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Abstract: Fault diagnosis of industrial equipments is extremely important for the safety require-
ments of modern production processes. Lately, deep learning (DL) has been the mainstream fault
diagnosis tool due to its powerful representational ability in learning and flexibility. However,
most of the existing DL-based methods may suffer from two drawbacks: Firstly, only one metric is
used to construct networks, thus multiple kinds of potential relationships between nodes are not
explored. Secondly, there are few studies on how to obtain better node embedding by aggregating
the features of different neighbors. To compensate for these deficiencies, an advantageous intelligent
diagnosis scheme termed AE-MSGCN is proposed, which employs graph convolutional networks
(GCNs) on multi-layer networks in an innovative manner. In detail, AE is carried out to extract
deep representation features in process measurement and then combined with different metrics
(i.e., K-nearest neighbors, cosine similarity, path graph) to construct the multi-layer networks for bet-
ter multiple interaction characterization among nodes. After that, intra-layer convolutional and
inter-layer convolutional methods are adopted for aggregating extensive neighbouring information
to enrich the representation of nodes and diagnosis performance. Finally, a benchmark platform and
a real-world case both verify that the proposed AE-MSGCN is more effective and practical than the
existing state-of-the-art methods.

Keywords: intelligent fault diagnosis; multi-layer GCN; intra-layer and inter-layer convolution;
multiple relation characterization

1. Introduction

With the development of information technology and the wide use of intelligent instru-
ments, industrial machines are gradually presenting the characteristics of integration and
complexity. Therefore, intelligent diagnosis of equipment fault is of great significance to the
stable operation of equipment, the improvement of production efficiency and the increase
of economic benefits [1–3]. Among the existing fault diagnosis approaches, the model-
based class is considered to be the earliest and most widely used technique. The core
idea of model-based ones is to construct a physical model or a state observer to realize
fault diagnosis. However, prior knowledge of complex industrial equipment is not always
available, which may limit the availability of model-based diagnosis methods.

Parallel to model-based ones, the data-based class has also been studied extensively
due to its simplicity in diagnosing machine faults [4]. In addition, with the improvement of
data collection and storage capabilities, the development of data-based methods is further
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promoted. For example, Zhong et al. [5] designed a principal component analysis (PCA)-
based advantageously distributed scheme for fault diagnosis of a large-scale marine diesel
engine. Recently, aiming at the shortcomings of the canonical correlation analysis (CCA)
model, the authors of [6] proposed an SsCCA method and verified it with a nonlinear
three-tank system. Lu and Yan [7] combined the Fisher discriminant analysis (FDA) and ex-
treme learning machines (ELMs) to classify the fault feature vectors and shown advantages
in visual industrial process diagnosis. Jiang et al. [8] presented latent variable correla-
tion analysis (LVCA), which considered the correlation within units and between units
simultaneously and achieved desired monitoring and diagnosis performance in large-scale
plant-wide industrial processes. In [9], Garcia et al. used independent component analysis
(ICA) to find the substantial differences between faulty and healthy motors. After that,
Zhou et al. [10] integrated the PCA and ICA to comprehensively diagnose the abnormal
furnace conditions of blast furnace (BF) ironmaking. Although these methods have shown
some advantages, they are essentially shallow models, which may set up barriers for the
applications of these methods in industrial big data scenarios.

In recent years, there has been rapid improvement in graphics processing unit (GPU)
computing power and the accumulation of running data. Tremendous deep learning
(DL) schemes have been proposed with extensive applications in face recognition [11],
image classification [12] and process monitoring [13]. Inspired by the above studies, DL
approaches have been gradually addressed by scholars in the fault diagnosis community
and great successes have ben achieved. Concretely, Yang et al. designed [14] a lightweight
convolutional neural network (CNN) model and demonstrated absolute advantages over
the state-of-the-art methods. Gao et al. [15] presented a self-adaptive deep belief net-
work (DBN), which improved the classification accuracy of the conventional DBN model
significantly. The autoencoder (AE) [16] emphasized the depth of the model structure,
reconstructed the original input through the structure of the encoder and decoder, and fi-
nally formed a more abstract feature vector suitable for classification, thereby improving
the accuracy of fault diagnosis. Thus, the authors of [17] proposed a new multi-sensor
data fusion technology, which sent the extracted features into a multiple two-layer sparse
auto-encoder (SAE) for feature fusion, and the fused feature vectors can be used as machine
health state diagnosis and classification. Yuan et al. [18] realized the fault prediction of boil-
ing points in the industrial hydrocracking process by the spatiotemporal attention-based
long short-term memory (LSTM) network, which can locate the key variables.

However, the above-mentioned DL-based models are only applicable to the regu-
lar grid data, ignoring the topology structure and the interactions of process variables.
In this context, graph neural networks (GNNs) were proposed to process data character-
ized by complex spatiotemporal relationships, and non-Euclidean representations were
exploited [19], and have been successfully applied in various domains [20,21], such as
chemistry [22], commonsense reasoning [23], natural-language processing [24], social
networks [25] and traffic flow prediction [26]. For example, the authors of reference [27]
proposed a multi-scale graph node attention convolutional network diagnosis method.
First, an adjacency matrix was set up according to the Pearson metric unsupervised con-
volutional auto-encoder, and then different neighbors on different nodes were evaluated.
Chen et al. [28] fused the structural analysis (SA) and graph convolutional network (GCN)
and achieved better diagnosis results regarding the traction system rectifier circuit. Then,
Li et al. [29] incorporated the weighted horizontal visibility graph (WHVG) into the GCN
model, which showed enhanced fault diagnosis performance with respect to real-world
bearing compared with LSTM and general GCN models. Recently, since most of the
existing methods ignore the distribution discrepancy of the data in different domains,
the authors of [30] carried out a domain adversarial graph convolutional network to solve
the above dilemma.

Although various approaches have been successfully applied for fault diagnosis,
there are still some common problems in the previous studies: First, all existing state-
of-the-art models only build a single-layer network for the original measured data; thus,



Machines 2022, 10, 873 3 of 18

the potential relationships between nodes are described through only one metric. However,
in the real-world fault diagnosis task, signal samples can often interact in many different
ways, e.g., there are multiple types of interactions simultaneously among samples [31,32].
Various potential relationships between nodes correspond to different neighbor information.
By aggregating the information of different types of neighbors, better node features can be
learnt, which are neglected by the single-layer network model. Additionally, though GCN
layers are able to work with graphs, they cannot be used to process multi-layer networks
directly and, considering their importance and ubiquity, further works are needed to
overcome this difficulty.

Although some studies have addressed the topic of multi-layer GCN and AE, the work
in this paper is different from them. More precisely, AE is used to constrain the hidden
layers in [33,34], but not for the deep feature extraction. In [35], the framework of multilayer
networks and the downstream tasks are both different from that in this paper. Motivated
by the above research status and inspired by the GCN model, this paper constructs a multi-
layer network through various metrics, and proposes an AE-based multi-layer structured
GCN (AE-MSGCN) to obtain more robust node features for follow-up fault diagnosis.
The main contributions of this work are summarized as follows:

(1) Given that the complex and diverse relationships between process measurements,
diversified multi-layer networks are constructed through three different metrics
(i.e., Euclidean distance, cosine similarity, and path graph). Thus, the potential
relationships among samples can be better characterized.

(2) Different GCN layers are utilized to propagate the node features simultaneously
and independently. Then, for each node, its representation in different layers is
aggregated by multi-layer networks, which is beneficial for the enhancement of
diagnostic performance.

(3) Experiments are performed on both the simulated and real-word datasets and verify
that the proposed AE-MSGCN scheme has better robustness and higher diagnostic
accuracy than that of the state-of-the-art GCN-based fault diagnosis approaches.

The remainder of this paper is organized as follows. Section 2 gives the necessary
preliminaries. The proposed AE-MSGCN method is introduced in Section 3. Section 4 are
the simulation results and analyses. Finally, Section 5 summarizes the paper.

2. Preliminaries
2.1. Autoencoder

The essence of the autoencoder (AE) model is to optimize and adjust the parameters
through unsupervised training and learning, to ensure the output is as close as possible to
the original input by encoding and decoding operations. The standard AE model mainly
includes three parts: input layer, hidden layer, and output layer. The output of AE is the
reconstruction of the input, and the structure diagram of AE is shown in Figure 1.

The reconstruction loss of the AE can be stated as follows:

Lloss = min
1
N

N

∑
i=1
‖yi − xi‖ (1)

The components of this equation and Figure 1 can be seen in [36]. It is worth noting
that the low-dimensional embeddings of features can be effectively learned by optimizing
the loss function in (1).
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Figure 1. Structure diagram of AE model.

2.2. Graph Convolutional Networks

Inspired by the CNN model, the GCN generalizes the idea of convolution from low-
dimensional regular data to high-dimensional irregular graph data. Generally speaking,
GCN models can be divided into two types: spatial domain convolution and spectral
domain convolution according to the convolution method. This paper takes the spectral
domain GCN as the research object, which can extract the structural features of graphs
from the spectral domain via spectral decomposition. Specifically, the Laplacian matrix L
of a graph G = (V, E), where V and E denote the set of nodes and edges, respectively, can
be defined as:

L = D− A (2)

where D and A represent the degree matrix and adjacency matrix, respectively. The degree
of node Vi is given as:

Dii = ∑
j

Aij (3)

Applying the symmetric normalization Laplace operator [37] to the matrix L, then L
can be rewritten as:

L = D−
1
2 LD−

1
2 = I−D−

1
2 AD−

1
2 (4)

where I is the identity matrix. Since the symmetric normalized Laplacian matrix L is a real
symmetric semidefinite matrix. Thus, the following equation holds:

L = U∧UT (5)

where U is the orthogonal matrix composed of eigenvectors of matrix L; Λ is the diago-
nal matrix of eigenvalues. Then, the spectral domain convolution on the graph can be
expressed as:

y = gθ ∗ x = UgθUTx (6)
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where x is the feature of the node and gθ is the graph convolution filter, y is the feature
map after the graph convolution, and θ is the learnable parameter. From the point of graph
signal analysis, the filter should have good localization; that is, only the nodes in a small
region around a certain node can be affected. Moreover, gθ can be defined as a function
gθ(Λ) of the eigenvalues of L.

y = Ugθ(Λ)UTx (7)

where UTx denotes the graph Fourier transform of node feature x.
Then the Chebyshev polynomial is used to approximate gθ as below:

gθ(Λ) =
K

∑
k=0

θkTk(Λ̃) (8)

where Tk is a Chebyshev polynomial with k order. Λ̃ = 2Λn/λmax − In is a diagonal
matrix. Given initial value T0(x) = 1 and T1(x) = x, Tk(x) can be obtained recursively by
Tk(x) = 2xTk−1(x)− Tk−2(x). Thus, the following derivation can be achieved:

y = U
K

∑
k=0

θkTk(Λ̃)UTx =
K

∑
k=0

θkTk(L̃)x (9)

where L̃ = 2L/λmax − In.
By setting K = 1 and λmax = 2, Kipf and Welling further reduced it to a first-order

approximation and added a self-loop. Moreover, (9) can be translated into:

y = θ0x + θ1(L− In)x = θ0x− θ1D−1/2 AD−1/2x (10)

In order to further reduce the number of parameters and prevent over-fitting, set
θ
′
= θ0 = −θ1 and the above equation can be changed into [38]:

y = θ
′
(In + D−1/2 AD−1/2)x (11)

Then x is extended to X ∈ Rn×d with n nodes and d dimensional attributes. In addition,
the renormalization technique In + D−1/2 AD−1/2 → D̃−1/2 ÃD̃−1/2 is used to alleviate
numerical instability and gradient explosion/disappearance issues during network propa-
gation. Finally, the forward transfer formula of GCNs is given.

Z = σ((D̃−1/2 ÃD̃−1/2)XΘ) (12)

where Ã = A + In, D̃ii = ∑ j Ãjj, Θ ∈ Rc×d is the parameter matrix and σ is the activa-
tion function.

3. The Proposed AE-MSGCN Method

(1) Overall Framework of the Proposed Method: This section describes how the proposed
method implements intelligent fault diagnoses in detail, including data preprocessing,
feature extraction via AE, multi-layer networks construction, AE-MSGCN-based feature
extraction and aggregation, and finally fault diagnosis for industrial equipment. The overall
flow chart of the proposed multi-layer network-guided fault diagnosis scheme is shown
in Figure 2.

(2) Extraction of Deep Representation Features by AE: For the original signal S̃ of length L,
we first normalize it to eliminate the influence of different feature dimensions as follows:

S̃norm =
S̃− S̃min

S̃max − S̃min
(13)
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Figure 2. Flow chart of AE-MSGCN fault diagnosis scheme.

After the data are normalized, we slice the signal by the specified sample length to
obtain multiple samples. In order to better extract the features in the signal, the signal in
the time domain is converted into a one-dimensional spectrum, which can be expressed as:

S̃FFT
norm = FFT

(
S̃norm

)
(14)

where S̃norm is the normalized signal; S̃FFT
norm is the spectral domain signal obtained after fast

Fourier transformation (FFT). Taking the signal obtained by FFT as the input of the AE,
the encoding process of AE is given as:

X = f
(

S̃FFT
norm

)
= σ

(
WS̃FFT

norm + b
)

(15)

where σ(·) is the activation function, W is the parameter matrix, and b is the bias value.
Analogously, the decoding process can be described as:

Y = f(X) = σ(WX + b) (16)

(3) AE-MSGCN-Based Fault Diagnosis: There are multiple potential relationships be-
tween the samples in the industrial machine operation process. By using different metrics
to calculate the similarity between samples, and then construct the corresponding network
structures, the multiple interaction characterization among nodes can be well mined.
To achieve this, the feature matrix X obtained through the AE module is input into three
different network structures by three different metrics, which are: K-nearest neighbor graph
(Layer A), cosine graph (Layer B) and path graph (Layer C). Specifically, in Layer A, the top
k nearest neighbors is found for each node by calculating the Euclidean distance between
the current node and other nodes as below:

Sk = dist(a, b) =

√√√√ d

∑
i=1

(ai − bi)
2 (17)

Analogously, in Layer B, the k neighbors with the largest similarity are selected to es-
tablish edges according to the cosine similarity between the current node and
other nodes.
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Sc =
a · b
‖a‖‖b‖ =

d
∑

i=1
ai × bi√

d
∑

i=1
(ai)

2 ×
√

d
∑

i=1
(bi)

2

(18)

where a and b are the feature vectors of any two nodes, and d is the number of nodes. The
fault label is also the label of the node.

In Layer C, nodes are connected in chronological order and the nodes at the previous
and the next moment of the node are selected as neighbors for the present node. After that,
the corresponding adjacency matrixes Aα ∈ RN×N , α = 1, 2, 3 can be obtained for different
network structures.

The obtained multi-layer networks are taken as the input of the GCN model. Different
from the traditional GCN, we replace each GCN layer with multi-convolutional layers,
which contain intra-layer convolution and inter-layer convolution, and independently
propagate node features within and between layers. The process of intra-layer convolution
can be expressed as:

Hα
intra = GCN(X, Aα), α = 1, 2, 3

Hintra = CON(Hα
intra )

(19)

where CON indicates concatenation. By constructing a fully connected graph for the same
nodes in each layer, a fully connected graph with N (N is the number of samples) and three
vertices can be obtained. Then, the process of inter-layer convolution is given as below:

Hβ
inter = GCN

(
X, Aβ

)
, β = 1, 2, . . . , N

Hinter = CON
(

Hβ
inter

) (20)

The features within and between layers are aggregated to obtain the multi-layer node
embeddings. The process can be expressed as follows.

H = Sum(Hintra, Hinter ) (21)

The dimension H ∈ 3N × d; that is, H is composed of the eigenmatrix of the three-
layer network.

Then, by summing the eigenmatrices of the multi-layer networks, the aggregated node
features are obtained [39].

HAgg = Sum(Hα) (22)

where Hα ∈ N × d is the eigenmatrix corresponding to different layers. The advantage
of this model is to decouple intra-layer and inter-layer propagation by learning two sets
of GCN parameters, enabling the model to learn about the different importance of the
two propagation directions. Finally, the fully connected (FC) network with minimum
cross entropy loss (CE) and so f tmax function are used for model iterative training and
fault diagnosis.

To better understand the above procedures, Figure 3 gives the schematic diagram of
a multi-layer network and the computation of multi-layer node embeddings (take node
n21 as an example). Specifically, iα represents the ith node of the α layer. (intra− k) and
(inter− k) are the kth intra-layer and inter-layer convolutional of GCN, respectively. h(k+1)

iα
represents the feature of node i in layer α after k + 1 convolutional aggregations.
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Sum

(a) (b)

Layer A

Layer C

Layer B

Figure 3. (a) Multi-layer networks. (b) Computation of multi-layer node embeddings.

(4) Rationality of Multi-layer Network Structure: Table 1 gives the comparison of the main
statistical indicators regarding the multi-layer network structures used in this paper, which
is conducted on the Southeast University dataset (SEU). The rationality of the constructed
multi-layered networks can be explained in two items:

Table 1. The statistical indicators of multi-layer network structure.

Layer A Layer B Layer C

Average degree 8.18550 8.29010 0.99995
Average clustering coefficient 0.30425 0.28521 0
Average shortest path length 18.13 10.79 6667

First, it can be seen from the table that the difference in values of three commonly used
evaluation indexes [40] (average degree, average clustering coefficient, average shortest
path length) with respect to the multi-layer networks is obvious, especially regarding
average shortest path length. That means the multi-layer network structure in this work
can depict the complex correlations of process data from different perspectives, which
is beneficial to data feature mining and diagnostic performance enhancement. Second,
the quantitative effects of multi-layer networks on model performance are shown in detail
in Section 4.2, which further proves the availability of the proposed network structure in
improving the performance of the diagnostic model.

4. Experimental Results and Analysis
4.1. Dataset Introduction and Experiment Description

(1) Simulated Southeast University Data: The SEU contains two main parts, a gearbox
and a bearing, and the experimental setup for the gearbox dataset is shown in Figure 4.
The process data of SEU were obtained from the drivetrain dynamic simulator (DDS).
In this platform, the fault data includes two working conditions, which correspond to the
cases where the speed load is either 20 HZ-0V or 30 HZ-2V, respectively. It is worth noting
that there are eight different types of faults for bearings and gearboxes, which are listed in
Table 2. A detailed description and introduction of the SEU dataset can be found in [41].

(2) Real-World Coal Mill Operation (CMO) Data: The coal mill operation (CMO) data
come from the real running process of the coal mill group of a power company in central
China. The boiler adopts a medium speed milling system. In addition, each furnace is
equipped with 6 MP265G medium speed coal mills. When burning the designed coal type,
there are five sets of operation and one set of standby, and the designed coal fineness is
R90 = 20%. The main burners are arranged on the front and back walls of the water-cooled
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wall, and eight burners on each layer correspond to a coal grinder. The separated over fire
air (SOFA) burners are arranged on the front and rear walls of the water wall above the
main burner zone to achieve staged combustion to reduce NOx emissions. A recirculating
flue gas nozzle is arranged on the front and back walls of the water cooling wall below
the burner.

Motor

Planetary 

Gearbox

Parallel 

Gearbox

Brake

Brake 

Controller

Motor 

Controller

 
Figure 4. Experimental setup for gearbox dataset.

Table 2. The specific channels and corresponding sensor signals of SEU.

Location Type Description

Chipped Crack occurs in gear feet

Gearbox
Miss Missing one of feet in gear
Root Crack occurs in root of gear feet

Surface Wear occurs in surface of gear

Ball Crack occurs in the ball

Bearing
Inner Crack occurs in inner
Outer Crack occurs in outer

Combination Crack occurs in both inner and outer

The time span of data collection for the coal mill group is 15 months (from 1 September 2019
to 25 March 2021), with normal data collected every 5 min and fault data collected every
1 s. A total of 32 kinds of faults (given in Table 3) were collected in the operating process.
Figure 5 gives the physical photo of the MP265G coal mill, which mainly includes primary
fan, induced draft fan, air blower, air preheater, and so on. Then the main system parameters
of the coal mill are demonstrated in Table 4.

(3) Experiment Description: The signal data are first subjected to max–min normalization
before being input into the model. For the SEU dataset, 128 sampling points are used as
a sample; that is, the feature dimension of each sample is 1024, and the initial feature
extraction is performed with FFT. For the CMO dataset, each sampling point is taken as
a sample, and its feature dimension is 172. The experimental task of the SEU dataset is
a 20-class fault classification problem with 1000 samples for each class. The experimental
task of the CMO dataset is a 32-class fault classification problem with 800 samples per
class. The ratio of training, validation, and testing data sets is 60%:20%:20%, which
is divided randomly. For more robust results, each training is performed 10 times on
average. The framework is implemented using the Pytorch Geometric (PyG) library [42]
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and iteratively trained for 300 epochs. The attenuation learning rate is selected here with an
initial value of 0.015, and the Adam optimizer is used for optimization in the experiments.

Figure 5. Physical photo of coal mill in power plant.

Table 3. The main performance parameters of the coal mill.

No. Description No. Description

F1 High pressure of filter screen F17 Motor abnormalities
F2 The burner burns through F18 Bearing offset
F3 Abnormal vibration of oil pump F19 Bearing temperature rise
F4 Hydraulic oil leakage F20 Vibration is large
F5 The furnace breathed fire F21 The vibration is noisy
F6 Wind anomalies F22 Bearing vibration
F7 Powder tube leakage F23 Powder tube leakage
F8 Loading force becomes smaller F24 A coal mill vibration
F9 Sudden increase in fan vibration F25 Electrical short circuit

F10 Hydraulic pressure large F26 Coal mill current sloshing
F11 Low loading force F27 Coal mill C vibration
F12 Abnormal loading force F28 Low inlet wind speed
F13 Low oil pressure F29 High vibration of fan B
F14 Internal oil leakage F30 Air preheater current sloshing
F15 Fan surge F31 Elbow leakage powder
F16 Current is big F32 Mill C vibration
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Table 4. The main performance parameters of CMO dataset with different types of coal.

No. Description Unite Coal
Type 1 Coal Type 2 (and 3)

1 Pulverized coal moisture % 7 3 (6.5)
2 Base point output t/h 116.1 116.1 (116.1)
3 Maximum ventilation t/h 154.0 145.0 (176.15)
4 Load ratio % 63.9 57.7 (67.3)
5 Inlet temperature ◦C 292 256 (301)
6 Rotating speed r/min 27.4 27.4 (27.4)
7 Ventilation resistance Pa 7100 7000 (7320)
8 Sealed air volume t/h 8.61 8.61 (8.61)
9 Power consumption kWh/t 8.82 9.38 (8.43)

10 Wear rate g/t 4∼6 4∼6 (4∼6)
11 Roller life h ≥18,000 ≥18,000 (≥18,000)
12 Pebble coal amount kg/h 59 59 (60)
13 Separator diameter mm ≥4700 ≥4700 (≥4700)

4.2. Visualization Results of AE-MSGCN

In order to display the differences and complementarities among multi-layer networks,
Figure 6 demonstrates an example of network topology by different types of metrics for
fault Miss−20−0 (one kind of Miss fault) in the SEU dataset and F5 in the CMO dataset.
In particular, 100 nodes are randomly selected (denoted by solid circles) and the lines
with arrows represent learned edges among nodes in the current network. As one can
see from the figure, the topology structures of the three-layer networks are quite different
from each other, which implies that each metric can learn a specific network structure.
Furthermore, the learned network structures also show the differences among different
faults. The above results indicate that the AE-MSGCN model with three different metrics
can generate expressive fault representations and provide comprehensive fault features,
which are naturally helpful in terms of improving fault diagnosis performance.

(a) Layer A (b) Layer B (c) Layer C

(d) Layer A (e) Layer B (f) Layer C

Figure 6. Multi-layer networks structure illustration. (a–c): Fault Miss−20−0 in SEU, (d–f): F5
in CMO.

In order to obtain the best diagnostic performance, comparative experiments are
conducted on the two datasets for different hidden layer structures of AE-MSGCN (the size
of hidden layer 1 is H and the size of hidden layer 2 is I), which are shown in Table 5.
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Table 5. AE-MSGCN performance with respect to different hidden layer sizes.

SEU CMO

H × I Accuracy Iteration Times H × I Accuracy Iteration Times

1024× 128 96.53% 160 256× 128 98.12% 271
256× 128 95.15% 181 512× 256 99.84% 142
1024× 512 99.75% 177 128× 64 90.76% 288

From Table 5, it can be seen that when H = 1024, I = 512, the AE-MSGCN achieved the
best diagnostic performance on the SEU dataset (99.75%). When H = 512, I = 256, the GCN
obtained the highest fault diagnosis accuracy regarding the CMO dataset (99.84%). Thus,
the subsequent results are based on such a hidden layer structure.

To further quantitatively demonstrate the effects of the multi-layer network struc-
ture on the diagnostic performance, comparative experiments are carried out on the
two datasets, separately. Each experiment runs 300 epochs and performs 10 times on
average. The average diagnosis accuracies (Avg-acc) are shown in Figure 7; it can be seen
that the diagnosis accuracy of the combination of multi-layer networks (Layer A + Layer B,
Layer A + Layer C, or Layer B + Layer C) is always superior to that of any single layer net-
works (Layer A, Layer B, or Layer C) in both the SEU dataset and the CMO dataset, which
shows that multi-layer networks are helpful for diagnosing performance enhancement.
In particular, the proposed AE-MSGCN model utilized three-layer networks to characterize
both the intra-and inter-layer relations; thus, the highest diagnosis accuracies are obtained
with smaller model variance.

To visualize the training convergence process of the AE-MSGCN model, Figure 8
shows the training loss and testing accuracy curves of AE-MSGCN regarding both SEU
and CMO datasets. We can infer from Figure 8 that the loss of AE-MSGCN converged to
a stable value after 177 epochs of training, with an accuracy of 99.75% on the testing dataset
of SEU. In contrast, after 142 epochs of training on the CMO dataset, the convergence
occurred with a diagnosis accuracy of 99.84% without overfitting. In general, the training
process of the proposed method is relatively smooth, and the best fault diagnosis accuracy
can be achieved with not too many epochs. Thus, it is proved that the proposed method
has fast convergence speed and good fault diagnosis performance.

To show the feature visualization results achieved by the proposed AE-MSGCN
model, the reduced 2D feature map of raw data and learned fault features in the last layer
is visualized in Figure 9 through the t-distributed stochastic neighbor embedding (t-SNE)
scheme. From the figure, we know that the sample features of the different faults are
crossed and overlapped together in both original SEU/CMO data spaces, which means the
faulty pattern is multiple in raw datasets and the interactions between them are complex,
especially the SEU dataset. By contrast, the different fault features are well separated with
very little overlap after t-SNE mapping, which means the proposed AE-MSGCN model
obtains better fault diagnosis performance.
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Figure 7. Average diagnosis accuracy of different methods (Combine 1 = Layer A + Layer B,
Combine 2 = Layer A + Layer C, Combine 3 = Layer B + Layer C ): (a) SEU dataset, (b) CMO dataset.
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Figure 8. Visualization of the training loss and testing accuracy curve of different datasets. (a) SEU
dataset, (b) CMO dataset.
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Figure 9. Feature visualization with t-SNE: (a) Raw SEU data space, (b) AE-MSGCN learning space
of SEU, (c) Raw CMO dataset space, (d) AE-MSGCN learning space of CMO.

4.3. Comparison and Analysis of Experimental Results

To show the superiority of the proposed AE-MSGCN method, some well-known meth-
ods (MLP, GCN, WGCN, MRFGCN) are selected for comparison. The learning rate of these
comparison algorithms is 0.015, the Adam operator is used for parameter optimization,
and CE is used for iterative training. For fair comparison, all methods are tested under
the same conditions. In addition, all methods are trained 10 times to ease the random-
ness. The best model in the training stage is selected for testing, and the test accuracy is
considered as the quantitative evaluation index.

(1) MLP: This is a classical neural network model and it has been verified that MLP
has a good performance in fault classification. Thus, it is employed as a baseline to evaluate
the effectiveness of AE-MSGCN.

(2) GCN: Differing from MPL, GCN is a DL-based method and the results of the GCN
model in this paper are obtained by averaging the diagnosis results obtained by the three
single-layer networks constructed by different metrics.

(3) WGCN: This weights the edges by summing the adjacency matrix of multi-layer
networks, and then carries out fault diagnosis through GCN. However, it does not consider
the aggregation of the features from different neighbors.

(4) MRFGCN: MRFGCN not only extracts the features from different receptive fields,
but also fuses them as the enhanced feature representation; thus, it is also an advanced
feature mining model. The details can be found in [43].

(5) MSGCN: Compared with the proposed AE-MSGCN, this only lacks the deep feature
extraction based on AE. Thus, the validity of AE models can be highlighted.

Subsequently, as for the separability of the AE-MSGCN model concerning the faulty
data, the detailed diagnosis results of the two experimental datasets are displayed by
using the confusion matrix, which is given in Figure 10. As can be seen from the figure,
AE-MSGCN has only a few samples misclassified in both datasets, which can achieve
the expected classification effect. After classification, each category has a high degree of
discrimination, indicating that AE-MSGCN can correctly identify most of the faults in
both of the datasets. Comparing the GCN, MRFGCN, and the AE-MSGCN model, since
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the GCN model is relatively simple, it only uses single-layer convolution to extract graph
features without mining multiple interactions and relations in sensor data, so the fault
classification accuracy is not high. In contrast, the AE-MSGCN model carries out the
intra-layer and inter-layer convolution to characterize the complex interactions among
nodes; thus, the fault classification performance has been further improved.

(a) (b) (c)

(d) (e) (f)

Figure 10. Confusion matrices by three different methods for the two datasets, (a) MRFGCN for
SEU, (b) MRFGCN for SEU, (c) AE-MSGCN for SEU, (d) GCN for CMO, (e) MRFGCN for CMO,
(f) AE-MSGCN for CMO.

In order to verify that the proposed method is helpful for fault diagnosis, AE-MSGCN
is compared with MLP, GCN, WGCN, MRFGCN [43], and MSGCN; the overall classifi-
cation results are given in Table 6. It can be seen from Table 6 that MLP has the worst
diagnosis performance. The main reason is that MLP has only two hidden layers, so it
cannot effectively extract features. GCN and WGCN only contain intra-layer convolution
and ignore inter-layer information among the sensor signals. Although the fault diagnosis
accuracy of GCN and WGCN is better than that of MLP, there is still room for improve-
ment. MRFGCN fuses the features from multiple receptive fields to form an enhanced
feature representation, and reaches classification accuracies of 97.25% and 94.26% on the
two datasets, respectively. In contrast, the proposed AE-MSGCN uses different metrics
to form the multi-layer networks and takes into account the feature information among
intra-layer and inter-layer sorts; thus, it achieves the excellent diagnosis performance.
In addition, the AE model is conducive to the feature extraction of process measurements,
which also improves diagnosis accuracy slightly.

Table 6. Fault diagnosis accuracy (%) of different methods for the two datasets.

AE-MSGCN MSGCN MRFGCN WGCN GCN MLP

SEU 99.75 98.32 97.25 94.35 94.27 91.32
CMO 99.84 97.33 94.26 91.62 90.05 59.46

Similarly, the standard deviations (SDs) of different methods for the two datasets are
shown in Table 7. From the table, we know that the proposed AE-MSGCN achieves the
lowest SD values (i.e., 0.14% for SEU and 0.09% for CMO), which validates the robustness
and stability of the proposed method.
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Table 7. The SD (%) of different methods for the two datasets.

AE-MSGCN MSGCN MRFGCN WGCN GCN MLP

SEU 0.14 0.43 0.52 1.25 1.43 2.71
CMO 0.09 0.34 0.6 0.89 1.07 4.93

Further, we select five categories of faults (Health−20−0, Miss−20−0, Miss−30−0,
Root−30−2, Outer−20−0) in the SEU dataset and the first five faults (F1-F5) as two concrete
cases for method validation. It is worth noting that the proposed method achieves 100%
fault diagnosis accuracy in all five faults of the SEU dataset, which is superior to any
comparison algorithm. A similar situation occurs concerning the CMO dataset. The above
comprehensive results demonstrate that the baseline methods cannot completely meet the
intelligent diagnosis requirements. A detailed diagnosis and statistical analysis results of
the proposed AE-MSGCN approach in different experimental scenarios are clearly shown
in Figure 11.
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Figure 11. Detailed display of diagnosis results for the selected faults. (a) SEU dataset,
(b) CMO dataset.

5. Conclusions

Aiming at the problem of ignoring the complex relationships among the industrial
machine operation data, this paper designs an innovative way to consider both the inter-
and intra-layer influences on fault diagnosis. In the proposed AE-MSGCN, different indica-
tors are used to construct the multi-layer networks. After that, node feature propagation
happens in both the intra- and inter- layer independently, then information from the topol-
ogy and the features farther in the networks are captured by multiple layers; thus, it is
beneficial to fault diagnosis performance promotion. The experiments on the simulated
SEU dataset and real-world CMO dataset demonstrate that our proposal achieves superior
outcomes with regard to fault diagnosis results and model practicability.

Although the proposed method acquires the desired results, the edges of the graph
learned by AE-MSGCN are only described by statistical correlations. Further efforts could
be focused on the design of multi-layer networks with interpretability and nodes with
physical significance. In addition, the potential integration of the diagnosis framework into
software systems is also worth addressing in future works.
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