
Vol.:(0123456789)

La Matematica (2022) 1:53–84

https://doi.org/10.1007/s44007-021-00004-9

1 3

ORIGINAL RESEARCH ARTICLE

Multi-layer Perceptron Estimator for the Total Variation
Bounded Constant in Limiters for Discontinuous Galerkin
Methods

Xinyue Yu1 · Chi‑Wang Shu1

Received: 12 March 2021 / Revised: 14 August 2021 / Accepted: 19 August 2021 /

Published online: 8 November 2021

© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract

The discontinuous Galerkin (DG) method is widely used in numerical solution of

partial differential equations, especially for hyperbolic equations. However, for prob-

lems containing strong shocks, the DG method often needs to be supplemented by

a limiter to control spurious oscillations and to ensure nonlinear stability. The total

variation bounded (TVB) limiter is a popular choice and can maintain the origi-

nal high order accuracy of the DG scheme in smooth regions and keep a sharp and

non-oscillatory discontinuity transition, when a certain TVB constant M is chosen

adequately. For scalar conservation laws, suitable choice of this constant M can be

based on solid mathematical analysis. However, for nonlinear hyperbolic systems,

there is no rigorous mathematical guiding principle for the determination of this

constant, and numerical experiments often use ad hoc choices based on experience

and through trial and error. In this paper, we develop a TVB constant artificial neu-

ral network (ANN) based estimator by constructing a multi-layer perceptron (MLP)

model. We generate the training data set by constructing piecewise smooth functions

containing local maxima, local minima, and discontinuities. By using the supervised

learning strategy, the MLP model is trained offline. The proposed method gives

the TVB constant M with robust performance to capture sharp and non-oscillatory

shock transitions while maintaining the original high order accuracy in smooth

regions. Numerical results using this new estimator in the TVB limiter for DG meth-

ods in one and two dimensions are given, and its performance is compared with the

classical ad hoc choices of this TVB constant.

Keywords Discontinuous Galerkin method · Total variation diminishing · Total

variation bounded · Limiters · multi-layer perceptron · Artificial neural network ·

Supervised learning strategy

 * Chi-Wang Shu

 chi-wang_shu@brown.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7720-9564
http://crossmark.crossref.org/dialog/?doi=10.1007/s44007-021-00004-9&domain=pdf

 La Matematica (2022) 1:53–84

1 3

 54

1 Introduction

The discontinuous Galerkin (DG) method was firstly proposed by Reed and Hill

[31] to solve the neutron transport problem, which is a linear hyperbolic equa-

tion. It was later coupled with the total variation bounded (TVB) limiter [34]

and the nonlinearly stable Runge-Kutta time discretization [35] to solve nonlin-

ear hyperbolic conservation laws by Cockburn et al. [4–7], and has been widely

used in computational fluid dynamics (CFD) applications, due to its high order

accuracy and easy and efficient parallel implementation in complicated geometry.

As is well known, the solution of nonlinear conservation laws often generates

discontinuities, even with smooth initial and boundary conditions. Although the

DG method can be proved to be L2 and entropy stable for nonlinear hyperbolic

scalar equations and systems [2, 3, 15, 16], this does not prevent the numerical

solution from generating spurious oscillations near discontinuities. These oscilla-

tions are unpleasant in visualization, and, more seriously, they may lead to non-

linear instability for hyperbolic systems since hyperbolicity may be lost when

such oscillations bring the numerical solution outside of the physical constraints

(e.g. the appearance of negative density or pressure for compressible gas dynam-

ics). To control these oscillations, nonlinear limiters are often used. They might

be applied in specific cells using shock detectors (also called troubled cell indica-

tors), such as the KXRCF shock detector developed by Krivodonova et al. [20],

the troubled cell indicator of Fu and Shu [10], and the artificial neural network

(ANN) based troubled cell indicator [29]. They may also be applied everywhere,

with a careful design attempting to retain the original high order accuracy in

smooth regions. Examples include the minmod-based total variation diminishing

(TVD) limiters [14, 25], the minmod-based total variation bounded (TVB) limiter

[34], the moment limiter [1], the monotonicity-preserving limiter [38], and the

weighted essentially non-oscillatory (WENO) limiter [28]. A summary and com-

parison of limiters can found in [44].

One drawback of many of the limiters, including the popular minmod-based

TVD limiters [14, 25], is that they may degenerate to first order accuracy near

smooth extrema, even though they could retain the original high order accu-

racy in smooth and monotone regions [26]. To overcome this difficulty, Shu [34]

designed a minmod-based TVB limiter, which can retain the original high order

accuracy in smooth regions, including regions near smooth extrema. The adapta-

tion and application of this TVB limiter to DG methods for solving scalar one-

dimensional hyperbolic conservation laws were carried out in [6], and this limiter

was further extended to DG methods solving one-dimensional systems and multi-

dimensional cases in [4, 5, 7]. Comparing with the minmod-based TVD limiters,

this TVB limiter significantly improves accuracy in smooth regions near solu-

tion extrema. However, it involves a TVB parameter M, which must be deter-

mined in a problem-dependent fashion. In the two extremes, M = 0 returns to

the TVD limiter, and M = +∞ returns to the original scheme without any lim-

iter. If M is chosen too small, accuracy near smooth extrema might be affected;

while if M is chosen too large, noticeable spurious oscillations may reappear

1 3

La Matematica (2022) 1:53–84 55

near discontinuities. For scalar nonlinear conservation laws, there exists rigorous

mathematical guidance on the choice of M to guarantee that accuracy is main-

tained in smooth regions [6, 34]. However, for nonlinear systems, no such math-

ematical guidance exists, and hence in practice, M is usually chosen in an ad hoc

fashion based on experience and through trial and error. With proper choices of

the TVB constant M, DG schemes with the TVB limiter can give excellent reso-

lution in CFD simulations. Besides the examples for compressible gas dynamics

in [5, 7], we could also mention the application in [22], combined with a wet-dry

moving boundary treatment, for solving shallow water equations. Also for solving

shallow water equations, it works well on unstructured triangular meshes [42].

The TVB limiter is used to indicate the troubled cells in the application of spe-

cial relativistic hydrodynamics [43]. Effort has also been made to provide guid-

ance for an automated choice of the TVB constant M. A unified approach for the

determination of this constant in mixed type meshes was studied and applied by

Kontzialis et al. [19] and by Panourgias et al. [27], where M was chosen accord-

ing to the variation of the derivatives of the numerical solution. In [39], Vuik and

Ryan proposed an automatic parameter selection strategy for this TVB constant

M based on Tukey’s boxplot method of outlier-detection, and its application with

compact-WENO finite element method is shown in [11].

In this paper, we aim to introduce an artificial neural network (ANN) based

estimator for this TVB constant M by constructing a multi-layer perceptron

(MLP) model. ANNs have the ability to approximate mappings with high-level

complexity and nonlinearity, and thus they have undergone rapid developments

and applications in numerical computation in recent years. For example, the

ANNs are studied to solve ordinary and partial differential equations [12, 21, 33].

The multi-layer perceptron (MLP) is one of the most widely-used ANN mod-

els. It consists of an input layer, an output layer, and functional hidden layers. In

[29, 30], Ray and Hesthaven constructed a troubled-cell indicator based on the

MLP model, and Wen et al. applied it in finite difference WENO methods [40].

A well trained MLP model is free of problem-dependent parameter and hence

suitable to be used as a unified approach for determining the TVB constant M in

the TVB limiter applied to DG methods solving general conservation laws. We

will construct function values containing information of discontinuities and local

smooth extrema, and give the corresponding values of M in the training data set.

The training process is performed offline, and the trained model should be able

to return suitable TVB constant M to keep high order accuracy in smooth regions

and eliminate spurious oscillations near discontinuities. The model will be added

online into the DG framework with minimal modification on the standard TVB

DG code to solve general conservation laws.

The outline of this paper is as follows. In Sect. 2, the background knowledge

of the discontinuous Galerkin method and the minmod-based TVB limiter will be

given. We will present the details for the construction of the training data set and the

MLP model, as well as its implementation in the DG method, in Sect. 3. Numerical

examples in 1D and 2D will be provided in Sect. 4, to demonstrate the good perfor-

mance of the MLP-based TVB limiter in comparison with the ad hoc choice of the

TVB constant M. Concluding remarks are given in Sect. 4.

 La Matematica (2022) 1:53–84

1 3

 56

2 Problem Setup and Preliminaries

2.1 Introduction of the DG Method

We consider the following conservation law:

where F is a linear or nonlinear flux function and Ω is a bounded domain in ℝd . In

the one dimensional case, the conservation law is

where Ω = [a, b] . We discretize the domain by the partition a = x
1∕2

< x
3∕2

< ⋯ <

x
N+1∕2

= b . The cell I
i
 is denoted as I

i
= {x ∶ x

i−1∕2
< x < x

i+1∕2
} , for 1 ≤ i ≤ N ,

and the mesh sizes are h
i
= x

i+1∕2
− x

i−1∕2
 . In this paper we will use uniform meshes

h
i
= h for simplicity, unless specifically explained. We define a piecewise continu-

ous polynomial space Vk
h
= {p ∈ L

2
(Ω) ∶ p|Ii

∈ Pk(Ii)} , where Pk(I
i
) is the space of

polynomials of degree ≤ k in I
i
 . Then the one-dimensional DG method is stated as

follows: Find u
h
(⋅, t) ∈ V

k

h
 , such that for all v

h
∈ V

k

h
 , u

h
 satisfies:

where f̂
i+

1

2

= f̂ (uh(x
−

i+
1

2

, t), uh(x
+

i+
1

2

, t)) is a monotone numerical flux in the scalar

case and an exact or approximate Riemann-solver based numerical flux in the sys-

tem case, see [5, 6].

To implement the DG method, one can use a local basis over I
i
 : v

i
= (v0

i
,… , v

k

i
)T ,

and the numerical solution is expressed as

The time dependent coefficients u
i
(t) = (u0

i
(t),… , u

k

i
(t))T are the computational var-

iables to be evolved in time. If we take the test functions as v
h
= v

l

i
, l = 0,… , k , the

scheme can be written as

The integrals in (2.5) can be computed either exactly or via suitable quadratures.

The coefficients u
i
 can be obtained by using a proper time discretization to solve

the ordinary differential equation (ODE) (2.5). In this paper, we will use the

(2.1)

{

u
t
+ ∇ ⋅ F(u) = 0, on Ω ⊂ ℝ

d, d = 1, 2,

u(⋅, 0) = u0(⋅),

(2.2)

{

ut + f (u)x = 0, on Ω ⊂ ℝ,

u(x, 0) = u0(x),

(2.3)

d

dt ∫Ii

uh(x, t)vh(x, t) dx − ∫Ii

f (uh(x, t))(vh(x, t))x dx + f̂
i+

1

2

vh(x
−

i+
1

2

, t) − f̂
i−

1

2

vh(x
+

i−
1

2

, t) = 0,

(2.4)u
h
(x, t) =

k
∑

�=0

u
�

i
(t)v�

i
(x), for x ∈ I

i
.

(2.5)

k
∑

�=0

du�

i

dt ∫Ii

vl
i
v�

i
dx = ∫Ii

f

(

k
∑

�=0

u�

i
v�

i

)

(vl
i
)x dx − f̂

i+
1

2

vl
i
(x

i+
1

2

) + f̂
i−

1

2

vl
i
(x

i−
1

2

), l = 0,… , k.

1 3

La Matematica (2022) 1:53–84 57

third order TVD Runge–Kutta scheme (RK3) [35] in the computation. Denote

U(t) = (u1(t),… , u
N
(t))T , the equation (2.5) can be written as

where L is the spatial discretization operator. With Un
= U(t

n
) , where t

n
 is n-th time

step, the third order Runge–Kutta scheme is stated as follows:

In the two dimensional case, the conservation law becomes

We consider the simple box geometry, and let Ω = [ax, bx] × [ay, by] . Likewise, for

simplicity of presentation, we use a rectangular mesh to cover the domain, consist-

ing of the cells Iij = [x
i−

1

2

, x
i+

1

2

] × [y
j−

1

2

, y
j+

1

2

] for 1 ≤ i ≤ N
x
 and 1 ≤ j ≤ Ny . Similar

to the 1D case, we define Vk
h
= {p ∈ L

2
(Ω) ∶ p|Iij

∈ Pk(Iij)} where Pk(Iij) is the set of

polynomials of degree ≤ k over the cell Iij . Recall the notation in (2.1) that

F(u) = (f (u), g(u)) . The 2D DG method is stated as follows: Find u
h
(⋅, t) ∈ V

k

h
 , such

that for all v
h
∈ V

k

h
 , u

h
 satisfies:

where f̂
i+

1

2
,j
= f̂ (uh(x

−

i+
1

2

, y, t), uh(x
+

i+
1

2

, y, t)) is a one-dimensional numerical flux as

defined before, likewise for ĝ
i,j+

1

2

 . Consider a proper local basis over Iij :

vij = (v0

ij
,… , vK

ij
) where K = (k + 1)(k + 2)∕2 , then the numerical solution is

expressed as

Define the coefficients as uij = (u0

ij
,… , uK

ij
) , and take the test functions as

v
h
= v

l

i
, l = 0,… , K , then the scheme can be written as

d

dt
U(t) = L(U(t)),

(2.6)

U
(1) = U

n + ΔtL(Un),

U
(2) =

3

4
U

n +
1

4
(U(1) + ΔtL(U(1))),

U
n+1 =

2

3
U

n +
1

3
(U(2) + ΔtL(U(2))).

(2.7)ut + f (u)x + g(u)y = 0, on Ω ⊂ ℝ
2
.

(2.8)

d

dt ∫Iij

uh(x, y, t)vh(x, y)dxdy − ∫Iij

F(uh(x, y, t)) ⋅ ∇vh(x, y)dxdy

+ ∫
x

i+
1

2

x
i−

1

2

ĝ
i,j+

1

2

vh(x, y−
j+

1

2

)dx − ∫
x

i+
1

2

x
i−

1

2

ĝ
i,j−

1

2

vh(x, y+
j−

1

2

)dx

+ ∫
y

j+
1

2

y
j−

1

2

f̂
i+

1

2
,j

vh(x
−

i+
1

2

, y)dy − ∫
y

j+
1

2

y
j−

1

2

f̂
i−

1

2
,j

vh(x
+

i−
1

2

, y)dy = 0,

(2.9)uh(x, y, t) =

K
∑

�=0

u�

ij
(t)v�

ij
(x, y), for (x, y) ∈ Iij.

 La Matematica (2022) 1:53–84

1 3

 58

Again, the coefficients uij(t) can be obtained by solving the ODE (2.10) by the third

order Runge–Kutta time discretization (2.6).

2.2 The Minmod‑Based TVB Limiter

As mentioned in the introduction, the DG scheme provides high order accurate

simulation of smooth solutions, and maintains L
2 and entropy stability for dis-

continuous solutions. However, this does not prevent the DG solution from show-

ing spurious Gibbs oscillations near discontinuities, which may lead to nonlinear

instability for solving nonlinear hyperbolic systems. Various nonlinear limiters

are designed in the literature to control those spurious oscillations, while attempt-

ing to retain the original high order accuracy in smooth regions. In this section

we describe the minmod-based TVB limiter [6, 34], which is the focus of our

study in this paper.

In the one dimensional case, we denote the cell average of u
h
 in each cell I

i
 as:

We further denote by ũ
i
 and ̃̃u

i
 the differences between the point values of the numer-

ical solution at the cell boundaries and the cell average, and by Δ+
ū

i
 and Δ−

ū
i
 the

differences between the cell average of I
i
 and that of its neighboring cells:

A nonlinear limiter changes the polynomial solution u
h
 in the cell I

i
 , while keeping

the cell average ū
i
 unchanged to maintain conservation. The purpose of the non-

linear limiter is to control spurious oscillations near discontinuities, while attempt-

ing to retain the original high order accuracy in smooth regions. The minmod-based

TVD limiter [14, 25] modifies ũ
i
 and ̃̃u

i
 by a limiter function:

Once the modified values ũ
(mod)

i
 and ̃̃u

(mod)

i
 are obtained, we can obtain the modified

point values of the numerical solution at the cell boundaries:

(2.10)

k
∑

�=0

du�

ij

dt ∫Iij

vl
ij
v�

ij
dx =∫Iij

F(

K
∑

�=0

u�

ij
(t)v�

ij
(x, y)) ⋅ ∇vl

ij
dxdy

− ∫
x

i+
1

2

x
i−

1

2

ĝ
i,j+

1

2

vl
ij
(x, y−

j+
1

2

)dx + ∫
x

i+
1

2

x
i−

1

2

ĝ
i,j−

1

2

vl
ij
(x, y+

j−
1

2

)dx

− ∫
y

j+
1

2

y
j−

1

2

f̂
i+

1

2
,j
vl

ij
(x−

i+
1

2

, y)dy + ∫
y

j+
1

2

y
j−

1

2

f̂
i−

1

2
,j
vl

ij
(x+

i−
1

2

, y)dy.

ū
i
=

1

h
i
∫

I
i

u
h
(x)dx.

(2.11)

ũ
i
= u

h
(x−

i+
1

2

) − ū
i
, ̃̃u

i
= ū

i
− u

h
(x+

i−
1

2

), Δ+
ū

i
= ū

i+1 − ū
i
, Δ−

ū
i
= ū

i
− ū

i−1.

(2.12)ũ
mod

i
= m(ũ

i
,Δ+

ū
i
,Δ−

ū
i
), ̃̃u

mod

i
= m(̃̃u

i
,Δ+

ū
i
,Δ−

ū
i
).

1 3

La Matematica (2022) 1:53–84 59

With the two modified point values u
(mod)

h
(x−

i+
1

2

) , u
(mod)

h
(x+

i−
1

2

) and the original cell

average ū
i
 , we can recover a unique pk polynomial with k ≤ 2 as the limited solution

u
(mod)

h
 . For k > 2 , we still recover a quadratic polynomial if the limiter is enacted

(that is, if the limiter function m in (2.12) returns other than the first argument),

since accuracy is not expected to be maintained in this case.

We now turn to the specific choices of the limiter function m in (2.12).

For the minmod-based TVD limiter [14, 25], m is defined as the minmod

function

In words, the minmod function m returns the smallest argument (in magnitude), if

all arguments have the same sign; otherwise it returns zero.

It can be proved [6] that, when the minmod limiter (2.13) is used and if the

time discretization is via a TVD Runge–Kutta method such as (2.6), then the lim-

ited DG solution is total variation diminishing in the means (TVDM). This is a

rather strong nonlinear stability property and prevents completely any spurious

oscillations in the means near discontinuities. However, the drawback is that, as

any TVD schemes, the method will suffer from accuracy degeneracy to first order

near smooth extrema [26], hence the global accuracy in L1 is at most second order

for generic smooth solutions with finitely many smooth extrema.

For the minmod-based TVB limiter [34], m is defined as

where h is a local mesh size, M ≥ 0 is a TVB constant, and m is the minmod func-

tion defined in (2.13). It can be shown [6] that, when the TVB limiter (2.14) is used

and if the time discretization is via a TVD Runge–Kutta method such as (2.6), then

the limited DG solution is total variation bounded in the means (TVBM). This is

again a rather strong nonlinear stability property.

It is expected that the performance of the TVB limiter depends strongly on the

choice of the TVB constant M. If M is chosen too large, noticeable spurious oscil-

lations may reappear near discontinuities. After all, for M = +∞ , the limiter mtvb

in (2.14) will always return the first argument, namely we will obtain the unlimited

solution. On the other hand, if M is chosen too small, the scheme may lose the origi-

nal high-order accuracy near smooth extrema, just like the TVD minmod limiter.

After all, for M = 0 , we recover the TVD minmod limiter defined in (2.13). On the

approximation level, given a smooth function u, the following result is proved in [6].

u
(mod)

h
(x−

i+
1

2

) = ū
i
+ ũ

(mod)

i
, u

(mod)

h
(x+

i−
1

2

) = ū
i
− ̃̃u

(mod)

i
.

(2.13)

m(a1, a2, a3) =

{
s min (|a1|, |a2|, |a3|), if s = sign (a1) = sign (a2) = sign (a3),

0, otherwise .

(2.14)m
tvb(a1, a2, a3, h, M) =

{
a1, if |a1| ≤ Mh2,

m(a1, a2, a3), otherwise ,

 La Matematica (2022) 1:53–84

1 3

 60

Lemma 2.1 If u is a smooth function, and M
2
= max

x
|u

xx
| . Then, if M is taken as

the limiter (2.14) will not affect accuracy. That is, it will always return the first argument.

In fact, M
2
 can be taken as a upper bound for the magnitude of the second derivative

near the smooth extrema, rather than over the whole range of x.

The approximation result in the lemma above is also valid for linear or nonlinear

scalar conservation laws. For one dimensional scalar conservation laws (2.2), we have

the following lemma.

Lemma 2.2 If u is the solution of the one dimensional scalar conservation law (2.2),

the initial condition u
0
(x) is smooth near x = x

0
 , and u�

0
(x

0
) = 0 , then along the for-

ward characteristic line

we have

That is, along a smooth local extremum, the second derivative u
xx

 is invariant (con-

stant in time).

Lemma 2.2 can be easily proved by solving the ODEs involving the evolution of u,

u
x
 and u

xx
 along the forward characteristic line. Based on Lemmas 2.1 and 2.2 , we con-

clude that the choice of M by (2.15), where M
2
= max

x
|u��

0
(x)| , ensures that the limiter

(2.14) will not affect accuracy. That is, it will always return the first argument. Thus,

the choice of M to ensure high order accuracy in smooth regions for scalar conserva-

tion laws can be given with solid mathematical justification. In practice, because of the

numerical errors near smooth extrema, we often take a slightly larger value of M than

that given by (2.15), e.g. by M = cM
2
 with c >

2

3
.

However, for nonlinear hyperbolic systems, there is no such mathematical guidance

for the choice of the TVB constant M. This is because the value of u
xx

 at a smooth

extremum is no longer invariant in time, hence cannot be determined based solely on

the initial condition. The choice of M in such cases is then often given in an ad hoc

fashion, based on experience and through trial and error. In this paper, we would like to

develop a constant estimator for M, based on an artificial neural network (ANN) based

model, so that the TVB constant M can be chosen automatically .

3 The Multi-layer Perceptron (MLP) Limiter

Our work on the construction of an ANN-based constant estimator is enlightened

by the MLP troubled cell indicator developed by Hesthaven and Ray [29], which

detects the location of discontinuities according to the function values at the cell

(2.15)M ≥
2

3
M2,

x(t) = x0 + f �(u0(x0))t,

u(x, t) = u(x0), u
x
(x, t) = 0, u

xx
(x, t) = u

��

0
(x0).

1 3

La Matematica (2022) 1:53–84 61

boundaries and the local cell averages. Inspired by [29], we aim at constructing a

constant estimator using the ANN model, which is able to (1) distinguish the cells

near local extrema, discontinuities and in smooth monotone regions by the point

values at the cell interface and the cell averages; (2) directly return the TVB lim-

iter constant M accordingly, that maintains high order accuracy in smooth regions

and non-oscillatory transaction at discontinuities. The multi-layer perceptron (MLP)

model is one of the most commonly used artificial neural network model. The idea

of developing a hypothetical nervous system (called a perceptron) and imitating

learning curves from neurological variables is introduced by Rosenblatt in 1958

[32]. In [24], Novikoff proved the perceptron convergence theorem, i.e., if the train-

ing data set is linearly separable, the convergence of the perceptron is guaranteed.

The capability of approximating continuous functions of MLP is studied in [9, 13].

The MLP model is well-known for its ability to estimate the relationship with high

degree of complexity and nonlinearity. The other advantage of the model is that, the

main computational cost of the model comes from the offline training procedure,

and the online computational procedure involves simple matrix multiplications with

negligible extra cost over the original DG scheme. As shown in Fig. 1, the MLP

model consists of an input layer, an output layer, and several hidden layers, includ-

ing a normalization layer and fully connected layers.

This model can be viewed as an approximation map from the input layer to the

output layer,

where the weights w , the bias b and the activation function contained in the hid-

den layer determine the value of the predicted outputs. The cost function is then

applied to measure the error between the network predicted output and the true out-

put value given in the training data set. During the training process, proper training

strategy, like the supervised learning [18] we use in this paper, is utilized to mini-

mize the error by adjusting the weight and the bias. A well-trained model is capable

(3.1)F ∶ ℝ
N1 ↦ ℝ

No , y = f (x|(w, b)),

Fig. 1 An MLP model with an input layer, a normalization layer, hidden layers, and an output layer

 La Matematica (2022) 1:53–84

1 3

 62

of precisely predicting the outputs according to the input data, even when the input

is not included in the training set.

3.1 Construction of the Training Data

Now we will introduce the design of the MLP-based estimator. In our case, the

input data are function values in and near the cell I
i
 , i.e

v = (ū
i−1, ū

i
, ū

i+1, u
h
(x−

i+1∕2
), u

h
(x+

i−1∕2
))T ∈ ℝ

5 . The output would be the corre-

sponding TVB limiter constant M
i
 for the cell I

i
 . The input and output training

data sets are denoted as �
x
 and �

y
 respectively, which are generated via the fol-

lowing two ways. Firstly, due to the fact that the DG solutions are piecewise poly-

nomial functions approximating the real PDE solution, the type I data are func-

tion values from the L2 projection of designed functions into suitable piecewise

polynomial spaces. Secondly, inspired by the work of Sun et al. [37], we consider

the effect of the numerical method on the solution’s structure, such as the Gibbs

oscillations near discontinuities or the smearing caused by the numerical dissipa-

tion. To enable the model to learn the feature of the numerical solutions, the data

from numerical solutions of the DG method solving the advection equation

u
t
+ au

x
= 0 with discontinuous initial conditions are added. The detailed proce-

dure is listed below.

Type I. Data from piecewise polynomial functions.

1. In the interval [a, b], choose piecewise smooth functions u(x) containing one or

more features listed below:

• Containing smooth monotone regions;

• Containing discontinuity points;

• Containing local smooth maxima and/or local smooth minima.

2. Pick a point x and a mesh size h randomly, such that a < x −
3

2
h < x +

3

2
h < b ,

and construct a three-cell stencil containing I
i−1 = (x −

3

2
h, x −

1

2
h) ,

I
i
= (x −

1

2
h, x +

1

2
h) , and I

i+1 = (x +
1

2
h, x +

3

2
h).

3. Use the standard L2 projection to project u(x) onto the piecewise polynomial

space with different degrees of freedom within each cell, and denote the obtained

polynomials in each cell of the three-cell stencil as u
i−1

(x) , u
i
(x) , and u

i+1
(x).

4. Collect the input data, i.e, v = (ū
i−1, ū

i
, ū

i+1, u
i
(x +

1

2
h), u

i
(x −

1

2
h))T.

5. Determine corresponding output value y = M ∈ �y by the following strategy:

• If the interval I = (x −
3

2
h, x +

3

2
h) contains a discontinuity point, the stand-

ard minmod limiter should be applied to control spurious oscillations, i.e.

y = M = 0;

• If the interval I contains a local maximum or a local minimum, we define

M =
2

3
c max

x∈I
|u

��

(x)| . Here c is a constant greater than 1, to make M a safer

upper bound according to Lemmas 2.1 and 2.2 for maintaining the original

high order accuracy. In our numerical computation, we have taken the value

c = 5.

1 3

La Matematica (2022) 1:53–84 63

• If u(x) in the interval I is smooth and monotone, we choose M big enough so

that the minmod limiter is not enacted (i.e. it returns the first argument). In

our numerical computation, we have taken the value M = 1000 in this case.

Type II. Data from the numerical solution.

1. We generate the piecewise smooth initial condition u
0
 by the following procedure:

• Select the number of discontinuities contained in the initial condition:

1 ≤ N
d
≤ 6;

• Randomly select N
d
 locations for the discontinuities in the domain [−1, 1] ,

and divide the domain into N
d
+ 1 subdomains;

• Within each subdomain, create random Fourier series

a
0
+
∑Nf

n=1
(an cos(nx) + bn sin(nx)) with different 1 ≤ Nf ≤ 6 , and i.i.d random

variables a
0
 , a

n
 , and b

n
.

2. Use different mesh sizes h =
1

30
,

1

60
,

1

90
,

1

180
 to generate uniform meshes with N

x

cells.

3. With a random advection coefficient a ∈ [−1, 1] , apply the Runge–Kutta DG

(RKDG) scheme with the degree of freedom k to compute the solution for N
t
 time

steps, where N
t
= 1, 2, 3 and k = 1, 2, 3, 4 . The time step size is chosen as

Δt = C
h

a
 , where the CFL constant is chosen as C <

1

2k+1
 . The obtained numer-

ical solution in cell I
i
 is denoted as u

i
.

4. Collect the data from the numerical solution, i.e, v = (ū
i−1, ū

hi
, ū

i+1,

u
i
(x−

i+1∕2
), u

i
(x+

i−1∕2
))T.

5. The cell is considered to contain a discontinuity or a local smooth extremum if the

exact solution u(x, t) = u0(x − aN
t
Δt) has discontinuity or a local extremum within

the cell or its left or right neighbor cell, and y = M ∈ �y is determined using the same

strategy of step 5 in Type I. In general there could exist differences in the locations

of discontinuities between the exact and the numerical solutions. In our case, only a

few time steps are computed, therefore the difference can be neglected. It enables us

to use the location of discontinuities in the exact solution to determine M.

Based on the above guideline, the training data set is constructed, and the details of

this data set can be viewed in Table 1. For the Type I data, the mesh size h and the

degrees of freedom of the projected polynomial space k ∈ {1, 2, 3, 4} are varied.

3.2 The MLP Model

We now briefly introduce the MLP training model. The input is a 5-dimensional

vector v . Before feeding the data into the hidden layers, we firstly add a normali-

zation layer to normalize the data as follows. Denote the l-th element of the input

vector v as vl , l = 1… 5 . The normalized function value would be ṽ , with the l-th

element ṽl given by

 La Matematica (2022) 1:53–84

1 3

 64

where � and � are the mean and the standard deviation of the elements of all v in �
x
.

We apply five hidden layers containing 128, 64, 32, and 16 neurons respectively.

Within each hidden layer, the weights and bias are randomly initialized using a nor-

mal distribution, and Leaky rectified linear unit (Leaky ReLU) is chosen as the acti-

vation [23]. The output layer has one neuron, as the output is the value of the limiter

TVB constant M. The cost function is given by the mean squared error (MSE) func-

tion. The data set is split into two subsets, with 80% data used for training and the

remaining 20% data for validation. The model is trained using the Adam optimiza-

tion [17] with the batch size S
b
= 500 , and with 2000 iterations. Keras API is used

for the model training (https:// keras. io/).

3.3 Implementation of the Estimator

After obtaining the well-trained model, it is simple to implement the estimator. The

algorithm in the one-dimensional scalar case is described as follows:

1. Apply the DG method for the spatial discretization, and proceed with one Euler

forward step in the third order Runge–Kutta time discretization.

2. Generate v
i
= (ū

i−1, ū
i
, ū

i+1, u
h
(x−

i+1∕2
), u

h
(x+

i−1∕2
))T within each cell I

i
.

3. Feed the data into the estimator, and obtain the corresponding M
i
 for each cell.

4. Apply M
i
 in the minmod-based TVB limiter, and obtain the limited solution.

5. Repeat Steps 1-4 twice for the next two Runge–Kutta inner stages, and finish the

computation of the current time step.

(3.2)ṽ
l
=

vl
− �

�
,

Table 1 Rows 2–6 are the functions used to generate the Type I data

The last three columns are the numbers of cells containing discontinuities, local extrema, and total

cell numbers. The second last row is the number of different types of cells in the data generated by the

numerical solution of the DG scheme. The last row is the total data number in the data set, which is

obtained by adding the data above within each column

u(x) Domain Varied parameters Discontinuities Local extrema Total

a|x| [− 0.5,0.5] a ∈ [1, 10] 1000 0 1000

u
l
I
x<a

+ u
r
I
x>a

[− 1,1] (u
l
, u

r
) ∈ [−4, 4]2

a ∈ [−0.56, 0.56]

3200 0 3200

sin(k�x) [0,
k

4
] k = 1,…,25 0 720 6480

sin(2�x) cos(3�x) sin(4�x) [0,1] 0 504 1400

sin
4(�x) [0,1] 0 144 1400

Type II data 950 1695 8451

Total 5150 3063 21931

https://keras.io/

1 3

La Matematica (2022) 1:53–84 65

There is no need to change the structure of the original DG code to implement the

estimator. Since v
i
 in Step 2 is also needed in the minmod-based TVB limiter, the

only extra work is adding Step 3 to predict the value of M, and in practice it is an

one-line addition in the code.

In the two dimensional scalar case, we need to generate in the x direction and in

the y direction:

we feed them into the estimator to obtain the predicted limiter TVB constants Mx
ij

and M
y

ij
 respectively, and apply them in the limiter. It is clear that there is a low cod-

ing cost for the implementation of the estimator in the 2D case as well.

For hyperbolic systems, the estimator and the limiter could be applied component

by component, but they are more effective if they are applied in local characteristic

fields, which is the procedure that we adopt in our numerical tests. We refer to [5, 7]

for more details.

4 Numerical Tests

In this section, we will perform several standard numerical tests in one- and two-

dimensions. For the scalar case, we will solve the linear advection equation and the

nonlinear Burgers equation, and in the case of systems, the Euler equation of com-

pressible gas dynamics will be approximated. Within each subsection, accuracy tests

will be given for the DG scheme with the MLP limiter for the degrees of freedom

k = 1, 2, 3 , when the exact solution is smooth. The results will be compared against

DG schemes without the limiter. In the case that exact solutions are discontinuous,

the performance of the MLP limiter will be presented and compared to that of the

TVB limiter with the TVB constant M chosen in an ad hoc fashion through trial

and error as given in the literature. In general, the MLP limiter has outstanding

performance when applied to the DG method of different degrees of freedom. In

all accuracy tests, periodic boundary condition is applied, and the simulations run

until t = 0.3 . The CFL conditions are set to be CFL = 0.3 for k = 1 , CFL = 0.18 for

k = 2 , and CFL = 0.1 for k = 3 , according to the linear stability analysis [8].

4.1 Linear Advection Equation

We firstly consider the one-dimensional linear advection equation with sine wave

initial condition:

(3.3)

v
x
ij
= (ūi−1,j, ūi,j, ūi+1,j, uh(x

−

i+
1

2

, yj), uh(x
+

i−
1

2

, yj))
T ,

v
y

ij
= (ūi,j−1, ūi,j, ūi,j+1, uh(xi, y−

j+
1

2

), uh(xi, y+
j−

1

2

))T ,

(4.1)

{

u
t
+ u

x
= 0,

u(x, 0) = sin(x), x ∈ [0, 2�].

 La Matematica (2022) 1:53–84

1 3

 66

Table 2 demonstrates the error and order of accuracy for the DG scheme with and

without the MLP limiter. The MLP limiter method obtains the desired second, third

and fourth order accuracy respectively, when applied to the DG scheme with degrees

of freedom k = 1, 2, 3 . The error and order are very close to that of the DG method

without the limiter, indicating that the MLP limiter has the correct estimate for the

TVB constant M and can maintain the original high order of accuracy.

To check the behavior of the limiter under discontinuous situation, we consider

the multi-wave problem, with the initial condition given by

(4.2)u0(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

10(x − 0.2), 0.2 < x < 0.3,

10(0.4 − x), 0.3 < x < 0.4,

1, 0.6 < x < 0.8,

100(x − 1)(1.2 − x), 1.0 < x < 1.2,

0, otherwise .

Table 2 Accuracy test for 1D linear advection equation

k = 1 DG MLP-limiter k = 1 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 4.83 E−03 3.10 E−03 4.39 E−03 2.27 E−03

32 1.29 E−03 1.90 6.51 E−03 2.25 1.22 E−03 1.84 6.25 E−03 1.86

64 3.15 E−04 2.03 1.60 E−03 2.02 3.41 E−04 1.95 1.60 E−03 1.96

128 7.86 E−05 2.00 4.01 E−04 2.00 7.86 E−05 2.00 4.01 E−04 2.00

256 1.96 E−05 2.00 1.00 E−04 2.00 1.96 E−05 2.00 1.09 E−04 2.00

k = 2 DG MLP-limiter k = 2 DG no limiter

cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 1.67 E−04 7.68 E−04 1.78 E−04 7.69 E−04

32 2.18 E−05 2.94 1.35 E−04 2.50 2.28 E−05 2.96 1.46 E−04 2.39

64 2.47 E−06 3.13 1.55 E−05 3.11 2.46 E−06 3.21 1.51 E−05 3.27

128 3.12 E−07 2.98 1.97 E−06 2.94 3.12 E−07 2.98 1.97 E−06 2.94

256 3.90 E−08 2.97 2.46 E−07 3.00 3.89 E−08 2.97 2.46 E−07 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 4.02 E−06 2.07 E−05 4.02 E−06 2.07 E−05

32 2.67 E−07 3.91 1.69 E−06 3.62 2.67 E−07 3.91 1.69 E−06 3.62

64 1.34 E−08 4.31 1.09 E−07 3.95 1.34 E−08 4.31 1.09 E−07 3.95

128 8.75 E−10 3.94 6.51 E−09 4.07 8.75 E−10 3.94 6.51 E−09 4.07

256 5.67 E−11 3.95 4.09 E−10 3.99 5.67 E−11 3.95 4.09 E−10 3.99

1 3

La Matematica (2022) 1:53–84 67

The domain is [0, 1.4], and periodic boundary condition is applied. The solution is

evaluated at t = 1.4 using N = 100 cells. In this case, we use the randomly perturbed

meshes, which is constructed based on a uniform mesh:

where we choose � = 0.15 . For all simulations as shown in Fig. 2, the performance

of the TVB limiter with different TVB constants M = 0, 10, 100, 1000 and the

MLP limiter are compared. The choices of M = 0, 10 smear significantly at the two

local maxima, and M = 100, 1000 fail to control oscillations near the discontinui-

ties. However, the MLP limiter can precisely catch the local extrema without caus-

ing oscillation near the discontinuities. Figure 3 depicts the temporal history of the

TVB constant M chosen by the MLP model. The MLP model precisely captures the

discontinuous points and local extrema, and returns the corresponding M.

In the two-dimensional linear case

the error and orders of the DG method with the MLP limiter and without the limiter

are listed in Table 3. The MLP limiter again preserves high order accuracy in this

2D example.

4.2 Burgers Equation

We consider the nonlinear Burgers equation in 1D:

x
i+

1

2

→ x
i+

1

2

+ �h
i+

1

2

�
i+

1

2

, �
i+

1

2

∈ �([−0.5, 0.5]) i = 1,… , N − 1,

(4.3)

{

ut + ux + uy = 0,

u(x, y, 0) = sin(x + y), (x, y) ∈ [0, 2�] × [0, 2�],

(4.4)

{

u
t
+

(

u
2

2

)

x

= 0,

u(x, 0) =
1

4
+ sin(x), x ∈ [0, 2�].

Fig. 2 Solution for the multi-wave problem using the fourth order DG method, at the final time t = 1.4 .

The right figure is zoomed near x = 0.7

 La Matematica (2022) 1:53–84

1 3

 68

Fig. 3 Temporal history of the TVB constant M chosen by the MLP model of the multiwave problem,

k = 2

Table 3 Accuracy test for 2D linear advection equation

k = 1 DG MLP-limiter k = 1 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.03 E−02 9.54 E−02 1.03 E−02 9.54 E−02

32 × 32 2.60 E−03 1.98 2.52 E−03 1.91 2.60 E−03 1.98 2.52 E−03 1.91

64 × 64 6.52 E−04 2.00 6.40 E−03 1.98 6.52 E−04 2.00 6.40 E−03 1.98

128 × 128 1.62 E−04 2.00 1.60 E−03 2.00 1.62 E−04 2.00 1.60 E−03 2.00

256 × 256 4.06 E−05 2.00 4.01 E−04 2.00 4.06 E−05 2.00 4.01 E−04 2.00

k = 2 DG MLP-limiter k = 2 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 9.48 E−04 5.84 E−03 9.48 E−04 5.84 E−03

32 × 32 9.89 E−05 3.26 1.21 E−03 2.26 9.89 E−05 3.26 1.21 E−03 2.26

64 × 64 1.14 E−05 3.11 1.46 E−04 3.05 1.14 E−05 3.11 1.46 E−04 3.05

128 × 128 1.42 E−06 3.00 1.87 E−05 2.97 1.42 E−06 3.00 1.87 E−05 2.97

256 × 256 1.78 E−07 3.00 2.34 E−06 3.00 1.78 E−07 3.00 2.34 E−06 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 5.11 E−05 9.79 E−04 5.11 E−05 9.79 E−04

32 × 32 3.20 E−06 3.99 6.09 E−05 4.00 3.20 E−06 3.99 6.09 E−05 4.00

64 × 64 2.01 E−07 3.99 3.74 E−06 4.02 2.01 E−07 3.99 3.74 E−06 4.02

128 × 128 1.27 E−08 3.98 2.05 E−07 4.05 1.27 E−08 3.98 2.05 E−07 4.05

256 × 256 8.24 E−10 3.95 1.27 E−08 4.13 8.24 E−10 3.95 1.27 E−08 4.13

1 3

La Matematica (2022) 1:53–84 69

Before t = 1 , the solution is smooth, and we can compare the accuracy of the DG

scheme with and without the MLP limiter. From Table 4, we observe that applying

the limiter does not affect accuracy also in this nonlinear case.

Next we test the compound wave problem, with a discontinuous initial condition:

The domain is [−4, 4] with a randomly perturbed mesh, and the periodic boundary

condition is applied. We can see the numerical result at t = 0.4 in Fig. 4. The MLP

(4.5)u0(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

l sin(�x), �x� ≥ 1,

3, −1 < x ≤ −0.5,

1, −0.5 < x ≤ 0,

3, 0 < x ≤ 0.5,

2, 0.5 < x ≤ 1,

Table 4 Accuracy test for 1D Burgers equation

k = 1 DG MLP-limiter k = 1 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 4.53 E−03 2.67 E−02 4.53 E−03 2.67 E−02

32 1.05 E−03 2.10 6.41 E−03 2.05 1.05 E−03 2.10 6.41 E−03 2.05

64 2.62 E−04 2.00 1.63 E−03 1.97 2.62 E−04 2.00 1.63 E−03 1.97

128 6.56 E−05 2.00 4.11 E−04 1.99 6.56 E−05 2.00 4.11 E−04 1.99

256 1.63 E−05 2.00 1.03 E−04 1.99 1.63 E−05 2.00 1.03 E−04 1.99

k = 2 DG MLP-limiter k = 2 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 1.17 E−04 4.96 E−04 1.17 E−04 4.96 E−04

32 1.45 E−05 3.00 6.28 E−05 2.98 1.45 E−05 3.00 6.28 E−05 2.98

64 1.82 E−06 3.00 7.87 E−06 3.00 1.82 E−06 3.00 7.87 E−06 3.00

128 2.28 E−07 3.00 9.85 E−07 3.00 2.28 E−07 3.00 9.85 E−07 3.00

256 2.84 E−08 3.00 1.23 E−07 3.00 2.84 E−08 3.00 1.23 E−07 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error order L

∞ error order

16 9.88 E−06 1.51 E−04 9.88 E−06 1.51 E−04

32 5.84 E−07 4.08 1.07 E−05 3.81 5.84 E−07 4.08 1.07 E−05 3.81

64 3.63 E−08 4.00 7.05 E−07 3.92 3.63 E−08 4.00 7.05 E−07 3.92

128 2.26 E−09 4.00 4.46 E−08 3.94 2.26 E−09 4.00 4.46 E−08 3.94

256 1.41 E−10 4.00 2.95 E−09 3.97 1.41 E−10 4.00 2.95 E−09 3.97

 La Matematica (2022) 1:53–84

1 3

 70

limiter gives good performance on capturing the discontinuities without spurious

oscillations.

The two dimensional Burgers equation is stated as:

The error and order of accuracy of the solution at t = 0.1 are in Table 5. Similar

to the one-dimensional case, the MLP-limiter does not affect the accuracy. When

the time reaches t = 1.2 , there is a shock in the exact solution, and as we can see in

Fig. 5, compared to the DG scheme without limiter, the MLP-limiter effectively con-

trols the oscillation near the shock.

4.3 Euler Equation

In this subsection we apply the MLP limiter to solve nonlinear systems. We firstly

consider the compressible Euler equation in one dimension:

where � , � , and p denote the density, velocity and pressure of the fluids, respectively.

The total energy E =
p

�−1
+

1

2
��

2 , with � = 1.4 for air. For the system case, we

choose to use the limiter in the local characteristic fields. That is, we firstly project

the conserved variable U = (�, ��, E)T into the local characteristic fields, and then

apply the TVB or the MLP limiter in each characteristic field. Finally we project the

(4.6)

⎧
⎪⎨⎪⎩

ut +

�
u2

2

�
x

+

�
u2

2

�
y

= 0,

u(x, y, 0) =
1

4
+ sin(x + y), (x, y) ∈ [0, 2�] × [0, 2�].

(4.7)
�

�t

⎛
⎜
⎜
⎝

�

��

E

⎞
⎟
⎟
⎠
+

�

�x

⎛
⎜
⎜
⎝

��

��2 + p

�(E + p)

⎞
⎟
⎟
⎠
= 0, 0 < x < 2�,

Fig. 4 Comparison of solutions on a randomly perturbed mesh for the compound wave problem using

the fourth order DG method with the TVB limiter with M = 0, 10, 100, 1000 and the MLP limiter. Here

T = 0.4 and cell of number N = 200

1 3

La Matematica (2022) 1:53–84 71

Table 5 Accuracy test for 2D Burgers equation

k = 1 DG MLP-limiter k = 1 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.32 E−02 8.80 E−02 1.32 E−02 8.80 E−02

32 × 32 3.40 E−03 1.95 2.26 E−02 1.96 3.40 E−03 1.95 2.26 E−02 1.96

64 × 64 8.67 E−04 1.97 5.73 E−03 1.98 8.67 E−04 1.97 5.73 E−03 1.98

128 × 128 2.18 E−04 1.99 1.43 E−03 1.99 2.18 E−04 1.99 1.43 E−03 1.99

256 × 256 5.47 E−05 2.00 3.60 E−04 1.99 5.47 E−05 2.00 3.60 E−04 1.99

k = 2 DG MLP-limiter k = 2 DG no limiter

cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.27 E−03 1.43 E−02 1.27 E−03 1.43 E−02

32 × 32 1.61 E−04 2.98 1.72 E−03 3.06 1.61 E−04 2.98 1.72 E−03 3.06

64 × 64 4.48 E−05 1.84 6.24 E−04 1.85 2.04 E−05 3.00 2.17 E−04 3.01

128 × 128 2.48 E−06 4.17 2.92 E−05 7.73 2.48 E−06 3.00 2.92 E−05 3.01

256 × 256 3.11 E−07 3.00 3.69 E−06 2.98 3.11 E−07 3.00 3.96 E−06 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 9.53 E−05 1.06 E−04 9.53 E−05 1.06 E−04

32 × 32 5.93 E−06 4.00 6.74 E−05 3.99 5.93 E−06 4.00 6.74 E−05 3.99

64 × 64 3.67 E−07 4.01 4.88 E−06 3.79 3.67 E−07 4.01 4.88 E−06 3.79

128 × 128 2.26 E−08 4.02 3.09 E−07 3.99 2.26 E−08 4.02 3.09 E−07 3.99

256 × 256 1.47 E−09 3.95 1.43 E−08 3.97 1.47 E−09 3.95 1.43 E−08 3.97

Fig. 5 Comparison of solutions of the 2D Burgers equation with the initial condition

u0(x, y) =
1

4
+ sin(x + y) using the fourth order DG method without limiter, with the TVB limiter

with M = 1 , and with the MLP limiter. Final time is t = 1.2 and the number of cells corresponds to

Nx = Ny = 40

 La Matematica (2022) 1:53–84

1 3

 72

limited numerical solution back to the conserved variable space. More details can be

found in [5]. We will compare the performance of the MLP-limiter with the TVB-

limiter with ad hoc choices of the TVB constant M through trial and error as adopted

in the literature. In all the test cases, we present the results for the density � as

representations.

Example 4.3.1: Artificial accuracy test.

We firstly consider the accuracy test in [10]. We set the initial condition as:

The computational domain is set to be [0, 2�] , and periodic boundary condition is

imposed. We take � = 3 , which allows us to verify that 2
√

3�(x, t) is the exact solu-

tion of the Burgers equation:

and

At t = 0.3 , the solution is smooth, and the error and order of accuracy of density are

listed in Table 6. It is clear that the MLP limiter does not affect the accuracy in this

1D nonlinear system example.

Example 4.3.2: The Sod problem.

This problem is a classic Riemann problem test, whose initial condition is

The domain is x ∈ [−5, 5] , and the simulation runs until t = 2.0 with the mesh size

N = 100 . We test the DG scheme with different orders of accuracy. If the TVB con-

stant M = 33 or larger, the TVB limiter simulation fails with fourth or higher order

DG schemes, due to the appearance of negative density. With M = 33 , the TVB lim-

iter gives good performance for the DG scheme with second and third order. On the

other hand, while the solutions of TVB limiter with M = 15 smear a lot at discon-

tinuities in lower order cases, it gives satisfying non-oscillatory result with fourth

and fifth order DG schemes. Meanwhile, the MLP limiter gives good simulation

in all cases, with results comparable to the M = 33 case in second and third order

schemes, and to the M = 15 case in fourth and fifth order schemes. The details are

shown in Fig. 6.

Example 4.3.3: The Lax problem.

Another famous Riemann problem test is the Lax problem, with the initial

condition

(4.8)�(x, 0) =
1 + 0.2 sin(x)

2
√

3

, �(x, 0) =
√

��(x, 0), p(x, 0) = �(x, 0)� .

(4.9)u
t
+

(

u
2

2

)

x

= 0, u(x, 0) = 1 + 0.2 sin(x),

(4.10)�(x, t) =
√

��(x, t), p(x, t) = �(x, t)� .

(4.11)(�,�, p) =

{

(1, 0, 1), x ≤ 0,

(0.125, 0, 0.1), x > 0.

1 3

La Matematica (2022) 1:53–84 73

The domain is x ∈ [−5, 5] and the number of cells is N = 100 . We compute the

solution until t = 1.3 . In this case, we use M = 33 [5] which gives the best (sharp-

est) performance at discontinuities (especially at the contact discontinuity) for the

third order DG scheme. Meanwhile, although the solution of the TVB limiter with

M = 70 has huge oscillations at the discontinuity in lower order cases, it gives the

best performance for the fifth order DG scheme. On the other hand, the MLP limiter

works well for DG schemes with different orders of accuracy. The performance of

the MLP limiter is as good as that of the M = 33 TVB limiter for the third order

scheme, and of the M = 70 TVB limiter for the fifth order scheme. For the second

order scheme, the MLP limiter describes the edge of the discontinuity better than

that of the TVB limiters (Fig. 7).

Example 4.3.4: The blast wave problem.

We now consider the interaction of two blast waves, with the initial condition:

(4.12)(�,�, p) =

{

(0.445, 0.698, 0, 3.528), x ≤ 0,

(0.5, 0, 0, 0.571), x > 0.

Table 6 Accuracy test for 1D Euler equation

k = 1 DG MLP-limiter k = 1 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 4.96 E−03 8.86 E−03 4.96 E−03 8.86 E−03

32 1.10 E−03 2.16 1.31 E−03 2.75 1.10 E−03 2.16 1.31 E−03 2.75

64 2.76 E−04 2.00 3.28 E−04 1.97 2.76 E−04 2.00 3.28 E−04 1.97

128 6.90 E−05 2.00 8.22 E−05 1.99 6.90 E−05 2.00 8.22 E−05 1.99

256 1.72 E−05 2.00 2.06 E−05 1.99 1.72 E−05 2.00 2.06 E−05 1.99

k = 2 DG MLP-limiter k = 2 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 1.93 E−04 3.76 E−04 1.93 E−04 3.76 E−04

32 2.49 E−05 2.96 6.13 E−05 2.61 2.49 E−05 2.96 6.13 E−05 2.61

64 3.07 E−06 3.02 7.99 E−06 2.94 3.07 E−06 3.02 7.99 E−06 2.94

128 3.28 E−07 3.00 1.02 E−06 2.97 3.28 E−07 3.00 1.02 E−06 2.97

256 4.77 E−08 3.00 1.27 E−07 3.00 4.77 E−08 3.00 1.27 E−07 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 7.27 E−06 1.21 E−05 7.27 E−06 1.21 E−05

32 4.91 E−07 3.88 5.00 E−07 4.49 4.91 E−07 3.88 5.00 E−07 4.49

64 3.04 E−08 4.01 3.12 E−08 4.00 3.04 E−08 4.01 3.12 E−08 4.00

128 1.88 E−09 4.00 2.10 E−09 3.88 1.88 E−09 4.00 2.10 E−09 3.88

256 1.18 E−10 3.99 1.30 E−10 4.01 1.18 E−10 3.99 1.30 E−10 4.01

 La Matematica (2022) 1:53–84

1 3

 74

(a) second order TVB (b) second order MLP

(c) third order TVB (d) third order MLP

(e) fourth order TVB (f) fourth order MLP

(g) fifth order TVB (h) fifth order MLP

Fig. 6 Comparison of solutions for the Sod problem using the DG method of degree of freedom

k = 1, 2, 3, 4 with the TVB limiter (left) and the MLP limiter (right). Final time t = 2.0 and the number

of cells N = 100

1 3

La Matematica (2022) 1:53–84 75

The domain is x ∈ [0, 1] and reflective boundary condition is applied. We present the

numerical density of the TVB limiter DG method with the TVB constant M = 33

[5] and the MLP limiter DG method at the time t = 0.038 in Fig. 8. The solutions of

the two methods are comparable.

Example 4.3.5: The Shu-Osher problem.

This example is introduced in [36], as a simple model for shock-turbulence inter-

actions. Its initial condition is given by:

The domain is x ∈ [−5, 5] . We present the numerical density of the TVB and the

MLP limiter DG methods at the time t = 0.038 in Fig. 9. To achieve the best perfor-

mance, the TVB constant is chosen as M = 300 [5] for k = 1, 2, 3 and M = 550 for

k = 4 . The overall performance are increased when higher order method are applied.

The MLP model shows the performance similar to the TVB model at the (physi-

cally) high frequency wave area.

Now we consider the two-dimensional Euler equation:

where � is the density, � and � are the velocities in the x and y directions, respec-

tively, and p is the fluid pressure. The total energy E =
p

�−1
+

1

2
�(�2 + �

2) , with

� = 1.4 for air.

Example 4.3.6: Artificial accuracy test for the 2D Euler equation.

We conduct an accuracy test for the 2D Euler equation. The initial condition is:

The computational domain is [0, 4�] × [0, 4�] . We set � = 3 , and it could be easily

verified that
√

6�(x, y, t) is the exact solution of the Burgers equation:

and � , � and p satisfy:

(4.13)(�,�, p) =

⎧
⎪
⎨
⎪
⎩

(1, 0, 1000), 0 < x < 0.1,

(1, 0, 0.01), 0.1 < x < 0.9,

(1, 0, 100), 0.9 < x < 1.

(4.14)(�,�, p) =

{

(3.857143, 2.629369, 10.33333), − 5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 1), − 4 ≤ x ≤ 5,

(4.15)
�

�t

⎛
⎜
⎜
⎜
⎝

�

��

��

E

⎞
⎟
⎟
⎟
⎠

+
�

�x

⎛
⎜
⎜
⎜
⎝

��

��2 + p

���

�(E + p)

⎞
⎟
⎟
⎟
⎠

+
�

�y

⎛
⎜
⎜
⎜
⎝

��

���

��2 + p

�(E + p)

⎞
⎟
⎟
⎟
⎠

= 0,

(4.16)

�(x, y, 0) =
1 + 0.2 sin(

x+y

2
)

√

6

, �(x, y, 0) = �(x, y, 0) =

�

�

2
�(x, y, 0), p(x, y, 0) = �(x, y, 0)� .

(4.17)ut +

(

u2

2

)

x

+

(

u2

2

)

y

= 0, u(x, y, 0) = 1 + 0.2 sin(
x + y

2
),

 La Matematica (2022) 1:53–84

1 3

 76

(a) second order TVB (b) second order MLP

(c) third order TVB (d) third order MLP

(e) fourth order TVB (f) fourth order MLP

(g) fifth order TVB (h) fifth order MLP

Fig. 7 Comparison of solutions for the Lax problem using the DG method of degree of freedom

k = 1, 2, 3, 4 with the TVB limiter (left) and the MLP limiter (right). Final time t = 1.3 and the number of

cells N = 100

1 3

La Matematica (2022) 1:53–84 77

At t = 0.3 , the solution is smooth. The error and order of accuracy of density are

shown in Table 7. It can be observed that the MLP limiter does not affect the high

order accuracy of the scheme for this 2D nonlinear system test case. In Table 8, the

cpu time of the simulations on an 100 × 100 mesh is analyzed and reported. The

simulations have been run on Jupyter Notebook using a 2 GHz Quad-Core Intel

Core i5 processor. The execution time of a single timestep (Tsp) increases when a

higher order scheme is used. It can be observed that the gap between the cost of the

TVB and the MLP limiter narrows when k increases. When k = 3, 4 the additional

cost of applying the MLP model in the TVB DG scheme is negligible.

Example 4.3.7: The double Mach reflection problem.

This problem was introduced by Woodward and Colella [41]. We use the same

setup as in [41], which describes a Mach 10 shock moving right into the undisturbed

air, making a 60
◦ angle with a reflecting wall. The density and pressure of the undis-

turbed air are 1.4 and 1 respectively. The computational domain is [0, 4] × [0, 1] .

We use the exact flow values of the Mach 10 shock at each time step as the top

boundary condition. For the bottom boundary, we apply the post-shock condition

(4.18)�(x, y, t) = �(x, y, t) =

√

�

2
�(x, y, t), p(x, y, t) = �(x, y, t)� .

(a) third order TVB (b) third order MLP

(c) fifth order TVB (d) fifth order MLP

Fig. 8 Solution of the blast wave problem using the third order and fifth order DG schemes with the

M = 33 TVB limiter (left), and the MLP limiter (right). Final time T = 0.038 and the number of cells

N = 400

 La Matematica (2022) 1:53–84

1 3

 78

(a) Second order MLP and TVB (b) Second order zoom

(c) Third order TVB and MLP (d) Third order zoom

(e) Forth order (f) Fourth order zoom

(g) Fifth order (h) Fifth order zoom

Fig. 9 Numerical solution of the Shu–Osher problem (left). Zoomed region close to the high frequency

fluctuation area (right). Final time T = 1.8 and the number of cells N = 200

1 3

La Matematica (2022) 1:53–84 79

for x ∈ [0,
1

6
] , and reflecting wall condition for x ∈ [

1

6
, 4] . The numerical simulation

is generated up to t = 0.2 . The simulations on uniformed meshes with 480 × 120

and 960 × 240 cells are shown in Figs. 10 and 12 , with the zoomed version near

the Mach stem shown in Figs. 11 and 13 . For the TVB limiter, the TVB constant is

chosen as M = 50 for the second and third order DG schemes [7]. Compared to the

traditional TVB limiter with empirically chosen M through trial and error, the MLP

limiter provides equally satisfying results.

Table 7 2D Euler equation accuracy test

k = 1 DG MLP-limiter k = 1 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.00 E−3 7.24 E−02 1.00 E−3 7.24 E−02

32 × 32 2.52 E−04 1.99 1.94 E−03 1.90 2.52 E−04 1.99 1.94 E−03 1.90

64 × 64 6.37 E−05 1.99 1.59 E−04 1.96 6.37 E−05 1.99 1.59 E−04 1.96

128 × 128 1.59 E−05 2.00 1.25 E−04 1.99 1.59 E−05 2.00 1.25 E−04 1.99

256 × 256 3.98 E−06 2.00 3.14 E−05 1.99 3.98 E−06 2.00 3.14 E−05 1.99

k = 2 DG MLP-limiter k = 2 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 1.17 E−04 4.96 E−04 1.27 E−03 1.43 E−02

32 × 32 1.45 E−05 3.00 1.61 E−04 2.98 1.72 E−03 2.98 6.28 E−05 3.06

64 × 64 1.82 E−06 3.00 2.04 E−05 3.00 2.17 E−04 3.01 7.87 E−06 2.98

128 × 128 2.28 E−07 3.00 2.48 E−06 3.00 2.92 E−05 3.01 9.85 E−07 2.90

256 × 256 2.84 E−08 3.00 3.11 E−07 3.00 3.96 E−06 3.00 1.23 E−07 3.00

k = 3 DG MLP-limiter k = 3 DG no limiter

Cells L
1 error Order L

∞ error Order L
1 error Order L

∞ error Order

16 × 16 9.53 E−05 1.06 E−04 9.53 E−05 1.06 E−04

32 × 32 5.93 E−06 4.00 6.74 E−05 3.99 5.93 E−06 4.00 6.74 E−05 3.99

64 × 64 3.67 E−07 4.01 4.88 E−06 3.79 3.67 E−07 4.01 4.88 E−06 3.79

128 × 128 2.26 E−08 4.02 3.09 E−07 3.99 2.26 E−08 4.02 3.09 E−07 3.99

256 × 256 1.47 E−09 3.95 1.43 E−08 3.97 1.47 E−09 3.95 1.43 E−08 3.97

Table 8 Computational times, number of timesteps and execution time of a single timestep (TpS) for the

2D Euler problem. The total time and the time per timestep are expressed in seconds

k=1 k=2 k=3 k=4

Limiters time Steps Tps time Steps Tps time Steps Tps time Steps Tps

TVB 26.99 29 0.93 61.76 47 1.31 132.12 66 2.00 308.14 85 3.62

MLP 39.73 29 1.37 74.91 47 1.59 137.75 66 2.08 317.06 85 3.72

 La Matematica (2022) 1:53–84

1 3

 80

5 Concluding Remarks

In this paper, we design a MLP based TVB limiter for solving hyperbolic conserva-

tion laws in one and two dimensional scalar and system cases using DG schemes.

Numerical results are shown on structured meshes.

In comparison with the classical minmod-based TVB limiter with an empirically

chosen TVB constant M, the advantages of the new MLP based TVB limiter are as

follows:

1. The MLP limiter is able to control spurious oscillations near discontinuities with-

out excessive smearing, while maintaining the original high order accuracy in

smooth regions including near smooth extrema.

2. The MLP procedure automates the choice of the TVB constant M, thus elimi-

nates the need to choose M in an ad hoc fashion. This is especially important for

hyperbolic systems, for which no rigorous mathematical guidance exists for the

choice of M.

3. The model training can be performed offline, leaving the online computation

efficient involving only a few low-cost matrix multiplications. Thus it is simple

to modify the standard DG code to apply the new limiter, and the extra coding

only involves a few lines.

4. The MLP based TVB limiter works well for the DG scheme of various orders of

accuracy, and give the same or even better performance than the classical TVB

limiter with manually chosen TVB constant M through trial and error, for an

extensive list of numerical test problems in 1D and 2D.

The methodology should work equally well for multi-dimensional unstructured

meshes, which consists of our ongoing work.

(a) k=1 TVB (b) k=1 MLP

(c) k=2 TVB (d) k=2 MLP

Fig. 10 Double Mach reflection problem. DG method with k = 1, 2 . Left: results with the TVB limiter.

Right: results with the MLP limiter. Density � . 30 equally spaced contour lines from � = 1.5 to � = 22.7 .

Mesh grid: 480 × 120

1 3

La Matematica (2022) 1:53–84 81

(a) k=1 TVB (b) k=1 MLP

(c) k=2 TVB (d) k=2 MLP

Fig. 11 Double Mach reflection problem. DG method with k = 1, 2 . Blown-up region around the double

Mach stem. Left: results with the TVB limiter. Right: results with the MLP limiter. Density � . 30 equally

spaced contour lines from � = 1.5 to � = 22.7 . Mesh grid: 480 × 120

(a) k=1 TVB (b) k=1 MLP

(c) k=2 TVB (d) k=2 MLP

Fig. 12 Double Mach reflection problem. DG method with k = 1, 2, 3 . Left: results with the TVB limiter.

Right: results with the MLP limiter. Mesh grid: 960 × 240

 La Matematica (2022) 1:53–84

1 3

 82

Acknowledgements Research supported by NSF Grant DMS-2010107 and AFOSR Grant

FA9550-20-1-0055.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

 1. Biswas, R., Devine, K., Flaherty, J.: Parallel, adaptive finite element methods for conservation laws.

Appl. Numer. Math. 14, 255–283 (1994)

 2. Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable

quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)

 3. Chen, T., Shu, C.-W.: Review of entropy stable discontinuous Galerkin methods for systems of

conservation laws on unstructured simplex meshes. CSIAM Trans. Appl. Math. (CSAM) 1, 1–52

(2020)

 4. Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54,

545–581 (1990)

 5. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84,

90–113 (1989)

(a) k=1 TVB (b) k=1 MLP

(c) k=2 TVB (d) k=2 MLP

Fig. 13 Double Mach reflection problem. DG method with k = 1, 2, 3 . Blown-up region around the dou-

ble Mach stem. Left: results with the TVB limiter. Right: results with the MLP limiter. Density � . 30

equally spaced contour lines from � = 1.5 to � = 22.7 . Mesh grid: 960 × 240

1 3

La Matematica (2022) 1:53–84 83

 6. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite ele-

ment method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

 7. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite ele-

ment method for conservation law V: multidimensional systems. J. Comput. Phys. 141, 199–224

(1998)

 8. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-domi-

nated problems. J. Sci. Comput. 16, 173–261 (2001)

 9. Cybenko, G.: Continuous valued neural networks with two hidden layers are sufficient, Technical

Report, Department of Computer Science, Tufts University, Medford, MA (1988)

 10. Fu, G., Shu, C.-W.: A new troubled-cell indicator for discontinuous Galerkin methods for hyper-

bolic conservation laws. J. Comput. Phys. 347, 305–327 (2017)

 11. Gao, Z., Wen, X., Don, W.S.: Enhanced robustness of the hybrid compact-WENO finite differ-

ence scheme for hyperbolic conservation laws with multi-resolution analysis and Tukey’s box-

plot method. J. Comput. Phys. 73, 736–752 (2017)

 12. Golak, S.: A MLP solver for first and second order partial differential equations. In: de Sá, J.M.,

Alexandre, L.A., Duch, W., Mandic, D. (eds.) Artificial Neural Networks-ICANN 2007, pp. 789–

797. Springer, Berlin (2007)

 13. Guliyev, N.J., Ismailov, V.E.: A single hidden layer feedforward network with only one neuron in the

hidden layer can approximate any univariate function. Neural Comput. 28, 1289–1304 (2016)

 14. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–

393 (1983)

 15. Hou, S., Liu, X.-D.: Solutions of multi-dimensional hyperbolic systems of conservation laws by

square entropy condition satisfying discontinuous Galerkin method. J. Sci. Comput. 31, 127–151

(2007)

 16. Jiang, G.-S., Shu, C.-W.: On cell entropy inequality for discontinuous Galerkin methods. Math.

Comput. 62, 531–538 (1994)

 17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv: 1412. 6980 (2014)

 18. Kriesel, D.: A brief introduction to neural networks. http:// www. dkrie sel. com (2007)

 19. Kontzialis, K., Panourgias, K., Ekaterinaris, J.: A limiting approach for DG discretizations on mixed

type meshes. Comput. Methods Appl. Mech. Eng. 285, 587–620 (2015)

 20. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limit-

ing with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48,

323–338 (2004)

 21. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial dif-

ferential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998)

 22. Lee, H., Lee, N.: Wet-dry moving boundary treatment for Runge-Kutta discontinuous Galerkin shal-

low water equation model. KSCE J. Civ. Eng. 20, 978–989 (2016)

 23. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic mod-

els. In: Proceedings International Conference on Machine Learning, p. 30 (2013)

 24. Novikoff, A.B.: On convergence proofs on perceptrons. Sympos. Math. Theory Autom. 12, 615–622

(1962)

 25. Osher, S.: Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal. 22, 947–961

(1985)

 26. Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer.

Anal. 21, 955–984 (1984)

 27. Panourgias, K.T., Ekaterinaris, J.A.: A discontinuous Galerkin approach for high-resolution simula-

tions of three-dimensional flows. Comput. Methods Appl. Mech. Eng. 299, 245–282 (2016)

 28. Qiu, J., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J.

Sci. Comput. 26, 907–929 (2005)

 29. Ray, D., Hesthaven, J.S.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys.

367, 166–191 (2018)

 30. Ray, D., Hesthaven, J.S.: Detecting troubled-cells on two-dimensional unstructured grids using a

neural network. J. Comput. Phys. 397, 108–845 (2019)

 31. Reed, W., Hill, T.: Triangular mesh methods for neutron transport equation, Technical Report

LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973)

 32. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the

brain. Psychol. Rev. 65, 386–408 (1958)

http://arxiv.org/abs/1412.6980
http://www.dkriesel.com

 La Matematica (2022) 1:53–84

1 3

 84

 33. Rudd, K., Ferrari, S.: A constrained integration (cint) approach to solving partial differential equa-

tions using artificial neural networks. Neurocomputing 155, 277–285 (2015)

 34. Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121

(1987)

 35. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing

schemes. J. Comput. Phys. 77, 439–471 (1988)

 36. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing

schemes II. J. Comput. Phys. 83, 32–78 (1989)

 37. Sun, Z., Wang, S., Chang, L.-B., Xing, Y., Xiu, D.: Convolution neural network shock detector for

numerical solution of conservation laws. Commun. Comput. Phys. 28, 2075–2108 (2020)

 38. Suresh, A., Huynth, H.: Accurate monotonicity-preserving schemes with Runge-Kutta time step-

ping. Comput. Fluid Dyn. Conf. 13, 83–99 (1997)

 39. Vuik, M.J., Ryan, J.K.: Automated parameters for troubled-cell indicators using outlier detection.

SIAM J. Sci. Comput. 38, A84–A104 (2016)

 40. Wen, X., Don, W.S., Gao, Z., Hesthaven, J.S.: An edge detector based on artificial neural network

with application to hybrid compact-WENO finite difference scheme. J. Sci. Comput. 83, 1–1 (2020)

 41. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong

shocks. J. Comput. Phys. 54, 115–173 (1984)

 42. Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the

shallow water equations on unstructured triangular meshes. J. Comput. Phys. 57, 19–41 (2013)

 43. Zhao, J., Tang, H.: Runge-Kutta central discontinuous Galerkin methods for the special relativistic

hydrodynamics. Commun. Comput. Phys. 22, 643–682 (2017)

 44. Zhu, H., Cheng, Y., Qiu, J.: A comparison of the performance of limiters for Runge-Kutta discon-

tinuous Galerkin methods. Adv. Appl. Math. Mech. 5, 365–390 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and A�liations

Xinyue Yu1 · Chi‑Wang Shu1

 Xinyue Yu

 xinyue_yu@brown.edu

1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

http://orcid.org/0000-0001-7720-9564

	Multi-layer Perceptron Estimator for the Total Variation Bounded Constant in Limiters for Discontinuous Galerkin Methods
	Abstract
	1 Introduction
	2 Problem Setup and Preliminaries
	2.1 Introduction of the DG Method
	2.2 The Minmod-Based TVB Limiter

	3 The Multi-layer Perceptron (MLP) Limiter
	3.1 Construction of the Training Data
	3.2 The MLP Model
	3.3 Implementation of the Estimator

	4 Numerical Tests
	4.1 Linear Advection Equation
	4.2 Burgers Equation
	4.3 Euler Equation

	5 Concluding Remarks
	Acknowledgements
	References

