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Abstract. In this paper, we discuss a particular class of Nash games, where the participants of the
game (the players) are devided into two groups (leaders and followers) according to their position
or influence on the other players. Moreover, we consider the case, when the leaders’ and/or the
followers’ game can be described as a potential game. This is a subclass of Nash games that has been
introduced by Monderer and Shapley in 1996 and has beneficial properties to reformulate the bilevel
Nash game. We develope necessary and sufficient conditions for Nash equilibria and present existence
and uniqueness results. Furthermore, we discuss some Examples to illustrate our results.

Introduction

As an important mathematical modeling tool to analytically study the strategic decision making in a com-
petitive environment, game theory has attracted the interest of researchers of various fields such as economics,
political sciences, management, computer science and biology.

In classical game theory a game decribes the situation, where several individuals make a (strategic) choice
by taking into account the choices of the others. Moreover, the fundamental elements of a game are the
individuals (so-called players) of the game, the strategies that are available to each player and the individual
payoff functions. Furthermore, games are classified into cooperative and noncooperative games. Here we will
discuss a particular type of noncooperative games, where each individual players is only concerned with his/her
own objective, which leads to the well-known concept of a Nash game or equilibrium, in contrast to e.g. Pareto
optimality, i.e. the solution of a multi-objecitive optimization problem which represents a kind of cooperative
game.

In the following, we consider so-called multi-leader-follower games (MLFG) that form a particular subclass of
noncooperative problems, where the players are divided into two groups, namely leaders and followers, according
to their influence (position) in the game. Mathematically, this yields a hierarchical game. However, in contrast
to the well-known Stackelberg game, where one single leader is accompanied by one or more followers, MLFGs
model the situation where several leaders exist. Games of this structure have recently attained the interest
of mathematicians as well as scientists of related fields such as operations research, robotics, and computer
science [1, 9, 20]. However, there is still a lack of theoretical results concerning the structure of such games,
such as existence and uniqueness theory, characterization of equilibria etc.. Here we consider the following
multi-leader-follower Nash game:

Let the leaders’ game be given by

min
xν∈Rnν

θν(xν , x−ν , y) = ϕν(xν) + φ(x, y) s.t. xν ∈ Xν ⊆ Rnν , for ν = 1, . . . , N (1)
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where x denotes the leaders’ joint strategy vector and x−ν is defined by x−ν = (x1, .., xν−1, xν+1, .., xN ).
Furthermore, the joint strategy vector of the followers y = (yj , y−j) ∈ RmM (for simplicity we chose mj = m)
is obtained through the Nash game modeled by the optimization problems

min
yj

τj(y, x) s.t. yj ∈ Yj , for j = 1, . . . ,M , (2)

with nonempty, convex, and closed strategy sets Yj ⊆ Rm. The multi-leader-follower game is then given by

min
xν∈Rnν

θν(xν , x−ν , y)

s.t. xν ∈ Xν ,

min
yj∈Rm

τj(y, x) s.t. yj ∈ Yj for j = 1, . . . ,M

 for ν = 1, . . . , N . (3)

Note, that if the solution of the lower-level problem (the Nash game of the followers) is not single-valued, we
consider the optimistic case of a bilevel problem (cf. also [4]), since for each leader ν we take the followers
response y ∈ S(x) that minimizes the leader’s objective function value θν .
In [12] A. Kulkarni and U. Shanbhag present an example of a similar type in the context of congestions control
in communication networks. Here, the users of the network are the leaders that decide about the flow rates x
on the network. Moreover, a single follower, namely the network manager solves an optimization problem of
the form

min
y

τ(y, x) s.t. y ∈ Y (x) ,

where his/her strategy y represent the decisions that have to be made on the network, such as network capacities,
flow specifications etc.. Note, that the feasibility regions for the decisions y also depend on the users’ decision
x. Furthermore, the users’ problems are given by

min
xν∈Rnν

Uν(xν)− c(y) s.t. xν ∈ Xν ,

where Uν(xν) denotes the utility function of player ν and c(y) denote the congestion cost associated to the
network manager’s decision y, which is imposed on every user of the network. Other research on multi-leader-
follower games include their paper [11], where they consider the setting for multi-leader-follower games that can
be reformulated as a Nash game with shared constraints.

Further theoretical work on leader-follower games include the early work by Sherali [16] that generalizes
Stackelberg games in the setting of Cournot competition and the more recent paper [7], where Hu and Fukushima
discuss existence and uniqueness results of robust Nash equilibria for a class of quadratic MLFGs. Numerical
schemes for multi-leader-follower games have e.g. been presented in [8, 13,17,19].

This paper is organized as follows. In Section 1 we discuss the followers’ problem, which then gives rise
to a reformulation of the leaders’ game, i.e. the full multi-leader-follower game. The reformulation and the
subsequent anaysis thereof is then presented in Section 2.

1. The Followers’ Game

In this section, we are concerned with the lower-level problem, i.e. the followers’ game (2). In case that
M = 1, we have a single follower and the game reduces to a lower-level minimization problem. In case that M is
larger than one, a common solution concept for the resulting Nash game defined by (2) is the Nash equilibrium
that was introduced by J.F. Nash in the 1950th [15].

Definition 1.1 (Nash Equilibrium). Consider the game (2) and let x̄ ∈ X be fixed. Then, a joint strategy
vector y∗ ∈ Y is a Nash equilibrium, if the following condition holds for all j = 1, ..,M

NEP (x) : τj(y
∗
j , y
∗
−j , x̄) ≤ τj(yj , y

∗
−j , x̄) for all yj ∈ Yj (4)
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Hence, a Nash equilibrium corresponds to a multistrategy vector of all players, where no player of the game
has the incentive to change his/her chosen strategy unilaterally.

If the followers’ objective functions τj are convex and continuously differentiable and the feasible sets Yj are
also convex, each follower’s minimization is a convex problem, i.e. a necessary and sufficient condition for (4)
to hold for each follower j is given by the inequality [2]

∇yj τj(y∗j , y∗−j , x̄)T (zj − y∗j ) ≥ 0 ∀ zj ∈ Yj . (5)

Define the f(y, x) = (∇y1 τ1(y, x)T , ..,∇yM τM (y, x)T )T and obtain the following characterization of the set of
Nash equilibria of the parameterized Nash game (2).

Theorem 1.2. Assume that Yj is nonempty, closed and convex for any j = 1, ..,M . Let for all j = 1, ..,M
the objective τj be continuously differentiable in x and y on an open set Ω ⊇ X × Y and convex in yj for any
feasible y−j and any feasible, fixed x̄ ∈ X. Then y∗(x̄) is a Nash equilibrium of NEP (x̄), iff y∗(x̄) solves the
variational inequality

f(y, x̄)T (z − y) ≥ 0 ∀ z ∈ Y =

M∏
j=1

Yj . (6)

The proof of the theorem is a standard result and can e.g. be found in [5] (Prop 1.4.2).

Proposition 1.3. Assume, that Yj is nonempty, closed and convex for any j = 1, ..,M . Let x̄ ∈ X be fixed and
assume that for all j = 1, ..,M the objective τj(·, x̄) is twice continuously differentiable on an open set Ω ⊇ Y
and convex in yj for any feasible y−j. Furthermore, assume that the Jacobian Dyf(y, x̄) is uniformly positive
definite for all y ∈ Y . Then, the Nash game NEP (x̄) admits a unique Nash equilibrium.

Proof. Since the assumptions of Theorem 1.2 are satisfied, for any feasible and fixed x̄ ∈ X, the set of Nash
equilibria of (2) coincides with the solution set of the variational inequality (6). Moreover, f is strongly monotone
on Y , since Dyf(y, x̄) is uniformly positive definite (cf. [5], Prop. 2.3.2). Hence, we can apply Theorem 2.3.3
in [5] to obtain the result. �

The assumptions of this existence and uniqueness result guides us to consider the case, where each individual
follower’s objective τj can be replaced by a joint objective function. The particular structure leads to the
subclass of Nash games that was first introduced by Monderer and Shapley in [14].

Definition 1.4 (Potential Game/ Potential). Consider the game (2) and let x̄ ∈ X be fixed. If there exists a
function π(y, x) such that the following condition holds for all j = 1, ..,M

τj(yj , y−j , x̄) − τj(zj , y−j , x̄) = π(yj , y−j , x̄) − π(zj , y−j , x̄) for all zj ∈ Yj , (7)

the game (2) is called a potential game and π is called an exact potential function (potential) of (2).

Now, if the followers’ Nash game (2) is a potential game, i.e. there exists a potential function π that satisfies
(7), τj can be replaced in (2) by π for all j = 1, ..,M . Hence, the symmetry of Dyf(y, x̄) = D2

yπ(y, x̄) is directly
given and moreover, if π is uniformly convex in y, Dyf(y, x̄) is uniformly positive definite on Y and therefore
f is strongly monotone on Y . Thus we have the following corollary.

Corollary 1.5. Assume, that Yj is nonempty, closed and convex for any j = 1, ..,M . Let (2) be a potential
game with potential π(y, x). Moreover, assume that π is twice continuously differentiable in x and y on an open
set Ω ⊇ X × Y and uniformly convex in y for any feasible, fixed x̄ ∈ X. Then, the Nash game NEP (x̄) admits
a unique Nash equilibrium y∗(x̄).
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Proof. First we can apply Lemma 2.1 in [14]. Then, replacing τj in (5) by π, (6) has to hold for f = Dyπ.
Thus, Dyf(y, x̄) = D2

yπ(y, x̄). Next, since the assumptions of Proposition 1.3 are all satisfied, we obtain the
result. �

The result of the corollary also leads to another advantage of the particular structure of potential games. In
fact, the set of Nash equilibria of (2) corresponds to the set of global optima of the convex potential function
on the joint feasible set Y .

Proposition 1.6. Let the assumptions of Corollary 1.5 be satisfied. Then y∗(x̄) is a Nash equilibrium of (2) if
and only if y∗(x̄) is a global optimum of the convex minimization problem

min
y∈Y

π(y, x̄) . (8)

Proof. Since the conditions of Corollary 1.5 are satisfied, the variational inequality (6) has to hold for f = Dπ.
Thus, the neccessary and sufficient conditions for a global optimum of the convex minimization problem (8)
hold. �

Remark 1.7. If the convex sets Yj can be described by a finite number of affine linear equalities hj(x) = 0 and
inequalities gj(yj) ≤ 0 with continuously differentiable, convex functions gj,k and some regularity conditions
such as the Slater constraint qualification are satisfied, one could also make use of the KKT-conditions associated
with (6) or the minimization problem (8), respectively.

Moreover, an equivalent condition for the variational inequality (6) to hold, which is independent of the
assumptions on π, is given as follows.

Proposition 1.8. Let the feasible set Y be nonempty, closed and convex. Then y∗(x̄) ∈ Y solves the variational
inequality (6) if and only if it solves the equation

y − ProjY (y − f(y, x̄)) = 0 . (9)

Next, let us consider some special cases with regard to the followers’ strategy sets Yj and their objective
functions τj .

Example 1.9.
First, assume that the sets Yj are polyhedrons, i.e. they can be defined by a finite number of affine linear
mappings

Yj = {yj ∈ Rm | Ajyj = bj} for all j = 1, ..,M

Next, let ŷj ∈ Yj and define a matrix Tj such that the range of Tj recovers the nullspace of Aj for all j = 1, ..,M ,
i.e. any yj ∈ Yj satisfies yj = Tjzj + ŷj for some zj . If Tj is defined such that it has full rank, then zj ∈ Rmj
with mj = m− rk(Aj). This variable transformation then yields a Nash game in reduced form

min
z∈RK

π̃(z, x̄) = π(Tz + ŷ, x̄) , (10)

for a suitable chosen matrix T = diag(Tj)
M
j=1, a vector ŷ = (ŷj)

M
j=1 and K =

∑M
j=1 kj . Since the differentiability

and convexity properties of π transfer to π̃ the necessary and sufficient optimality conditions

∇zπ̃(z, x̄) = 0 (11)

guarantee z(x̄) to be the possibly unique minimizer of π̃(·, x̄). Hence, since this yields an implicit or even explicit
expression for the continuous (smooth) path y∗(x̄) = Tz∗(x̄) + ŷ, the followers Nash game can be substituted
by equation (11) or y can directly be replaced by y∗(x̄) in the leaders’ objective function θ(x, y).



ESAIM: PROCEEDINGS AND SURVEYS 159

Example 1.10. Next, let each strategy set Yj (j = 1, ..,M) be the nonnegative orthant, i.e. Yj = Rm+ . Then,
under the conditions of Proposition 1.6, the Nash equilibrium y∗(x̄) of (2) is given by the solution of the
Lipschitz-continuous, but nonsmooth equation (cf. Proposition 1.8):

y − ProjRmM+
(y − f(y, x̄)) = 0 ⇔ y −max(0, y − f(y, x̄)) = 0

This can be reformulated as the complementarity condition: min(y, f(y, x̄)) = 0 ⇔ 0 ≤ y⊥ f(y, x̄) ≥ 0.

If we assume in addition that each follower’s objective function is given as a quadratic function of the form

τj(yj , y−j , x̄) =
1

2
yTj Qjyj − b(x̄)T yj ,

with a diagonal positive definite matrix Qj , then we obtain y∗j (x̄) = max(0, Q−1j b(x̄)) for all j = 1, ..,M (see

also [6, 18]). Moreover, the exact potential function π in this case is given by

π(y, x) =
1

2

M∑
j=1

(yTj Qjyj − b(x)T yj)

Thus, the associated Nash game is in fact a potential game.

Example 1.11. In the more general case where τj is given by τj = αj(yj) + β(y, x) for some continuously
differentiable functions αj and β, we have

π(y, x) =

M∑
j=1

αj(yj) + β(y, x)

since for all j = 1, ..,M it holds

π(yj , y−j , x̄)− π(zj , y−j , x̄) = τj(yj , y−j , x̄) − τj(zj , y−j , x̄) for all zj ∈ Yj .

Moreover, if each Yj (j = 1, ..,M) is defined by Yj = {yj ∈ Rm | yj ≥ lj(x)}, the Nash equilibrium is decribed
by the complementarity condition

min(y − lj(x), f(y, x̄)) = 0, where f(y, x̄) = ∇yπ(y, x̄) =
(
∇yjαj(yj)

)M
j=1

+∇yβ(y, x̄) .

2. The Leaders’ Potential Game

In the previous section, we discussed under which conditions, the Nash game of the followers admits a Nash
equilibrium, when it is unique and how it can be characterized. In this section we now use this information and
focus on the Nash game played by the leaders.

Hence, assume that for any feasible leader multi strategy vector x, there exists at least on equilibrium of the
followers’ Nash game, i.e. the set of equilibrium points S(x) of (2) is nonempty. Then the multi-leader-follower
game (3) can be reformulated as

min
xν∈Rnν

θν(xν , x−ν , y)

s.t. xν ∈ Xν ,

y ∈ S(x)

 for ν = 1, . . . , N (12)

Moreover, if e.g. the conditions of Proposition 1.3 or Corollary 1.5, respectively, are satisfied, then S(x) is
single-valued and we might replace the variable y in (12) by the path y(x). This yields the single-level Nash
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game

min
xν∈Rnν

θ̃ν(xν , x−ν) = θν(xν , x−ν , y(x))

s.t. xν ∈ Xν ,

}
for ν = 1, . . . , N . (13)

Remark 2.1. If S(x) is not single-valued, a worst-case scenario might be considered which leads to the appli-
cation of robust optimization tools such as e.g. presented in [7].

Next, assume that this Nash game forms a potential game, i.e. it admits a potential function P (x). In
particular, we consider the case, where the objective functions θν can be decomposed into two parts: an
individual part ϕν(xν) and a common part φ(x, y): for all ν = 1, .., N it holds

θν(xν , x−ν) = ϕν(xν) + φ(x, y)

and thus

θ̃ν(xν , x−ν) = ϕν(xν) + φ̃(xν , x−ν) ,

where φ̃(x) = φ(x, y(x)). Then, the potential function P (x) is given by

P (xν , x−ν) =

N∑
ν=1

ϕν(xν) + φ̃(xν , x−ν) , (14)

as for all ν = 1, .., N

P (xν , x−ν)− P (sν , x−ν) = ϕν(xν) + φ̃(xν , x−ν)− ϕν(sν)− φ̃(sν , x−ν)

= θ̃ν(xν , x−ν)− θ̃ν(sν , x−ν)

holds for any sν ∈ Xν . Due to this defining property of the potential function, we have the following result.

Theorem 2.2. Let x∗ be a global minimizer of the problem

min
x
P (x) s.t. x ∈ X = ΠN

ν=1Xν . (15)

Then x∗ is a Nash-equilibrium of the MLFG (12).

Proof. Assume that x∗ is not a Nash equilibrium of (12).Then there exist a player ν that can benefit from
unilaterally changing his/her strategy, i.e. there exist some sν ∈ Xν such that

0 < θ̃ν(xν , x−ν)− θ̃ν(sν , x−ν) = P (xν , x−ν)− P (sν , x−ν)

which contradicts the global optimality of x∗ for (15). �

Next, having related the global optima of (15) and the Nash equilibria of (12), we consider the question, under
which assumptions a global minimizer of (15) exists. The main assumption that we make here concerns the
fact, that the solution of the lower-level is given by a continuous (but not necessarily smooth) solution mapping
y(x). In addition to this main assumption, the first result is based merely on the compactness assumption on
the feasible set X, whereas the second one is based on the coercivity of P .

Corollary 2.3. Assume that X is compact and that the solution path of the lower-level y(x) is continuous on
an open set Ω ⊇ X. Then there exists at least one Nash equilibrium of the reformulated Nash game (12).

Proof. Since by the assumptions the objective function P is continuous , the minimization problem (15) admits at
least one global minimizer. Moreover, by Theorem 2.2, the Nash game (12) has at least one Nash equilibrium. �
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Corollary 2.4. Let X be nonempty and closed, y(x) being continuous on an open set Ω ⊇ X and P be coercive
on X, i.e. for any sequence (xk) ⊆ X with limk ‖xk‖ = +∞ it holds limk P (xk) = +∞. Then, the set of Nash
equilibria is nonempty and compact. In particular, there exists at least one Nash equilibrium of the reformulated
Nash game (12).

Proof. By assumption the set of global minimizers of (15) is nonempty and compact. Therefore, by Theorem
2.2, the Nash game (12) has at least one Nash equilibrium. �

Next, we first discuss assumptions on the defining functions that guarantee the convexity of the objective
function P , such that if X is convex (15) is a convex optimization problem.

Lemma 2.5. Assume that for all ν = 1, .., N the functions ϕν are convex. Let φ(x, y) be convex in x and y
and nondecreasing in y. Moreover, suppose that y(x) is a continuous, convex function. Then P is a continuous,
convex function.

Proof. The continuity of P is directly given by the continuity of the defining functions. Next, since y(x) is
supposed to be a convex function, we have y(λx1 + (1− λ)x2) ≤ λ y(x1) + (1− λ) y(x2). Next, because φ(x, y)
is convex in x and y and nondecreasing in y, we obtain with xλ = λx1 + (1− λ)x2

φ̃(xλ) = φ(xλ, y(xλ)) ≤ φ(xλ, λ y(x1) + (1− λ) y(x2))

≤ λφ(x1, y(x1)) + (1− λ)φ(x2, y(x2)) ≤ λ φ̃(x1) + (1− λ) φ̃(x2)

Therefore, as a sum of convex functions, P is convex. �

Note, that we obtain strict convexity of P , if one of the inequalities in the proof of Lemma 2.5 holds strictly.
In this case we can furthermore apply a standard uniqueness result.

Theorem 2.6. Assume that X is nonempty, closed and convex and P is continuous and strictly convex on an
open set Ω ⊇ X. Then (12) admits a unique Nash equilibrium.

Having discussed the existence of Nash equilibria of (12), we are now interested in the necessary and sufficient
conditions that characterize these solutions. As for the existence, we will derive such conditions in terms of
conditions for (15). Note, that we assume again that y(x) denotes a continuous (single-valued) solution mapping
for the followers problem. However, we do not claim, that y(x) is a smooth function of x. We therefore apply
convex, nonsmooth analysis results as in [3, 10] to the (nonsmooth) problem (15).

Theorem 2.7. Let the assumptions of Lemma 2.5 be satisfied and let NX(x∗) be the normal cone of X at x∗

and ∂P (x) be the convex subdifferential of P at x. Then x∗ is a global minimizer of (15) iff

0 ∈ ∂P (x∗) +NX(x∗)

with ∂P (x) be given by

∂P (x) =

N∑
ν=1

∇ϕν(xν) +∇φ1(x, y(x)) + V T∇φ2(x, y(x)), for some V ∈ ∂y(x) , (16)

with ∇φ1,2 denoting the gradient of φ with respect to the first and second component, respectively.

Finally, let us apply these results to the Examples 1.9 and 1.10 of the previous section.

Example 2.8. Assume again that the sets Yj are polyhedrons and that we can replace the followers game by
condition (11). If π is give as a quadratic function of the form

π(y, x) =
1

2

M∑
j=1

yTj Qjyj + b(x)T y
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with Qj being symmetric and positive definite on the nullspace of Aj and Tj being defined as in Example 1.9,
then (11) corresponds to the condition

Qzjzj + bzj (x) = 0 ∀j = 1, ..,M ,

where bzj (x) = TTj Qj ŷj + TTj bj(x) and Qzj = TTj QjTj is regular. Therefore, the single-valued solution of

(2) is given by yj(x) = Tj(Q
z
j )
−1bzj (x) + ŷj . Hence, if b(x) is a continuously differentiable, convex function,

this property transfers to y∗(x) such that Theorem 2.7 can be applied with ∂y(x) = Dy∗(x) under suitable
assumptions on the leaders objectives and the feasible set X.

Example 2.9. We consider again Example 1.10, where we have already derived the continuous solution mapping
yj(x) = max(0, Q−1j b(x)) for all j = 1, ..,M , with each Qj being a diagonal, positive definite matrix. Hence,

since taking the pointwise maximum of two convex functions yields again a convex function, if b(x) is convex,
so is y(x). We can therefore apply Theorem 2.7 to obtain the necessary and sufficient conditions given by (16)
with

∂y(x) =


0, if Q−1j b(x) < 0

Q−1j Db(x), if Q−1j b(x) > 0

ξ Q−1j Db(x), ξ ∈ [0, 1], if Q−1j b(x) = 0

.
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