler equation accuracy test

k = 1 DG MLP-limiter k = 1 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.00 E−3 7.24 E−02 1.00 E−3 7.24 E−02

32 × 32 2.52 E−04 1.99 1.94 E−03 1.90 2.52 E−04 1.99 1.94 E−03 1.90

64 × 64 6.37 E−05 1.99 1.59 E−04 1.96 6.37 E−05 1.99 1.59 E−04 1.96

128 × 128 1.59 E−05 2.00 1.25 E−04 1.99 1.59 E−05 2.00 1.25 E−04 1.99

256 × 256 3.98 E−06 2.00 3.14 E−05 1.99 3.98 E−06 2.00 3.14 E−05 1.99

k = 2 DG MLP-limiter k = 2 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.17 E−04 4.96 E−04 1.27 E−03 1.43 E−02

32 × 32 1.45 E−05 3.00 1.61 E−04 2.98 1.72 E−03 2.98 6.28 E−05 3.06

64 × 64 1.82 E−06 3.00 2.04 E−05 3.00 2.17 E−04 3.01 7.87 E−06 2.98

128 × 128 2.28 E−07 3.00 2.48 E−06 3.00 2.92 E−05 3.01 9.85 E−07 2.90

256 × 256 2.84 E−08 3.00 3.11 E−07 3.00 3.96 E−06 3.00 1.23 E−07 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

# Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 9.53 E−05 1.06 E−04 9.53 E−05 1.06 E−04

32 × 32 5.93 E−06 4.00 6.74 E−05 3.99 5.93 E−06 4.00 6.74 E−05 3.99

64 × 64 3.67 E−07 4.01 4.88 E−06 3.79 3.67 E−07 4.01 4.88 E−06 3.79

128 × 128 2.26 E−08 4.02 3.09 E−07 3.99 2.26 E−08 4.02 3.09 E−07 3.99

256 × 256 1.47 E−09 3.95 1.43 E−08 3.97 1.47 E−09 3.95 1.43 E−08 3.97

Table 8  Computational times, number of timesteps and execution time of a single timestep (TpS) for the 

2D Euler problem. The total time and the time per timestep are expressed in seconds

k=1 k=2 k=3 k=4

Limiters time Steps Tps time Steps Tps time Steps Tps time Steps Tps

TVB 26.99 29 0.93 61.76 47 1.31 132.12 66 2.00 308.14 85 3.62

MLP 39.73 29 1.37 74.91 47 1.59 137.75 66 2.08 317.06 85 3.72
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5  Concluding Remarks

In this paper, we design a MLP based TVB limiter for solving hyperbolic conserva-

tion laws in one and two dimensional scalar and system cases using DG schemes. 

Numerical results are shown on structured meshes.

In comparison with the classical minmod-based TVB limiter with an empirically 

chosen TVB constant M, the advantages of the new MLP based TVB limiter are as 

follows: 

1. The MLP limiter is able to control spurious oscillations near discontinuities with-

out excessive smearing, while maintaining the original high order accuracy in 

smooth regions including near smooth extrema.

2. The MLP procedure automates the choice of the TVB constant M, thus elimi-

nates the need to choose M in an ad hoc fashion. This is especially important for 

hyperbolic systems, for which no rigorous mathematical guidance exists for the 

choice of M.

3. The model training can be performed offline, leaving the online computation 

efficient involving only a few low-cost matrix multiplications. Thus it is simple 

to modify the standard DG code to apply the new limiter, and the extra coding 

only involves a few lines.

4. The MLP based TVB limiter works well for the DG scheme of various orders of 

accuracy, and give the same or even better performance than the classical TVB 

limiter with manually chosen TVB constant M through trial and error, for an 

extensive list of numerical test problems in 1D and 2D.

The methodology should work equally well for multi-dimensional unstructured 

meshes, which consists of our ongoing work.

(a) k=1 TVB (b) k=1 MLP

(c) k=2 TVB (d) k=2 MLP

Fig. 10  Double Mach reflection problem. DG method with k = 1, 2 . Left: results with the TVB limiter. 

Right: results with the MLP limiter. Density � . 30 equally spaced contour lines from � = 1.5 to � = 22.7 . 

Mesh grid: 480 × 120



1 3

La Matematica (2022) 1:53–84 81  

(a) k=1 TVB (b) k=1 MLP

(c) k=2 TVB (d) k=2 MLP

Fig. 11  Double Mach reflection problem. DG method with k = 1, 2 . Blown-up region around the double 

Mach stem. Left: results with the TVB limiter. Right: results with the MLP limiter. Density � . 30 equally 

spaced contour lines from � = 1.5 to � = 22.7 . Mesh grid: 480 × 120

(a) k=1 TVB (b) k=1 MLP

(c) k=2 TVB (d) k=2 MLP

Fig. 12  Double Mach reflection problem. DG method with k = 1, 2, 3 . Left: results with the TVB limiter. 

Right: results with the MLP limiter. Mesh grid: 960 × 240
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