
Multi-layered Monitoring and Adaptation�

Sam Guinea1, Gabor Kecskemeti2, Annapaola Marconi3,
and Branimir Wetzstein4

1 Politecnico di Milano
Deep-SE Group - Dipartimento di Elettronica e Informazione

Piazza L. da Vinci, 32 - 20133 Milano, Italy
guinea@elet.polimi.it

2 MTA-SZTAKI
Laboratory of Parallel and Distributed Systems

Kende u. 13-17, 1111 Budapest, Hungary
kecskemeti@sztaki.hu

3 Fondazione Bruno Kessler
via Sommarive 18, 38123 Trento, Italy

marconi@fbk.eu
4 University of Stuttgart

Institute of Architecture of Application Systems
Universitaetsstr. 38, 70569 Stuttgart, Germany

wetzstein@iaas.uni-stuttgart.de

Abstract. Service-based applications have become more and more
multi-layered in nature, as we tend to build software as a service on
top of infrastructure as a service. Most existing SOA monitoring and
adaptation techniques address layer-specific issues. These techniques, if
used in isolation, cannot deal with real-world domains, where changes in
one layer often affect other layers, and information from multiple layers
is essential in truly understanding problems and in developing compre-
hensive solutions.

In this paper we propose a framework that integrates layer specific
monitoring and adaptation techniques, and enables multi-layered control
loops in service-based systems. The proposed approach is evaluated on
a medical imaging procedure for Computed Tomography (CT) Scans,
an e-Health scenario characterized by strong dependencies between the
software layer and infrastructural resources.

1 Introduction

Service-based systems are built under an open-world assumption. Their func-
tionality and quality of service depend on the services they interact with, yet
these services can evolve in many ways, for better or for worse. To be sure these
evolutions do not lead to systems that behave inadequately or fail, service-based
� The research leading to these results has received funding from the European Com-

munity‘s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (Network of Excellence S-Cube) and grant agreement 216556 (SLA@SOI).

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 359–373, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



360 S. Guinea et al.

systems must be able to re-arrange themselves to cope with change. A typical
way of dealing with these issues is to introduce some variant of the well-known
monitor-analyze-plan-execute (MAPE) loop into the system [6], effectively mak-
ing the system self-adaptive.

The service abstraction has become so pervasive that we are now building
systems that are multi-layered in nature. Cloud-computing allows us to build
software as a service on top of a dynamic infrastructure that is also provided
as a service (IaaS). This complicates the development of self-adaptive systems
because the layers are intrinsically dependent one of the other. Most existing
SOA monitoring and adaptation techniques address one specific functional layer
at a time. This makes them inadequate in real-world domains, where changes in
one layer will often affect others. If we do not consider the system as a whole
we can run into different kinds of misjudgments. For example, if we witness an
unexpected behavior at the software layer we may be inclined to adapt at that
same layer, even though a more cost-effective solution might be found either at
the infrastructure layer, or by combining adaptations at both layers. Even worse,
a purely software adaptation might turn out to be useless due to infrastructural
constraints we fail to consider. Similar considerations are made in case of the
unexpected behavior at the infrastructure layer, or at both.

In this paper we propose a framework that integrates software and infras-
tructure specific monitoring and adaptation techniques, enabling multi-layered
control loops in service-based systems. All the steps in the control loop acknowl-
edge the multi-faceted nature of the system, ensuring that we always reason
holistically, and adapt the system in a coordinated fashion. In our prototype
we have focused on the monitoring and adaptation of BPEL processes that are
deployed onto a dynamic infrastructure.

Building upon our past experiences we have integrated process and infrastruc-
ture level monitoring [2,8] with a correlation technique that makes use of complex
event processing [1]. The correlated data, combined with machine-learning tech-
niques, allow us to pinpoint where the problems lie in the multi-layered system,
and where it would be more convenient to adapt [7,12]. We then build a com-
plex adaptation strategy that may involve the software and/or the infrastructure
layer [13], and enact it through appropriate effectors.

The proposed approach is evaluated on a medical imaging procedure for Com-
puted Tomography (CT) Scans, an e-Health scenario characterized by strong
dependencies between the software layer and infrastructural resources.

The rest of this paper is organized as follows. Section 2 gives a high-level
overview of the integrated monitoring and adaptation framework used to enable
the multi-layered control loops. Section 3 details the software and infrastructure
monitoring tools and how they are correlated using complex event processing.
Section 4 explains how decision trees are used to identify which parts in the
system are responsible for the anomalous behaviors and what adaptations are
needed. Section 5 explains how we coordinate single-layer adaptation capabili-
ties to define a multi-layered adaptation strategy, while Section 6 presents the
tools used to actually enact the adaptations. Section 7 evaluates the integrated



Multi-layered Monitoring and Adaptation 361

approach on a medical imaging procedure. Section 8 presents related work, and
Section 9 concludes the paper.

2 The Integrated Monitoring and Adaptation Framework

We propose an integrated framework that allows for the installation of multi-
layered control loops in service-based systems. We will start with a conceptual
overview, and then provide more details on the single techniques we have inte-
grated in our prototype.

Dynamo/
Astro

Laysi

EcoWare

Laysi

DyBPEL

CLAM

Adaptation 
Needs 

Analyzer

monitoring 
events

probes

probes

adapts

adapts

Monitoring & Correlation Analysis of 
Adaptation 

Needs

Adaptation 
Enactment

Identification of 
Multi-layer Adaptation 

Strategies

In
fr

as
tr

uc
tu

re

S
of

tw
ar

e

software and 
infrastructure 

KPIs

adaptation action
request

adaptation 
needs

Fig. 1. The Monitoring and Adaptation Framework

Figure 1 gives a high-level view of our integrated monitoring and adaptation
framework, as used in a multi-layered software and infrastructure system. To
establish self-adaptation, the framework applies a slight variation of the well-
known MAPE control loop. Dashed vertical lines separate the four main steps
in the loop, while oval shapes represent the concrete techniques that we have
integrated – detailed later in Sections 3–6.

In the Monitoring and Correlation step, sensors deployed throughout the sys-
tem capture run-time data about its software and infrastructural elements. The
collected data are then aggregated and manipulated to produce higher-level cor-
related data under the form of general and domain-specific metrics. The main



362 S. Guinea et al.

Data Source

Interrupt 
Sampler

Polling 
Sampler

Aggregate

Reliability

Avg Response 
Time

Rate

Domain Specific
Aggregate

System 
Polling Sampler

reads

1..*

Context 
Polling Sampler

name
namespace

Context 
Property

samples 1..*

System Interrupt 
Sampler

Context 
Interrupt 
Sampler

1..* samples

Dynamo 
Sampler

Laysi

Invocation
Monitor

Information
Collector 

Dynamo/Laysi 
Correlator

Fig. 2. The Monitoring and Correlation Model

goal is to reveal correlations between what is being observed at the software and
at the infrastructure layer to enable global system reasoning.

In the Analysis of Adaptation Needs step, the framework uses the correlated
data to identify anomalous situations, and to pinpoint and formalize where it
needs to adapt. It may be sufficient to adapt at the software or at the infras-
tructure layer, or we may have to adapt at both.

In the Identification of Multi-layer Adaptation Strategies step, the framework
is aware of the adaptation capabilities that exist within the system. It uses this
knowledge to define a multi-layer adaptation strategy as a set of software and/or
infrastructure adaptation actions to enact. A strategy determines both the order
of these actions and the data they need to exchange to accomplish their goals.

In the Adaptation Enactment step, different adaptation engines, both at the
software and the infrastructure layer, enact their corresponding parts of the
multi-layer strategy. Each engine typically contains a number of specific modules
targeting different atomic adaptation capabilities.

3 Monitoring and Correlation

Monitoring consists in collecting data from a running application so that they
can be analyzed to discover runtime anomalies; event correlation is used to ag-
gregate runtime data coming from different sources to produce information at a
higher level of abstraction. In our integrated framework we can obtain low-level
data/events from the process or from the context of execution using Dynamo [2],
or from the infrastructure using Laysi [8]. We can then manipulate the data to



Multi-layered Monitoring and Adaptation 363

obtain higher-level information using the event correlation capabilities provided
by EcoWare [1]. Figure 2 gives an overview of the kind of data sources available
through Dynamo, Laysi, and EcoWare.

Dynamo provides means for gathering events regarding either (i) a process’
internal state, or (ii) context data1. Interrupt Samplers interrupt a process
at a specific point in its execution to gather the information, while Polling
Samplers do not block the process but gather their data through polling.

The Invocation Monitor is responsible for producing low-level infrastruc-
ture events through the observation of the various IaaS systems managed by
Laysi. These events signal a service invocation’s failure or success, where fail-
ures are due to infrastructure errors. The infrastructure, however, can also be
queried through the Information Collector to better understand how services
are assigned to hosts. The differences between the utilized infrastructures and
the represented information are hidden by the information collector component
of the MetaBroker service in Laysi.

Siena

Esper Processor

SienaInputAdapter

Dynamo

Esper Processor

SienaInputAdapter

ActiveBPEL 
+ 

AOP Sensors

SienaOutputAdapter

SienaOutputAdapter

SienaOutputAdapter

Laysi Managed 
Infrastructure

SienaOutputAdapter

E
coW

are

Fig. 3. The Dynamo and EcoWare Architecture

The events collected through Dynamo and Laysi can be further aggregated
or manipulated by EcoWare. We can use a predefined aggregate metric such
as Reliability, Average Response Time, or Rate, or we can use a domain-
specific aggregate whose semantics is expressed using the Esper event processing
language. Aggregates process events coming from one or more data sources and
produce new ones that can be even further manipulated in a pipe-and-filter style.

For our integrated approach we developed a domain-specific aggregate called
the Dynamo/Laysi Correlator to correlate events produced at the software and
the infrastructure layers. This component exploits a correlation data set that is
artificially introduced by Dynamo in every service call it makes to the Laysi
infrastructure. The correlation data contains the name of the process making
1 We intend as context any data source, external to the system, that offers a service

interface.



364 S. Guinea et al.

the call to Laysi, the invocation descriptor in the form of a unique JSDL (Job
Submission Description Language) document, and a unique ID for the process
instance that is actually making the request. These data are also placed within
the events that are generated by the Invocation Monitor, allowing EcoWare to
easily understand which software- and infrastructure-level events are related.
Figure 3 gives an overview of the technical integration of Dynamo, Laysi, and
EcoWare, which is achieved using a Siena publish and subscribe event bus. Input
and output adapters are used to align Dynamo, Laysi, and the event processors
with a normalized message format.

4 Analysis of Adaptation Needs

Monitoring and correlation produce simple and complex metrics that need to be
evaluated. A Key Performance Indicator consists of one of these metrics (e.g.,
overall process duration) and a target value function which maps values of that
metric to two or more categories on a nominal scale (e.g., “process duration < 3
days is good, otherwise bad” defines two KPI categories). These KPI categories
allow us to interpret whether, and how, KPI metric values conform to business
goals. If monitoring shows that many process instances have bad KPI perfor-
mance, we need to (i) analyze the influential factors that lead to these bad KPI
values, and (ii) find adaptation actions that can improve those factors and thus
the KPI. Figure 4 shows an overview of the KPI-based Adaptation Needs An-
alyzer Framework [7,12] and its relation to the overall approach. It consists of
two main components: an Influential Factor Analysis component and an
Adaptation Needs Analysis component.

Monitoring/
Correlation 
Framework

Metric 
values

Influential 
Factor 

Analysis

Adaptation 
Needs 

Analaysis

KPI 
Model

Adaptation 
Actions Model

Adaptation 
actions

CLAM
Decision Tree

Adaptation Needs 
Analyzer

Fig. 4. Adaptation Needs Analysis Framework

The Influential Factor Analysis receives the metric values for a set of process
instances within a certain time period. In this context, interesting metrics are
measured both on the process level and the service infrastructure level. At the
process level, metrics include the durations of external service calls, the duration
of the overall business process, the process paths taken, the number of iterations



Multi-layered Monitoring and Adaptation 365

in loops, and the process’ data values. Service infrastructure metrics describe the
service invocation properties which include the status of the service invocation
(successful, failed), and properties such as the infrastructure node on which the
service execution has been performed.

It uses machine learning techniques (decision trees) to find out the relations
between a set of metrics (potential influential factors) and the KPI category
based on historical process instances [12]. The algorithm is fed with a data
set, whereby each data item in this set represents one process instance and the
values of all the metrics that were measured for that instance and the KPI
category that has been evaluated. The algorithm creates a decision tree in which
nodes represent metrics (e.g., the duration of a particular activity), outgoing
edges represent conditions on the values of the metric, and leaves represent KPI
categories. By following the paths from the root of the tree to its leaves, we can
see for which combinations of metrics and values particular KPI categories have
been reached (e.g., if duration of activity A was above 3 hours and activity B
was executed on node 2 the KPI value was bad).

Based on this analysis the next step is to use the Adaptation Needs Analysis
component to identify the adaptation needs, i.e., what is to be adapted in order
to improve the KPI [7]. The inputs to this step are the decision tree and an
adaptation actions model which has to be manually created by the user. The
model contains different adaptation actions, whereby each specifies an adapta-
tion mechanism (e.g., service substitution, process structure change) and how
it affects one or more of the metrics used in the Influential Factor Analysis.
For example, an adaptation action could be to substitute service A in the pro-
cess with service B, and its effect could be “service response time < 2 h”. The
Adaptation Needs Analysis extracts the paths which lead to bad KPI categories
from the tree and combines them with available adaptation actions which can
improve the corresponding metrics on the path. As a result, we obtain different
sets of potential adaptation actions. However, each of these sets does not yet
take cross-layer dependencies between adaptation actions into account. This is
performed in the next step by the CLAM framework.

5 Identification of Multi-layer Adaptation Strategies

The main aim of the Cross Layer Adaptation Manager (CLAM) [13] is to man-
age the impact of adaptation actions across the system’s multiple layers. This is
achieved in two ways: on the one hand CLAM identifies the application compo-
nents that are affected by the adaptation actions, and on the other hand, it
identifies an adaptation strategy that properly coordinates the layer-specific
adaptation capabilities. CLAM relies on a model of the multi-layer application
that contains the current configuration of the application’s components (e.g.
business processes with KPIs, available services with stated QoS and general
information, available infrastructure resources) and their dependencies (e.g. busi-
ness activity A is performed by service S). When the CLAM identifies the com-
ponents that are affected by the adaptation actions, it uses a set of checkers,



366 S. Guinea et al.

each associated with a specific application concern (e.g. service composition,
service performances, infrastructure resources), to analyze whether the updated
application model is compatible with the concern’s requirements. The goal is
to produce a strategy that is modeled as an Adaptation Tree. The tree’s root
represents the model’s initial configuration; its other nodes contain the config-
urations of the model, as updated by the adaptation actions, and the checkers
that need to be invoked at each step; its edges represent the outcome of the
invoked checkers.

Adaptation 
Needs 

Analyzer

Adaptation
Actions

SBA Model 
Updater

Cross-Layer 
Rule Engine

Adaptation 
Strategy 
Selector 

Laysi

DyBPEL

SBA
Model

Adapted 
SBA Model

Adaptation 
Actions

Adaptation 
Tree

Adaptation 
Strategy

Adaptation
Action

Adaptation
Action

Request/
Result

Request/
Result

Process 
Re-writing

Laysi

Checker
Service 

Composition

Checker
Infrastructure 
Resources

Pluggable Adaptation 
Capabilities

Cross Layer Adaptation Manager (CLAM)

Fig. 5. CLAM: Cross-layer Adaptation Manager

Figure 5 presents an overview of CLAM’s architecture. Whenever a new set
of adaptation actions is received from the Adaptation Needs Analyzer, the SBA
Model Updater module updates the current application model by applying the
received adaptation actions. CLAM requires that all the adaptation actions be
applicable with respect to the current model. However, this is guaranteed in the
proposed multi-layer framework by the Adaptation Needs Analyzer.

The adapted model is then used by the Cross-layer Rule Engine to detect
the components in the layers affected by the adaptation and to identify, through
the set of predefined rules, the associated adaptation checkers. If some constraints
are violated, the checker is responsible for searching for a local solution to the
problem. This analysis may result in a new adaptation action to be triggered.
This is determined through the interaction with a set of pluggable application-
specific adaptation capabilities.

The Cross-layer Rule Engine uses each checker’s outcome to progressively
update the strategy tree. If the checker triggers a new adaptation action, the
Cross-layer Rule Engine obtains a new adapted model from the Model Updater,
and adds it as a new node to the strategy tree, together with the new checkers
to be invoked. If the checker reports that the adaptation is not compatible and
that no solution can be found, the node is marked as a red leaf; the path in the



Multi-layered Monitoring and Adaptation 367

tree that leads from the root to that specific node represents an unsuccessful
strategy. On the contrary, if all checks complete successfully, the node is a green
leaf that can be considered a stable configuration of the application, and the
corresponding path in the tree represents an adaptation strategy that can be
enacted.

If multiple adaptation strategies are identified, the Adaptation Strategy
Selector is responsible of choosing the best strategy by evaluating and ranking
the different strategies according to a set of predefined metrics. The selected
strategy is then enacted passing the adaptation actions to the adaptation enact-
ment tools.

Due to our scenario’s requirements we have currently integrated two specific
adaptation capabilities into our framework: the Process Re-Writing planner,
responsible of optimizing service compositions by properly parallelizing sequen-
tial activities, and Laysi, whose aim is to guarantee a correct and optimized
usage of infrastructure resources.

The Process Re-writing Planner is an adaptation mechanism that, given a
BPEL process and a set of optimization requirements, automatically computes
a new version of the process that maximizes the parallel execution of activities.
This is done taking into account a set of data and control flow requirements that
characterize the process’ correct behavior (e.g. activity A cannot be executed in
parallel with B, activity A must follow activity B, etc.), as well as any interaction
protocols the partner services may require (e.g. if service S expects activity A to
be executed before activity B, than this protocol requirement will be satisfied).

Laysi offers self-management capabilities for service infrastructures and allows
new infrastructure level requirements to be evaluated before the actual service
invocations take place. Hence, upon receiving the possible parallel execution op-
tions from Process Re-writing Planner, the CLAM architecture presents these
options as requirements (including the required parallelism and time constraints)
to Laysi for all the not-yet executed service calls. In response, Laysi determines
the feasibility of the proposed requirements taking into account that a rearrange-
ment of the service infrastructure may be needed. If the system decides to enact
the adaptation and the infrastructure needs to be rearranged, Laysi will ensure
the next invocation can meet its agreed constraints according to the adaptation
enactment tasks specified in the following section.

6 Adaptation Enactment

In our integrated approach we enact software adaptations through DyBPEL, and
infrastructure adaptations through Laysi. CLAM issues specific actions of the
chosen adaptation strategy to each tool in a coordinated fashion.

In the proposed integration, DyBPEL is responsible of enacting the process
restructuring adaptations identified by the Process Re-writing Planner.

DyBPEL extends an open-source BPEL execution engine (ActiveBPEL) with
the capability to modify a process’ structure at run time. The change can be
applied to a single process instance or to an entire class of processes. DyBPEL



368 S. Guinea et al.

consists of two main components: a Process Runtime Modifier, and a Static
BPEL Modifier. The runtime modifier makes use of AOP techniques to intercept
a running process and modify it in one of three ways: by intervening on its
BPEL activities, on its set of partnerlinks, or on its internal state. The runtime
modifier takes three parameters. The first is an XPath expression that uniquely
identifies the point in the process execution in which the restructuring has to
be activated. The second is an XPath expression that uniquely identifies the
point in the process in which restructuring needs to be achieved (it can be
different than the point in which the restructuring is activated). The third is a
list of restructuring actions. Supported actions consist of the addition, removal,
or modification of BPEL activities, partnerlinks, and data values. When dealing
with BPEL activities we must provide the BPEL snippet that needs to be added
to the process, or used to modify one of the process’ existing activities. When
dealing with partnerlinks we must provide the new partnerlink that needs to be
added to the process, or used to modify an existing one. When dealing with the
process’ state we must uniquely identify a BPEL variable within the process to
be added or modified, and the XML snippet that will consist of its new value.

When the process restructuring needs to be more extensive, we can use the
static BPEL modifier. It supports the same kinds of modifications to the process’
activities, partnerlinks, and internal variables, except that the modifications are
performed on the process’ XML definition. This operation is completely trans-
parent to users. First of all, already running instances are not modified and
changes are only applied to new instances. Second, using the same endpoint, all
new process requests are forwarded to the newly deployed version of the process.

Regarding infrastructure adaptation, Laysi always performs service requests
on a best-effort basis. Each service invocation is handled individually and the
various calls are assumed to be independent. Consequently, the performance of
the service requests might not be aligned with the higher layers of the service-
based system. To provide better alignment with the service composition layer we
can specify special constraints about service placement (e.g. service instance A
should be hosted within the same provider as service instance B) and availabil-
ity within the infrastructure (e.g. a service instance should be available before
the invocation request is placed in the call queue of Laysi). These constraints
are derived directly from the business process and the future interactions be-
tween the available service instances hosted by the infrastructure. Laysi con-
structs the service infrastructure on five layers: meta negotiators, meta brokers,
service brokers, automatic service deployers, and the physical infrastructures
(grid resources or cloud based virtual machines). These infrastructure layers au-
tonomously adapt themselves to the placed constraints (e.g. placement, availabil-
ity, CPU, memory, pricing). The autonomous behavior of the infrastructure may
involve (i) new service instance deployment in high demand situations, (ii) ser-
vice broker replacement in case of broken or low performing physical infrastruc-
tures, and/or (iii) negotiation bootstrapping if a new negotiation technique is
required.



Multi-layered Monitoring and Adaptation 369

7 The CT Scan Scenario

The application domain considered in this paper concerns the medical imaging
procedure for Computed Tomography (CT) Scans. A CT Scan is an X-ray based
medical test that, exploiting sophisticated image processing algorithms, produces
cross-sectional images of the inside of the body. These images can be further
processed to obtain three dimensional views.

CSDA

FTR

3D

PACS

CSDA

ATR

STR

FTR 3D PACSATRSTR

CSDA

FTR 3D PACS

ATR

STR

CSDA

FTR

3D 
(PACS3D)

PACS
(PACS3D)

ATR

STR

(a) (b) (c) (d)

N1

N2

N3

N4

N1

N2 N3 N4

N1

N2

N3 N4

N1

N2

N3

Fig. 6. Evolution of the CT scan scenario

Figure 6(a) describes the typical CT Scan process. White ovals represent soft-
ware services, while gray rectangles tell us the infrastructure nodes hosting them.
During the Cross Sectional Data Acquisition phase (service CSDA) the CT scan-
ner acquires X-ray data for individual body cross sections depending on which
parts of the body need to be scanned. These data are then used by complex im-
age processing services (offered by various hosts in the infrastructure) to obtain
a set of cross-sectional images from different perspectives as well as 3D volu-
metric information. The services are the Frontal Tomographic Reconstruction
service (FTR), the Sagittal Tomographic Reconstruction service (STR), the Axial
Tomographic Reconstruction service (ATR), and the 3D volumetric information
service (3D). Finally, the data is stored to a picture archiving and communication
system using the PACS service.

These activities require enormous processing power. To keep costs down, the
hospital only maintains the resources needed for emergency CT scans. During
burst periods, such as during the public opening hours of the CT laboratory,
it relies on an infrastructure dynamically extensible with virtual machines from
IaaS cloud infrastructures managed by Laysi.

In the following we show how our approach can be used to automatically
adapt this multi-layered system. The CT Scan process is initially designed by
a domain expert on the basis of the common medical procedure. The obtained
process is a simple sequence of actions that does not embed any optimization with



370 S. Guinea et al.

respect to its performance (Figure 6 (a)). The domain expert also specifies his
goals for the quality of the medical procedure using a set of KPIs. For instance,
an important goal is to ensure that the processing time of a CT scan does
not rise above 60 minutes. An advanced user, such as a hospital IT technician,
defines a set of adaptation actions that can be used to improve the process’
performance: (i) the parallelization of process activities; (ii) the substitution of
some services (for example, the use of a more costly PACS3D service capable of
substituting both services PACS and 3D); (iii) the deployment of a service onto
a new infrastructural node with specific characteristics.

At run time we collect monitoring events both at the software and the infras-
tructure level and correlate them using EcoWare. After a certain period of time,
we notice that the CT process’ performance is degrading: in the last 400 scans
about 25% have not achieved their desired overall CT scan processing time. In
order to identify the reasons for this behavior, the Influential Factor Analysis is
fed the following process and infrastructure level metrics: (i) the duration of each
process activity; (ii) the duration of the whole process with respect to the the
type of the CT scan (whole body, head, kidney etc.) as it determines the amount
of work to be done; (iii) the particular infrastructure node a service execution
has been executed on; (iv) the status of a service execution (successful, faulted);
and (v) the type of infrastructure the services have been executed on (internal
or external – available through Laysi).

The Influential Factor Analysis shows that from the 100 scans which violated
the KPI target, 90 scans have been “whole body CT scans” executed on an
external infrastructure. It also shows that the infrastructure has caused service
execution faults only in 12 cases (out of 400). Finally, all scans performed on the
internal infrastructure were successful. Based on this analysis, the Adaptation
Needs Analysis selects predefined adaptation actions which can improve the
“overall process duration in case of whole body CT scans”. It selects process
activity parallelization as it is the only adaptation which has been specified to
have a direct positive effect on this metric.

This adaptation action is passed to the CLAM which updates the process
model so that all activities are executed in parallel. The Cross-Layer Rule Engine
detects the change in the process model and understands that these changes
have to be checked by the composition checker and by the infrastructure checker
(as the parallel execution of services has to be supported by the underlying
infrastructure). The composition checker invokes the Process Re-Writing Planner
which considers the original data- and control-flows of the process. It notices
that the activities cannot all be executed in parallel since five of them depend
on CSDA’s results; thus the planner returns a new adaptation action which
ensures that CSDA is executed first, while all the other activities are conducted
in parallel. The model is updated in CLAM as shown in Figure 6 (b) and a
new node is added to the adaptation tree. In the next step, the Cross-Layer
Rule Engine invokes the infrastructure checker component which, through Laysi,
discovers that the activities for tomographic reconstruction (i.e. FTR, STR, and
ATR) can only be executed on the node N2. The Rule Engine handles this



Multi-layered Monitoring and Adaptation 371

new adaptation need by invoking again the Process Re-Writing Planner with a
new set of control-flow constraints (i.e. FTR, STR, and ATR must be executed
sequentially). The resulting process structure is shown in Figure 6 (c), in which,
after CSDA, there are three parallel branches. In one of these branches FTR,
STR, and ATR are executed sequentially, while, in the other two, the process
executes the 3D and PACS services. The model is updated and the infrastructure
checker component is invoked again. This new version of the process passes the
infrastructure validation and, since there are no more checkers to be invoked, the
corresponding strategy is enacted. In particular, the adapted process is handed
over to DyBPEL, which manages the transition to the new process definition.

The adapted process is executed and after a certain period of time we notice
that the number of KPI violations has been reduced to 10%, and that most KPI
violations happen when the PACS service’s execution time is too high. Therefore,
two alternative adaptation actions are found: either (i) move the PACS service
instance to another (better performing) node, or (ii) replace PACS with the new
service PACS3D. Both alternatives are passed to CLAM.

The CLAM Rule Manager invokes the infrastructure checker with the con-
straint to the Laysi infrastructure stating that the PACS service should never
be executed on node N4. Unfortunately, Laysi responds that, due to constraints,
this is not possible and that PACS must always be executed on N4. The CLAM
Rule Manager drops the first adaptation action alternative as it is not realizable,
and repeats the procedure with the second adaptation action, the substitution of
the PACS service with a service called PACS3D, capable of providing both stor-
age and 3D reconstruction at a higher cost. This alternative has to be checked
both by the composition checker and by the infrastructure checker. The Process
Re-writing Planner detects that a new process restructuring is necessary: a new
control-flow requirement is introduced by the protocol of the PACS3D service
which requires to receive and store all the X-Ray data information (PACS) before
computing the 3D Scan (3D). The SBA Model resulting from this new adapta-
tion action is depicted in Figure 6 (d). The parallel branches are now only two,
one for FTR, STR, and ATR, and one for PACS3D which is called twice, once
to perform 3D reconstruction, and once to perform storage. The infrastructure
checker validates the new model and the corresponding strategy is enacted.

8 Related Work

There are not many approaches in literature that integrate multi-layered moni-
toring and adaptation of service-based systems. There are however many that fo-
cus on layer-specific problems. For example, Moser et al. [10] present VieDAME,
a non-intrusive approach to the monitoring of BPEL processes. The approach ac-
cumulates runtime data to calculate QoS values such as response time, accuracy,
or availability. It also provides a dynamic adaptation and message mediation ser-
vice for partnerlinks, using XSLT or regular expressions to transform messages
accordingly. Colombo et al. [3] extend the BPEL composition language with pol-
icy (re)binding rules written in the Drools language. These rules take the form



372 S. Guinea et al.

of if-then-else statements, allowing service bindings to depend on process data
collected at run time. The approach also provides mediation capabilities through
a special-purpose mediation scripting language.

Researchers that do consider multi-layered applications, on the other hand,
tend to concentrate either on monitoring them or on adapting them. We present
the most prominent research being done in both these fields. Foster et al. [5]
have proposed an extensible framework for monitoring business, software, and
infrastructure services. The framework allows different kinds of reasoners, tai-
lored to different kinds of services, to be integrated and to collaborate to monitor
decomposable service level agreement terms and expressions. The framework au-
tomatically assigns the decomposed atomic terms to specific reasoners, yet the
approach does not support the correlation of terms monitored at different layers.
Mos et al. [9] propose a multi-layered monitoring approach that considers service
and infrastructure level events produced by services deployed to a distributed
enterprise service bus. Basic computations can be performed on the events to
produce aggregate information (e.g., averages) or complex event processing can
be used for more complex correlations and verifications. The resulting data are
analyzed by comparing them to thresholds, and the knowledge collected at the
various levels are presented through appropriately differentiated user interfaces
and visualization techniques. The approach does not correlate knowledge col-
lected at the different levels.

Regarding multi-level adaptation, Efstratiou et al. [4] present an approach for
adapting multiple applications that share common resources. These applications
are not composed, but rather single entities affected by the same contextual at-
tributes. Since these applications live in the same space they need to coordinate
how they manage the shared resources to avoid conflicts. However, they ex-
pect the users to perceive and model the conflicts manually. Finally, Popescu et
al. [11] propose a framework for multi-layer adaptation of service-based systems
comprised of organization, coordination and service layers. In this approach a
designer needs to prepare a taxonomy of the adaptation mismatches, and then
a set of adaptation templates, known as patterns, that define generic solutions
for these mismatches. This differs from our proposed approach since we do not
require on design-time knowledge but discover our strategies on-the-fly.

9 Conclusion and Future Work

In this paper we have presented an integrated approach for monitoring and
adapting multi-layered service-based systems. The approach is based on a variant
of the well-known MAPE control loops that are typical in autonomic systems.
All the steps in the control loop acknowledge the multi-faceted nature of the
system, ensuring that we always reason holistically, and adapt the system in a
cross-layered and coordinated fashion. We have also presented initial validation
of the approach on a dynamic CT scan scenario.

In our future work we will continue to evaluate the approach through new
application scenarios, and through the addition of new adaptation capabilities



Multi-layered Monitoring and Adaptation 373

and adaptation enacting techniques. We will also integrate additional kinds of
layers, such as a platforms, typically seen in cloud computing setups, and busi-
ness layers. This will also require the development of new specialized monitors
and adaptations. Finally, we will study the feasibility of managing different kinds
of KPI constraints.

References

1. Baresi, L., Caporuscio, M., Ghezzi, C., Guinea, S.: Model-Driven Management of
Services. In: Proceedings of the Eighth European Conference on Web Services,
ECOWS, pp. 147–154. IEEE Computer Society (2010)

2. Baresi, L., Guinea, S.: Self-Supervising BPEL Processes. IEEE Trans. Software
Engineering 37(2), 247–263 (2011)

3. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A Service Composition Execution
Environment Supporting Dynamic Changes Disciplined Through Rules. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer,
Heidelberg (2006)

4. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An Architecture for the Ef-
fective Support of Adaptive Context-Aware Applications. In: Tan, K.-L., Franklin,
M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 15–26. Springer, Heidel-
berg (2000)

5. Foster, H., Spanoudakis, G.: SMaRT: a Workbench for Reporting the Monitorability
of Services from SLAs. In: Proceedings of the 3rd International Workshop on Princi-
ples of Engineering Service-oriented Systems, PESOS, pp. 36–42. ACM (2011)

6. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. IBM TJ Watson Labs (October 2001)

7. Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.:
Adaptation of Service-Based Applications Based on Process Quality Factor Anal-
ysis. In: ICSOC/ServiceWave Workshops, pp. 395–404 (2010)

8. Kertész, A., Kecskemeti, G., Brandic, I.: Autonomic SLA-Aware Service Virtual-
ization for Distributed Systems. In: Proceedings of the 19th International Euromi-
cro Conference on Parallel, Distributed and Network-based Processing, PDP, pp.
503–510 (2011)

9. Mos, A., Pedrinaci, C., Rey, G.A., Gomez, J.M., Liu, D., Vaudaux-Ruth, G.,
Quaireau, S.: Multi-level Monitoring and Analysis of Web-Scale Service based Ap-
plications. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009.
LNCS, vol. 6275, pp. 269–282. Springer, Heidelberg (2010)

10. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive Monitoring and Service Adap-
tation for WS-BPEL. In: Proceeding of the 17th International Conference on World
Wide Web, WWW, pp. 815–824. ACM (2008)

11. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-Driven
Adaptation of Multi-layer Applications Using Templates. In: Proceedings of the
Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems, SASO, pp. 213–222 (2010)

12. Wetzstein, B., Leitner, P., Rosenberg, F., Dustdar, S., Leymann, F.: Identifying
Influential Factors of Business Process Performance using Dependency Analysis.
Enterprise IS 5(1), 79–98 (2011)

13. Zengin, A., Kazhamiakin, R., Pistore, M.: CLAM: Cross-layer Management of
Adaptation Decisions for Service-Based Applications. In: Proceedings of the 9th
International Conference on Web Services, ICWS (2011)


	Multi-layered Monitoring and Adaptation
	Introduction
	The Integrated Monitoring and Adaptation Framework
	Monitoring and Correlation
	Analysis of Adaptation Needs
	Identification of Multi-layer Adaptation Strategies
	Adaptation Enactment
	The CT Scan Scenario
	Related Work
	Conclusion and Future Work


